数学分析试题库证明题
数学分析_I_试题(1)doc - 扬州大学

线
学号
班
扬州大学 20 —20 学年度第 学期
《数学分析 1》期末考试试卷(试卷编号: 01)
(闭卷 120 分钟)
题 号 一 二 三 四 五 六 七 八 总分 复核
应得分 20 20 20 20 5
5
5
5
实得分
阅卷人
一.判断题(每小题 2 分,共 20 分)
1.设 A,B 为非空数集, S = A ∪ B ,则 sup S = max{sup A,sup B}
F(x) = f (x) 在 (0, +∞) 递增.(5 分)
x
八.若函数 f 在闭区间[a,b]上连续,则 f 在[a,b] 上有最大最小值.(5 分)
第2页共2页 PDF 文件使用 "pdfFactory Pro" 试用版本创建
姓名
线
学号
班
扬州大学 20 —20 学年度第 学期
5.若
f(x)无界,则存在 { xn }
⊂
D(
f
) ,使得
lim
n→+∞
f
(xn )
=
∞
1
6. lim (1+ x)x = e x→+∞
7.若
lim(
n→∞
xn
−
yn
)
=
0
,
则
lim
n→∞
xn
=
lim
n→∞
yn
8.若
f
′
+
(
x0
),
f−′(x0 )
均存在,则
f
′( x0 )
存在
9. f (x) = x −[x] 是周期为 1 的周期函数
数学分析试题及答案解析

2014 -——2015学年度第二学期《数学分析2》A试卷学院班级学号(后两位)姓名一.判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉)1。
若在连续,则在上的不定积分可表为().2.若为连续函数,则()。
3。
若绝对收敛,条件收敛,则必然条件收敛().4。
若收敛,则必有级数收敛( )5. 若与均在区间I上内闭一致收敛,则也在区间I上内闭一致收敛().6. 若数项级数条件收敛,则一定可以经过适当的重排使其发散于正无穷大().7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同().二.单项选择题(每小题3分,共15分)1.若在上可积,则下限函数在上( )A.不连续B. 连续C。
可微D。
不能确定2。
若在上可积,而在上仅有有限个点处与不相等,则()A。
在上一定不可积;B. 在上一定可积,但是;C。
在上一定可积,并且;D. 在上的可积性不能确定。
3.级数A。
发散 B.绝对收敛 C.条件收敛 D. 不确定4。
设为任一项级数,则下列说法正确的是( )A.若,则级数一定收敛;B。
若,则级数一定收敛;C。
若,则级数一定收敛;D. 若,则级数一定发散;5。
关于幂级数的说法正确的是( )A. 在收敛区间上各点是绝对收敛的;B. 在收敛域上各点是绝对收敛的;C。
的和函数在收敛域上各点存在各阶导数;D。
在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题5分,共10分)1。
2。
四. 判断敛散性(每小题5分,共15分)1.2.3.五. 判别在数集D上的一致收敛性(每小题5分,共10分)1。
2。
六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面角向斜上方切割,求从圆柱体上切下的这块立体的体积。
(本题满10分)七. 将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力。
数学分析证明题练习

数学分析证明题练习1. 证明题一题目证明:两个实数的和与积的大小关系。
解答设两个实数为$a$和$b$,其中$a\geq b$。
证明两个实数的和大于等于它们的积,即$a+b \geq ab$。
根据已知条件,我们有:$$a \geq b \quad \text{(1)}$$$$ab \geq b^2 \quad \text{(2)}$$根据(1)式,两边同时加上$b$,得:$$a+b \geq b+b$$化简得:$$a+b \geq 2b \quad \text{(3)}$$根据(2)式,两边同时加上$b^2$,得:$$ab+b^2 \geq b^2+b^2$$化简得:$$ab+b^2 \geq 2b^2 \quad \text{(4)}$$由于$a \geq b$,所以$(3)$式和$(4)$式成立,即:$$a+b \geq 2b$$$$ab+b^2 \geq 2b^2$$将上述两个不等式相加,得:$$(a+b) + (ab+b^2) \geq 2b + 2b^2$$化简得:$$a+b+ab+b^2 \geq 2b+2b^2$$再次化简得:$$a+b+ab+b^2 \geq 2(b+b^2)$$由于$(a+b)$和$(ab+b^2)$皆大于等于$2(b+b^2)$,所以可以得出结论:$$a+b \geq ab$$综上所述,两个实数的和大于等于它们的积。
2. 证明题二题目证明:若$f(x)$为可导函数,并且$f'(a) > 0$,则在点$a$的某个邻域内,$f(x)$严格单调递增。
解答根据函数可导的定义,我们有:$$f'(a) = \lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$由于$f'(a) > 0$,则存在一个正实数$k$,使得$0 < k < f'(a)$。
根据上述条件,我们可以找到一个正实数$\delta$,使得对于所有满足$0 < |x-a| < \delta$的$x$,有:$$\left|\frac{f(x)-f(a)}{x-a}-f'(a)\right| < k$$根据定义,上式可以化简为:$$-\delta < \frac{f(x)-f(a)}{x-a}-f'(a) < \delta$$移项得:$$-\delta(x-a) < f(x)-f(a)-f'(a)(x-a) < \delta(x-a)$$再次移项得:$$f(a)+f'(a)(x-a)-\delta(x-a) < f(x) < f(a)+f'(a)(x-a)+\delta(x-a)$$ 化简得:$$f(a)+[f'(a)-\delta](x-a) < f(x) < f(a)+[f'(a)+\delta](x-a)$$由于$f'(a)-\delta > 0$,所以函数$f(x)$在点$a$的某个邻域内严格单调递增。
第三学期 数学分析(3)试卷

一、填空题(每空3分,共24分)1、 设z x u ytan =,则全微分=u d __________________________。
2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则=x u _________________________。
3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。
4、 设,d ),()(sin 2y y x f x F xx⎰=),(y x f 有连续偏导数,则=')(x F __________________。
5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分⎰=Ls x yd _____________。
6、 在xy 面上,若圆{}122≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关于原点的转动惯量的二重积分表达式为_______________,其值为_____________。
7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=⎰⎰dxdy z S2_______。
二、计算题(每题8分,共56分) 1、 讨论yx y x y x f 1sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。
2、 设),(2xy y x f u =具有连续的二阶偏导数,求二阶偏导数xx u 和xy u 。
3、 求22333),(y x x y x f --=在}16|),{(22≤+=y x y x D 上的最大值和最小值。
4、 求x x x e x xd sin e2⎰∞+---。
提示:C bx b bx a ba e x bx e ax ax+-+=⎰)cos sin (d sin 22。
5、 利用坐标变换求⎰⎰+-Dy x yx yx d d sec2,其中D 由1=+y x ,0=x 及0=y 围成。
数学分析9定积分总练习题

第九章 定积分总练习题1、证明:若φ在[0,a]上连续,f 二阶可导,且f ”(x)≥0,则有⎰a 0(t)) f(φa 1dt ≥f(⎰a(t) φa 1dt). 证:设T 为[0,a]的一个分割,其分点为n ka , k=0,1,…,n, 即x k =nka. 由f ”(x)≥0知f 凸,∴f(∑=n1k k )(x φn 1)≤∑=n1k k ))(x f(φn 1.即∑=n 1k k n a ))(x f(φa 1≥f(na)(x φa 1n 1k k ∑=). ∵f, φ在[0,a]上都可积,且f 连续, ∴令n →∞,有⎰a 0(t)) f(φa 1dt ≥f(⎰a(t) φa 1dt).2、证明下列命题.(1)若f 在[a,b]上连续增,F(x)=⎪⎩⎪⎨⎧=∈⎰ a.x ,f(a)b].a,(x f(t)dt a -x 1xa , 则F 在[a,b]上增.(2)若f 在[0,+∞)上连续,且f(x)>0,则φ(x)=⎰⎰x 0x0f(t)dttf(t)dt 在(0,+∞)上严格增.要使φ(x)在[0,+∞)上严格增,需要补充定义φ(0)=?证:(1)F ’(x)= ⎪⎩⎪⎨⎧=∈-⎰ a.x ,0b].a,(x a)-(x f(t)dt a -x f(x)2xa, 根据积分中值定理知,存在ξ∈(a,x),⎰xa f(t)dt =f(ξ)(x-a). 又f 在[a,b]上增, ∴F ’(x)=a-x )f(ξ-f(x)>0, x ∈(a,b],∴F ’(x)≥0, x ∈[a,b],∴F 在[a,b]上增.(2)任给x>0,有φ’(x)=2x0xx)f(t)dt (tf(t)dtf(x )f(t)dt x f(x )⎰⎰⎰- =2x0x0)f(t)dt (t)f(t)dt -(x f(x )⎰⎰.∵f(x)>0,∴(x-t)f(x)>0,∴⎰x0t)f(t)dt -(x >0,∴φ’(x)>0, x ∈(0,+∞),∴φ(x)=⎰⎰x 0x0f(t)dttf(t)dt 在(0,+∞)上严格增. 又+→0x lim φ(x)=⎰⎰+→x 0x00x f(t)dttf(t)dt lim=f(x )x f(x )lim 0x +→=+→0x lim x=0, ∴只要补充定义φ(0)=c ≤0,则φ(x)在[0,+∞)上严格增.3、设f 在[0,+∞)上连续,且+∞→x lim f(x)=A. 证明:⎰+∞→x0x f(t)dt x1lim=A. 证:∵+∞→x lim f(x)=A ,∴任给ε>0,存在M>0,使当x>M 时,有|f(x)-A|<2ε,又当T>M 时,|A f(x)dx T 1T 0-⎰|=T1|⎰⎰-T 0T0Adx f(x )dx | =T1|⎰T0A]dx -[f(x )|≤⎰T 0dx |A -f(x)|T 1=⎰M 0dx |A -f(x)|T 1+⎰T M dx|A -f(x)|T 1 ≤⎰M 0dx |A -f(x)|T 1+2ε(1-TM). ∴只要取T 1=max{⎰M 0dx |A -f(x)|ε2, 2M},则 当T>T 1时,就有|A f(x)dx T 1T 0-⎰|<2ε+2ε=ε.∴⎰+∞→T 0T f(x)dx T 1lim =⎰+∞→x0x f(t)dt x 1lim =A.4、设f 是定义在R 上的一个连续周期函数,周期为p ,证明:⎰+∞→x0x f(t)dt x 1lim =⎰p 0f(t)dt p 1. 证:令x=p λ,y=λt,则⎰x0f(t)dt x1=⎰p λ0y) y)d(λ f(λp λ1=⎰p 0y)dy f(λp 1=⎰p 0 t)dt f(λp 1. 由f(t)=f(t+np), n 为任意正整数,又np)f(t lim n ++∞→= t)f(λlim λ+∞→,∴⎰+∞→x0x f(t)dt x 1lim =⎰+∞→p 0λ t)dt f(λp 1lim =⎰++∞→p 0n )dt np f(t p 1lim =⎰p 0f(t)dt p1.5、证明:连续的奇函数的一切原函数皆为偶函数;连续的偶函数的原函数中只有一个是奇函数.证:设连续的奇函数f ,连续的偶函数g ,则它们的原函数分别为: F(x)=⎰x0f(t)dt +C ,G(x)=⎰x0g(t)dt +C.∵F(-x)=⎰-x 0f(t)d(t)+C=⎰x 0f(-t)d(-t)+C=-)f(t)d(-t x 0⎰+C=⎰x0f(t)dt +C=F(x), ∴连续的奇函数的一切原函数皆为偶函数又G(-x)=⎰-x0g(t)dt +C=⎰x 0g(-x )d(-t)+C=⎰x 0g(x )d(-t)+C=-⎰x0g(x )dt +C ≠-G(x), ∴仅当G(x)=⎰x 0g(t)dt 时,G(-x)=-⎰x0g(x )dt =-G(x), 即连续的偶函数的原函数中只有一个是奇函数.6、证明许瓦尔兹不等式:若f 和g 在[a,b]上可积,则 (⎰ba f(x )g(x )dx )2≤⎰b a 2(x )dx f ·⎰ba 2(x )dx g .证:若f 和g 在[a,b]上可积,则f 2,g 2,fg 都可积. 且对于任何t, (f+tg)2也可积.∵(f+tg)2≥0,∴⎰+b a 2tg)(f =⎰ba 2(x )dx f +2t ⎰ba f(x )g(x )dx +t2⎰ba2(x )dx g ≥0.∴二元一次方程的判别式△=4(⎰ba f(x )g(x )dx )2-4⎰ba 2(x )dx f ·⎰ba 2(x )dx g ≤0.∴(⎰b a f(x )g(x )dx )2≤⎰b a 2(x )dx f ·⎰ba 2(x )dx g .7、利用许瓦尔兹不等式证明:(1)若f 在[a,b]上可积,则(dx f(x )ba ⎰)2≤(b-a)⎰ba 2(x )dx f ; (2)若f 在[a,b]上可积,且f(x)≥m>0,则⎰ba f(x )dx ·⎰baf(x )dx≥(b-a)2; (3)若f,g 都在[a,b]上可积,则有闵可夫斯基不等式:21ba 2dx g(x))(f(x)⎥⎦⎤⎢⎣⎡+⎰≤21ba 2(x)dx f ⎥⎦⎤⎢⎣⎡⎰+21ba 2(x)dx g ⎥⎦⎤⎢⎣⎡⎰. 证:(1)记g(x)=1,∵f 和g 在[a,b]上可积,根据许瓦尔兹不等式,有 (dx f(x )ba ⎰)2 ≤⎰b a dx ·⎰b a 2(x )dx f =(b-a)⎰ba 2(x )dx f . (2)若f 在[a,b]上可积,且f(x)≥m>0,则f ,f1在[a,b]上也可积. 根据许瓦尔兹不等式,⎰b a f(x )dx ·⎰baf(x )dx ≥(⎰⋅b a dx f(x)1f(x))2=(b-a)2. (3)∵⎰+ba 2dx g(x ))(f(x )=⎰⎰⎰++ba 2ba ba 2(x )dxg f(x )g(x )dx 2(x )dx f≤⎰⎰⎰⎰+⎥⎦⎤⎢⎣⎡⋅+ba 221ba ba 22ba 2(x)dx g (x)dx g (x)dx f 2(x)dx f=221b a 221b a 2(x)dx g (x)dx f ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎰⎰. ∴21ba 2dx g(x))(f(x)⎥⎦⎤⎢⎣⎡+⎰≤21ba 2(x)dx f ⎥⎦⎤⎢⎣⎡⎰+21ba 2(x)dx g ⎥⎦⎤⎢⎣⎡⎰.8、证明:若f 在[a,b]上连续,且f(x)>0,则 ln ⎪⎭⎫⎝⎛⎰b a f(x )dx a -b 1≥⎰b a lnf(x)dx a -b 1. 证:在[a,b]中插入n-1个等分点a=x 0<x 1<x 2<…<x n =b. 记f(x i )=y i >0,于是由平均值不等式na-b (y 1+y 2+…+y n )≥(b-a)n n 21y y y ⋯=(b-a)e )y ln y (ln n a-b a -b 1n 1⋯+⋅.两边取极限得:⎰ba f(x )dx =na-b limn +∞→(y 1+y 2+…+y n )≥(b-a)na -b lim n +∞→e)y ln y (ln na-b a -b 1n 1⋯+⋅=(b-a)e⎰balnf(x)dx a -b 1.∴⎰b a f(x)dx a -b 1≥e ⎰balnf(x)dx a -b 1,∴ln ⎪⎭⎫ ⎝⎛⎰b a f(x )dx a -b 1≥⎰b a lnf(x)dx a -b 1.9、设f 为R +上的连续减函数,f(x)>0;又设a n =∑=n1k f(k)-⎰n1f(x )dx .证明:{a n }为收敛数列. 证:∵f 为R +上的连续减函数,∴a n =∑=n1k f(k)-⎰n1f(x )dx =∑=n 1k f(k)-∑⎰=+1-n 1k 1k k f(x )dx ≥∑=n 1k f(k)-∑=+1-n 1k k)-1f(k)(k =f(n)>0,即数列{a n }有下界,又a n+1-a n =f(n+1)-⎰+1n nf(x )dx ≤f(n+1)-⎰++1n n1)dx f(n =0.∴{a n }为递减数列. 由单调有界定理知{a n }收敛.10、证明:若f 在[a,b]上可积,且处处有f(x)>0,则⎰ba f(x )dx>0. 证:∵在[a,b]上处处有f(x)>0,∴使f(x)≤0的点只有有限个, 对[a,b]上任一分割T ,添加这些点为分点,则 在每一个小区间(x i ,x i+1)上恒有f(x)>0, ∴⎰+1i ix x f(x)dx>0, (i=0,1,…,n) 其中x 0=a, x n+1=b.∴⎰baf(x )dx =∑⎰=+ni 1i if(x )dx >0.。
数学分析试题

测试题第一章 实数集与函数(A )1.证明:n ≥1时,有不等式)1(21)1(2--<<-+n n nn n .然后利用它证明:当m ≥2时,有)21)2(21m nm mn <<-∑=.2.设S 是非空数集,试给出数的下界是S ξ,但不是S 的下确界的正面陈述.3.验证函数R x x x x f ∈=,sin )(,即无上界又无下界.4.设)(x f 是定义在R 上的奇函数,)(x g 是定义在R 上的偶函数,试问))(()),((x f g x g f 是奇函数还是偶函数?5.证明:)0(sgn 2cot arctan ≠=+x x x arc x π.6.试问下列函数的图形关于哪一竖直轴线对称: (1)c bx ax y ++=2;(2)x b x a y -++=. 7.设A ,B 为R 中的非空数集,且满足下述条件: (1)对任何B b A a ∈∈,有b a <;(2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A =(B )1.设n 为正整数.(1)利用二项式展开定理证明:∑=-=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛+nk k r nn r k n 1101!1111 ,其中 10-=k r 是连乘记号.(2)若1 n ,证明:∑=<+<⎪⎭⎫⎝⎛+<n k nk n 13!111122.设{}为有理数r r r E,72<=,求E sup ,E inf3.设A ,B 为位于原点右方的非空数集,{}B y A x xy AB ∈∈=,证明: B A AB inf inf inf ⋅=4.设函数()x f 定义于()+∞,0内,试把()x f 延拓成R 上的奇函数,()x f 分别如下: (1)()x e x f =; (2)()x x f ln = 5.试给出函数()x f y =,D x ∈不是单调函数的正面陈述。
(数学分析习题内容)第二章

第二章 数列极限习题2.按 N 定义证明:limn1n 1〔 1〕 nn111N1证明由于n 1n 1n,因此0 ,取,nN ,必有n1 1lim n 1n1nn 1.故 nlim 3n 2n3〔 2〕 n2n 2 123n 2 n 32n 3 2n 3n 5n 5 3证明 由于 2n 2 122(2n 2 1) 2( n 2 n 2 1) 2n 22n nNmax{ 1, 3}3n 2 n3 3(n1),于是0 ,取,nN ,有2n2 12n. 因此2lim 3n 2 n3n2n12lim n!n n〔 3〕 nn! 0n! n(n 1) 1 n 1 2 1 1证明 由于n nn n n nnnn nn,于是0 ,取N1n!1lim n! 0nN ,必有 n nn.,因此 n n nlim sin n〔 4〕 nsinn 0 sinnn,于是NnN ,必有证明 由于,取,sinn 0n.lim sinn因此 nlim n 0 (a 1)〔 5〕 n a n证明 由于 a1 ,设a1 h (h 0) ,于是a n(1 h) n 1 nh n(n 1) h 2h nn(n 1) h 222 ,从而nnn2a n a nn(n 1) 2( n 1)h 22N12h0 ,取h2n N ,,因此,n2n有an (n 1)h2lim.故na n3.依照例 2,例 4 和例 5 的结果求出以下极限,并指出哪些是无量小数列:lim 1lim n 3lim1n3〔 1〕 nn;〔 2〕 n;〔 3〕nlim1lim 1nlim n 10lim 1nnn2;〔 7〕 n2〔 4〕 n3 ;〔 5〕 ;〔 6〕 nlim 1 lim 1 011 的结果, a解 〔 〕 nn nn 2〔用例〕,无量小数列22 .1lim n 3 15 的结果, a3 〕〔 2〕 n,〔用例lim 12 的结果, a3 〕,无量小数列 .〔 3〕 n n 3 ,〔用例11n1lim lim4 的结果, q3n3〔 4〕 n n,〔用例 3 〕,无量小数列 .11 n1limlimq〔 5〕n2nn2,〔用例 4 的结果,2〕,无量小数列 .lim n 10 15 的结果, a10 〕.〔 6〕 n,〔用例lim 1 lim n 11a1n 22〔 7〕 n n,〔用例 5 的结果,2 〕 .lim a nak lim a n ka4.证明:假设n,那么对任一正整数,有 k证明 lim a na0, N0, nN , | a n a | ,于是,当 kN由于 n,因此时,必有 nk N ,从而有 | an ka |lim a n k a .,因此k5.试用定义 1 证明:1为极限;〔 2〕数列{ n (1) n} 发散 .〔 1〕数列 n 不以 1证明〔用定义 1 证明〕lim a na0 ,数列 { a n }不以 a 为极限〔即 n〕的定义是:N 0 ,nN , | an 0a |10 ,取 nN2 N ,有2 ,N〔 1〕取1 111N 1N 1 1 01n 0N 2N22(N1)2n,故数列 不以 1为极限.1 1另证 〔用定义1’证明〕取 2 ,那么数列n 中满足 n2 的项〔有无量多个〕1显然都落在 1 的邻域 U (1;0 )(1 2,3 2) 之外,故数列n 不以 1为极限.〔 2〕数列 { n(n1 1},对任何 a1,那么数列 { n (n1)} ={1, 2,3,4,5, 6,R,取1)}中 所 有 满 足 “ n 为 偶 数 , 且na1〞 的 项 〔 有 无 穷 多 个 〕, 都 落 在a 的 邻 域nnU ( a;0 )(a 1, a 1) 之外,故数列 { n( 1)} 不以任何数a 为极限,即数列 { n( 1)} 发散.( 1)n16.证明定理,并应用它证明数列 n的极限是 1.定理 数列 { a n }收敛于 a 充要条件是:{ a na} lim a na为无量小数列 . 〔即n的充lim (a na) 0要条件是 n〕证明lim a n a0, N0, nN〔必要性〕设 n,由数列极限的定义,| a na | | (a n a) 0 |lim (a na) 0,因此 n.〔充分性〕设lim (a n a)0, N0, nNn,由数列极限的定义,| (a na) 0 | | a na |lim a na,因此 n.,有,有1 ( 1) n1 ( 1) n1( 1) n下面证明:数列n的极限是 1. 由于nn 是无量小数1( 1) nn列,因此数列的极限是 1.lim a nalim | a n | | a |当且仅当 a 为何值时反之也成立?7.证明:假设n,那么n.证 明lim a na,由数列极限的定义, 0,N0,n N ,设n| a n | | a || a n a |lim | a n | | a | 但此结论反之不用然成立,比方数列,因此也有 n. {( 1) n } .当且仅当 a = 0 时反之也成立 .lim | a n | 00,N 0,n N ,设n,于是| a n | | a n |lim a na,因此 n.8.按N定义证明:lim ( n 1n )lim 1 2 3nn 3〔 1〕 n; 〔2〕 nn 1,n 为偶数a nnn 2 nlim a n1n 为奇数n〔 3〕n,其中| n 1n |11N1n 1nn .0 ,取 2 ,证明〔1〕由于于是| n 1n |1lim (n 1 n)n N ,必有n,从而 n.1 2 3n n(n 1) n 1 n n1〔2〕由于n32n32n 22n 2n ,于是0,取N11 2 3n1lim12 3N ,必有n30n, n,因此n n3| a nn 1111 |n〔 3〕由于当 n为偶数时,n| a n1|n2n n 2n n11n1当 n为奇数时,n n n2n n管 n| a n 1 |1N1,n 为偶数还是奇数,都有n .于是0 ,取| a n 1 |1lim a n 1 n,因此.n习题1.求以下极限:1lim0 ,可得⑴依照例 2 n n a, a n,故不N,必有lim n333n 2 n4n2nlim12nn 2⑵ n 113111n n3lim3n42134n2n312lim ( 2)n n n⑶依照例 4lim q n01,可得n, | q |(2)n n (2)n11lim3lim3n 1n 123n( 2)3n n 13 (33)lim (n2n n) limn2n lim11n nn n n112⑷1n这是由于由例 1lim a n a lim a n a lim (1 1 )1假设n,那么n. 于是由n n,得lim 1111nn.lim ( n 1n 2n 10 )10lim n a1a0 〕⑸ n,由于n〔11 11112n2 1 1lim 2222 nlim 22n11 1 n1 1 3323n1 3n31 1⑹3lim a n alim b nb a b .证明:存在正数,使适合 nN 时,有2.设 n,n,且Na n bn.aa b blim a na a b证明由 ab ,有 2.2 ,由保号性定理,存在由于 na blim b nba bN 1 0 ,使适合nN 1a n22时有. 又由于 n,因此,又存在N 2,使适合nN 2b n a b于是取Nmax{ N 1, N 2},当 n时有2 . N 时,有ab b na n2.3.设{ a n }为无量小数列,{ b n }为有界数列,证明:{ a n b n }为无量小数列 .证明 由于{ b n }为有界数列, 因此存在 M0 ,使得| b n|M , n 1, 2,. 由 { a n } 为0,N 0,| a n |M. 从 而 当nN时,有无量小数列,知n N ,| a n b n | | a n | | b n |M Mlim a n b n,因此n,即 { a n b n } 为无量小数列 . 4.求以下极限lim1 11lim 1 1111112 23n(n 1)1223n n 1nnlim 11 1n 1〔1〕n1 1 1 1 11 248n2 4 8nn2 2 2222 2221 〔 2〕由于2 2n,而111lim 22n11 2 2n2nn21 (n),于是n,从而lim2 42 822 n2lim221nn22 n〔3〕lim 132n 1 222 nn2lim 5 57 732 2 2 2 2n2111〔 4〕当 n 2时, 2nlim n1 11以 nn.11n2(n1)2〔 5〕由于9 2n 1 2n 332n 3 3232 n 1 2n lim2nn1n1 n11 n1lim n 1 lim n 11,2n,而 n 2 n,所1 n 11 1 0, (n)(2n)2n2nn2,因此lim111 0n2(n1)2 (2n)2nn111nn1〔 6〕由于n 2 nn 2 1n 2 2n 2 nn 21n 2,limnlim1121nn nn 1且n,因此lim1111n 2n 2n 2n12n5.设{ a n } 与{ b n }中一个是收敛数列, 另一个是发散数列, 证明{ anb n }是发散数列 .a n(b n 0)又问 { a n b n } 和bn可否必为发散数列 .证明 〔用反证法证明〕 不如设 { a n }是收敛数列,{ b n }是发散数列 .假设数列{ anb n }收敛, 那么b n(a n b n )a n收敛, 这与{ b n }是发散数列矛盾,因此,数列{ anb n }发散 .同理可得数列{ a nb n }发散 .a n (b n0){ a n b n }b n{ a n }{ b n }和不用然是发散数列 .比方,假设 是无量小数列, 是有a n (b n0){ a n b n }b n界的发散数列 . 那么 和是无量小数列,自然收敛 .b n(a n0)lim a na 0 {b n }{ a n b n }a n但是,有以下结果: 若是 n是发散数列, 那么 和,必然是发散数列 .6.证明以下数列发散:( 1) n n〔 1〕 n 1a n( 1)nn a2n2n 1, ( n)a2 n 12n 1 1证明设n 1 ,那么2n1,而2n,( 1) n n由,定理 知n 1 发散 .(2〕 n ( 1)n证明n (1)n的偶数项组成的数列a2n2n,发散,因此n (1) n发散 .cosn〔 3〕4a ncosna8n11, (n),子列 证明 设4 ,那么子列a8n 411, ( n),故 cosn4 发散 .7.判断以下结论可否成立〔假设成立,说明原由;假设不成立,举出反例〕:〔 1〕假设 { a2k 1 } 和{ a 2k }都收敛,那么{ a n }收敛 .解结论不用然成立. 比方,设a n( 1) na 2k1,a 2k 11都收敛,但,那么a n (1) n 发散 .注假设 { a 2k1}和{ a 2 k }lim a 2k 1 lim a 2 k〕,那么 { a n } 收敛 .都收敛,且极限相等〔即 kk〔 2〕假设 { a 3k 2 } , { a 3k 1 }和{ a 3k }都收敛,且有同样的极限,那么{ a n } 收敛 .证明lim a 3 k 2 lim a 3k1lim a 3 ka0 ,设 kkk,那么由数列极限的定义,知K 10 ,kK 1 , | a 3 k 2 a |;同样也有 K 20 , k K 2 , | a 3 k1a |;K 30 ,kK3,| a3ka |. 取Nmax{ 3K 1 , 3K 2 , 3K 3 } ,当 nN 时,对任意的自然数 n ,假设 n 3k 2 ,那么必有kK 1 ,从而| a na |;同样假设 n 3k 1,那么必有kK 2 ,从而也有| a na |;假设n3k ,那么必有kK 3 ,从而 | a na |. 所lim a na以k,即{ a n }收敛 .8.求以下极限:lim1 32n 1〔 1〕 k2 4 2n0 1 3 5 2n 12 4 6 2n解由于1 352n 32n 1113 355 7( 2n 3)(2n 1) ( 2n 1)(2n1)2n 1lim11 3 2n 1lim0而k2n1,因此 2 42nk1 32n11 32n12 42n Sn,设另解由于242n 3 52n1 2 42n ,2 4 2n11T n2n 1 ,那么SnTn .于是S n S n T n S nS n3 52n 1 ,因此2n 1 .〔 2〕 答案见教材提示 .lim [( n 1)n ], 01〔 3〕 k(n1)nn [(1 1 ) 1]n [(1 1 ) 1]解nn n1 0, (n)nn 1lim [( n 1)n ]因此, k另解 由于1 0 ,因此(n1) 1n1 ,于是(n 1)n1(n 1)nn1, 从而(n 1) nn10, (n) .〔 4〕 答案见教材提示 .9.设a 1, a 2 ,a m为 m 个正数,证明:lim n a 1n a 2na n nmax{ a 1 , a 2 ,a m }n证明 由于 max{ a , a , a}n a n a na nnn max{a , a ,a }12m12n12mlim n n1lim n a 1n a 2na n n max{ a 1 , a 2 ,a m }而n,因此nlim a na10.设 n,证明:lim [ na n ]a〔 2〕假设a0, anlim n a n 1n〔 1〕 n;,那么 n.〔 1 〕 因 为[ na n]nan[ na n ] 1na n 1 [na n ]a n证 明, 所 以nn. 由 于lim na n 1lim a n 1a[ na n ]nnlim a nalimannn,且n,从而n.lim a na0 ,使适合 na a n3 a 〔 2〕由于 n,由 定理,存在 NN 时,有22 .na na nn3alim n a lim n 3 a 1limna n 1于是22,并且 n2n2,因此 n.习题1nlim 1 en1.利用 n 求以下极限:nn1 n11lim 11limnlimn1n 11ennn11〔 1〕n 1 n 1n 1n1 lim1lim1111e〔 2〕 nnnnn1n 1n11lim1n e1lim1 nn 1n1〔 3〕n 11 n1lim 1lim 12n2n〔 4〕n n2 n 12n21lim 1en2nlim a n a0, n 1, 2, , 那么注 : 此 题 的 求 解 用 到 事 实 〔 例 1 〕: 假设n, 且anlim a na. nnlim 11n 2〔 5〕 n1 n1解由于数列n单调增加,且有上界3 ,于是1 n 1 n 21 1n 1n 31, (n)n 2n 2,因此n lim 11 1n 2n2.试问下面的解题方法可否正确:求 lim 2nn解不正确 .lim 2nlim 2n由于极限 n可否存在还不知道〔事实上极限n不存在〕,因此设lim 2nan是错误的 .3.证明以下数列极限存在并求其值:〔 1〕设 a 12, a n 12a n , n1, 2,证 明先 证 数 列{ a n }的 有 界 性 , 用 数 学 归 纳 法 证 明 : 2是{ a n }的 一 个 上 界 .a 122 ,假设an2 ,那么 a n12a n 2 22,因此{ a n }有上界2.an 1a n2a n a na n ( 2 a n ) 0an ,其次证明{ a n }单调增加 .lim a n a2a na n,因此an 1即{ a n }单调增加 .从而{ a n }极限存在,设2 2a n的两端取极限,得n,在an1a 22a,解之得 a = 0 (舍去) 和2lim a n2,因此n.an 12a n 2 2 1注:{ a n }的单调增加也可以以下证明:a na na n2,因此an 1an .1 1 1 1 1 1 1还可以以下获取:a n 2 2 42n2 2 42n2n 1an 1〔 2〕设 a 1c (c 0), a n 1 c a n , n 1, 2,证明先证数列 { a n } 的有界性,用数学归纳法证明:{ a n }的一个上界是1 +c .a 1c1 c ,假设 an1 c ,那么an 1c a n2c1c 22c 11 c ,因此{ a n }有上界 1 + c .其次证明{ a n }单调增加〔用数学归纳法证明〕. a 1ccc a 2 ,假设an 1a n ,于是c a n 1 c a n ,从而c a n 1c a n ,即 a nan 1. 故 { a n } 单调alim a n2 ca n的两端取极限,得2因此{ a n }极限存在,设 nac a ,增加 . ,在an 1a 11 4clim a n 2解之得2 . 由于n,因此a >0 . 故 n.a >cna n(c 0), n 1, 2,〔 3〕n!证明先证{ a n }从某一项今后单调减少. 取自然数N 使得 N > c ,于是当nN时,c n 1cc nccan 1(n 1)! n 1 n!n 1anN1ana n ,即从第 N 项开始 { a n } 单调减少 .由于{ a n }的各项都大于零,因此{ a n }有下界0.从而{ a n }极限存在 .lim a na设n,an 1clim a nn a n的两端取极限,得a0 a ,故 a在10 ,即 n.1 nn111nn 14.利用为递加数列的结论,证明为递加数列 .1 nn 2na n 1,要证:a na n , n 2, 3,n1n1 1证明设,即1nnn 11111n1由于为递加数列,因此有nn 1,n nn2n 11即nn 1,于是n 1n 1n n 2 nn 2 n n 2na n 1 n 1n 2a nnn 1n 1n 1n 1 n 1n 1.n 2 nn(n 2) 1n 1 n 1(n 1) 2其中用到事实:.5.应用柯西收敛准那么,证明以下数列{ a n }收敛:a nsin 1sin 2sin n2222n〔 1〕证明不如设 nm ,那么有| a nsin( m1)sin( m 2)sin na m |2m 12m22nsin(m 1) sin( m 2)sin n 111 2 m 12 m 22 n2 m 1 2m 22n1 11 1 1 11112m 1 2 2 n m 1 2 m 1 2 2 n m 1 2n m1 21 12m 1 2mmN 1, n, mN ,有 | a n a m |{ a n } 收敛 .因此,0 ,取,由柯西收敛准那么,a n1 1112232n 2〔 2〕证明不如设nm,那么有| a n a m |1111) 2(m2) 2n 2(m111 m( m 1) (m 1)( m 2)(n 1)n1111 111 11m m 1 m 1 m 2n 1 n m n mN1n, mN ,有| ana m |,由柯西收敛准那么,{ a n}因此,0 ,取,收敛 .6.证明:假设单调数列 { a n }含有一个收敛子列,那么{ a n }收敛 .证明不如设 { a n } 是单调增加数列,{ a n k }是其收敛子列 . 于是{ a n k }有界,即存在M 0 , 使 得a nkM , k 1, 2,. 对 单 调 增 加 数 列{ a n }中 的 任 一 项a m必 有a ma m kM ,即 { a n } 单调增加有上界,从而收敛 .lim a nl1lim a n7.证明:假设a n,且 na n1,那么 nlim a n l 1lima nlr 1a n 1a nnn1证明由于,因此存在 r 使得. 于是由数列极限a nr的保号性定理〔〕,存在 N0 , 当 n N 时 ,an 1,anran 1 .从 而 有a N1ra N 2r 2a N rn N10a na N10, (n)r n N 13a n,因此,,故lim a n0 n.8.证明:假设 { a n }为递加有界数列,那么lim a n sup{ a n };假设 { a n }为递减有界数列,nlim a ninf{ a n }又问抗命题成立否?那么n.证明证明过程参照教材,定理〔单调有界定理〕.1n 为奇数a n1n 为偶数 lim a n sup{ a n }1抗命题不用然成立 . 比方数列1n ,n,但{ a n }不只一 .9.利用不等式b n 1a n 1( n 1)a n (b a), ba,证明:n 11 n1 11nn为递减数列,并由此推出 为有界数列 .n 1a n11b n 1a n 1( n 1) a n ( ba ) ,有证明设n,由不等式b n 1a n 1na n b na n 1a n ba n 1 ,于是b n1na n b na n 1 a n b ,bnnananna n 1 b .a 1 1 n 1, b 1 1n n, ba ,得在上式中令n n n 1 11nn na n 11n 1n1n n 1nn 1 nn n 1n1 n 1 nnnnn nn 1 n1 n 1 n n 1 n 1a nnnnn1n 11即an1an,故n为递减数列 .nn 111 n11111141nnn1为有界数列 .而,因此e(1 1 ) n310.证明:n n1 n 11n证 由上题知为递减数列,于是对任何mn有,n 1 1 111nnm 1,令m,取极限得,1 n 11en①n 1nnn1 111 11 11 3 1 1又由于 n nnn n n②n 1 3 ne1111n nn由①、②得,从而e (11 ) n e (11 )n 3nn na 2a 1b 111.给定两正数a 与b (a >b ) ,作出其等差中项2 与等比中项1111b 2a 1b1 ,一般地令a na nb n,bna nb n , n 1, 2,121lim a nlim b n证明: n与 n皆存在且相等 .由于a1b 1,因此有 a n 1a nb n a n a na n,即{ a n }单调减少 .证明22同样可得{b n }单调增加 .a 1a n 1a nb na nb nb n 1b 1{ a n }单调减稀有2于是有,即下界,{b n }单调增加有上界,故 lim a n lim b n皆存在 .n与n在 2a n1anb n的两端取极限,可得lim a n lim b nnn12.设{ a n }为有界数列,记ansup{ a n , a n 1 , } , a n inf{ a n , a n 1 ,}证明:⑴ 对任何正整数 n ,a nan ;⑵{ a n }为递减有界数列,{ a n } 为递加有界数列, 且对任何正整数n , m 有ana m ;⑶ 设 a 和a分别是{ a n}和 { a n }的极限,那么aa ;⑷{ a n }收敛的充要条件是 aa证 ⑴ 对任何正整数 n ,a nsup{ a n , a n 1 ,} a ninf{ a n , a n 1 , }a n⑵ 由于a nsup{ a n , a n 1 , } sup{ a n 1 , a n 2 ,} a n 1 ,n1, 2,,因此 { a n }为递减有界数列 .由 a ninf{ a n , a n 1 , }inf{ a n 1 , a n 2 , }a n 1,知{ a n }为递加有界数列 .对任何正整数n , m ,由于 { a n}为递减有界数列,{ a n }为递加有界数列,因此有a na n ma n ma m .n , m 有anam ,令 na lim aam,即 aam ,⑶ 由于对任何正整数得,nn令 malim a maa .得m,故 a⑷ 设 { a n }lim a n a. 那么0 , N 0 , n N , | a na |,收敛, na a n a.于 是 有aa na, 从 而 a lim a n a.同理可得nalim a naan,因此 a反之,设aa .lim a n alim a n a a0, N0 , n N ,由 n, n,得有aa n a及aa n a,从而aa n a n a n a总练习题1.求以下数列的极限:lim n n 3 3n〔 1〕 n解当 n3 时,有 n 33n ,于是3n3nnn33nn2 3n3 n23,(n),因此lim n n 3 3n3nlim n 5〔 2〕 n e n解设 e 1 h ,那么当n6 时,e n(1 h)n1 nh n(n 1) h 2h nn(n 1) ( n 5) h 62!6!,于是555n6! n0, ( n)limnnn(n 1)( n 2)(n 3)(n6e4)( n 5) h,因此 ne na nn 5lima nn 5 e n 1e 1e n lim n( n 1) 5解法 2 用习题 7的结论.设, nan 1ne,从而limn 5lim a ne nnn.n 5lim ( nn )5lim n 1 5nen(e )解法 3 用 习题 2⑸的结果a nn5an 11 (1 1 5解 法 4 用单调有界定理.e na ne ). 因 为令, 那么nlim (1 1) 5 1 e(1 1 )5enn ,因此存在 N 0 ,当 nN 时, n,从而当 nN 时,a n 1 1 (1 1 5 1) N 起数列{ a n}递减,且有下界 0,因此{ a n }收敛 .a ne n. 于是从 n设lim a naa n 11(11) 5 a n的两端取极限,得 a 1 a0 .n,在等式ene ,因此 alim ( n 22 n 1 n )( 3〕 nlim ( n 2 2 n 1n ) lim [( n 2n 1) ( nn 1)]解 nn11limnn 2n 1n 1n2.证明:lim n 2 q n 0 (| q | 1)( 1〕 n 证明当 q 0 时,结论成立 .1111 h, hq n1当| q | 1时,有 | q |(1 h) n,令 | q |,于是有,而由牛顿n(1 h) nn(n 1)(n2) h 3二项式定理,当3 时有3!,从而0 n 2 q nn 2 n 20 (n)(1 h) n n(n 1)(n 2)h 33!,因此lim n 2 q nnlim n 2 q n lim (n)2 (sgn q) nnn( 1 ) n另解用 习题 2⑸的结果| q |lim lg n0, (1)〔 2〕 n n证明由于 lg xx, x 0 ,于是lg n 2 lg n2 n 20, (n)lg nnn n1n2limn,因此 n .lim 1〔 3〕 n n n!n nn!证明先证明不等式:3.nnn!n 1时,显然不等式成立;假设 3 成立,当 n + 1用数学归纳法证明,当时nn 1 nn(n 1)! (n 1) n!(n 1)n (n 1) n33n1n 1 n 13 3n11nn 1n 1 3n1 31n) limn!nn! 0, (nn故不等式3成立.由此可得n,因此 nn!另解 用数学归纳法证明不等式:nn!nlim a na3.设n,证明:lima 1a 2a nalim a na〔 1〕 nn〔又问由此等式可否反过来推出n〕证明lim a n a0, N 1 0, n N 1 ,| a n a |2. 从而当由于 n,于是有nN1 时,有a 1a 2a naa 1 a 2a n nan n| a 1 a | | a 2a | | aN 1a || aN 11a | | a N 1 2 a || a na |nn A n N 1 Ann2n 2A | a 1a | | a 2 a || aN 1a |limA其 中是一个 定数 . 再 由 nn, 知存在AN 2,使适合nN2 时, n2 . 因此取Nmax{ N 1, N 2 },当 nN 时,有a 1a 2a na Ann222.na 1 a 2a n. 比方an( 1)limn反过来不用然成立不收敛,但 n.lim a nlim a 1 a 2a n 练习: 设 n,证明: n n(2) 假设an0 (n1, 2,lim n a 1a 2 a n a),那么 n证明先证算术平均值—几何平均值—调停平均值不等式:nna 1a 2a n a 1 a 2a n1 1 1na 1a 2a nna 1a 2a na 1 a 2a n算术平均值—几何平均值不等式:n1 a 1 a(a 1 a 2 )22a 1a2 时成立 .2对任何非负实数a1 ,a2 有,其中等号当且仅当由此推出,对4 个非负实数a1 ,a2 ,a3 ,a4 有1111 (a11( a 1a 2 a 3a 4 )4[( a 1a 2 ) 2 (a 3a 4 ) 2 ]2a 2 a 3a4 )2a 1a 2a 3a 42222a 1 a 2 a 3a 424na 1a 2 a n a 1 a 2a n按此方法连续下去,可推出不等式n对所有n2k〔k 0, 1, 2,〕都成立,为证其对所有正整数n都成立,下面采用所谓的反向归纳法,即 证明:假设不等式对某个 n (2)成立,那么它对 n1也成立 .设非负实数 a 1 , a 2 ,a n1( a 1 a 2 a n 1 ), a n 1 ,令n 1,那么有1a 1 a 2an 111a 1 a 2an 1(a 1a 2a n 1 )n)n(a 1 a 2)(n 1nan 1n111(a 1(a 1a 2a n 1 ) n 1a 2a n 1 )1 成立,从而整理后得n 1,即不等式对 n对所有正整数 n都成立 .nna 1a 2a n1 1 1几何平均值—调停平均值不等式a 1 a 2a n的证明,可令y i1x i ,再对 y i 〔 i1, 2,, n〕应用平均值不等式 .由 a n0 (n 1, 2,lim a n a 0lim 11假设 ana na .由上一小题的) ,知 n. 0 ,那么结论,有nna 1a 2a n a 1 a 2 a na, (n)1 11na 1 a 2a nlimnlim11a1 1111 1nn1a 1a 2a na 1 a 2a na而n,因此lim n a 1 a 2 a na.n假设alim a n0 ,那么0,N 1 0, nN 1 , a n. 从而当 n N 1 时,0,即n有na 1 a 2 a nn a 1 a 2a NaN 1a n na 1 a 2a Nnn N 1111n N 1N 1na 1 a 2a Nnna 1 a 2 a NnA11其中Aa 1a 2a N 1N 1lim n A 12N 2,使适合,是定数,故n,于是存在n N 2 时,nA 2 . 因此取Nmax{ N 1, N 2 },当 nN 时,有na 1 a 2 a n nAlim n a 1 a 2a n 02,故 n4.应用上题的结论证明以下各题:1 1 1 1lim 2 3 n 0〔 1〕 nn111 1 11a nlim a n limlim 2 3n证明 令 n ,那么 n nn ,因此 nn.lim n a 1 (a 0)( 2〕 n 证明令a1a ,an1, n 2, 3, lim a n1,那么 n ,从而lim n alim n a 1a 2a n lim a n 1nnnlimnn 1〔 3〕 n证明令a11, a nn , n 2, 3, lim a n 1n 1,那么 n,于是lim n n lim n 1 2 3 4n 1lim n a 1a 2a nlim a n1nn123nnn.lim1 0〔 4〕 nn n!证明a n1, n 1, 2,lim a n 0令n,那么 n,因此lim n1 lim n1lim n 111 lim1n n! n1 2 3 nn2nnnlim nenn!〔 5〕nn n 11 n 1a n1, n 2, 3,lim a n e证明n 1n 1,因此令,那么 nn n234n 1n 1lim n n lim n lim n 234 5 n limn en n!n n! n2 3 4n 1 nn 1n na n1 n 1a n, n 1, 2,limlim 1e另证n!na n 1nn 1 . 于是令,那么lim n lim n a nlim n a 2 a 3a nlima nenn n! nna 1 a 2a n 1na n 1.lim1233nn1〔 6〕 nn证明lim n n1lim 1233nnlim n n 1由于n,因此 nnnlim bn 1a (b n0)lim n b nanb n〔 7〕假设,那么nlim nb n lim n b 2 b 3 b n 1 n b 1lim n b 2 b 3 bn 1lim n b 1证明nn b 1 b 2b nn b 1 b 2b nnlimbn 11 anb nlim (a na n 1 )da n dlim〔 8〕假设n,那么nn证明 设a1lima nlim a 0(a 1 a 0 ) (a 2 a 1 )(a na n 1)nnnnnlima 0lim (a 1 a 0 ) ( a 2a 1 )( a n a n 1 ) 0 lim ( a n a n 1 ) dnnnnnlim ( a n b n ) 0lim a nlim b n5.证明:假设{ a n }为递加数列,{b n }为递减数列, 且 n,那么 n与n都存在且相等 .证 明因 为lim ( a n b n ) 0b n }有 界 , 于 是 存 在 M,使得n, 所 以 { a nM a n b nM . 从而有anMb n Mb 1 , b n anMa 1M,因此{ a n }lim a nlim b n又 因 为为 递 增 有 上 界 数 列 ,{ b n }为 递 减 有 下 界 数 列 , 故 n与n都存在 .lim a n lim b nlim (a n b n ) 0lim a n lim b nnnn,因此nn.6.设数列{ a n }满足:存在正数,对所有n 有MA n | a 2 a 1 | | a 3a 2 | | a n a n 1 | M证明:数列 { a n } 与{ A n } 都收敛 .证明数列{ A n }单调增加有界,故收敛.由柯西收敛准那么,0, N,当m n N 时,| AmA n | . 于是| a m a n | | a ma m 1 | | a m 1 a m 2 || a n 1 a n | A m A n因此由柯西收敛准那么,知数列{ a n } 收敛 .a 0,0, a 11 a an 1 12a na n , n 1, 2,7.设a ,2,证明:数列{ a n } 收敛,且其极限为an 11a na na na n{ a n }证 明因 为2,故数列有下界.an 11 111a n21a n22,于是a n1a n,即数列{ a n }单调减少, 从而数列 { a n}收敛 .lim a nA,由 an 11 a na n ,得 2a n a n 12,两端取极限得,设 n2 a n2 A 2A 2,解得 Alim a n .,因此 na nan 1bn 1b n2a n 1 b n 18.设a1b 1,记 2an 1bn 1 ,n2, 3,.,证明:数列{ a n } 与 { b n } 的极限都存在且等于a 1b 1 .b n2a n 1 bn 1 a n 2 1 b n 2 1 (a n 1b n 1 ) 22a n 1 bn 1a n 1b n 1a n 1bn 1a n 1bn 1证 由于an 1bn 12a n 1b n 1 an 1bn 1b nb nan 1bn 1a na nbn 122, 3,1,因此, n数列{ a n }是递减的:an 1a nb na n a na n221, 2,,n。
数学分析试卷及答案6套

数学分析-1样题(一)一. (8分)用数列极限的N ε-定义证明1n =.二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x ag x b →=;(2) 0()x U a ∀∈,有0()()g x U b ∈ (3) lim ()u bf u A →=用εδ-定义证明, lim [()]x af g x A →=.三. (10分)证明数列{}n x :cos1cos 2cos 1223(1)n nx n n =+++⋅⋅⋅+L 收敛. 四. (12分)证明函数1()f x x=在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b使lim )0x ax b →+∞-=.八. (14分)求函数32()2912f x x x x =-+在15[,]42-的最大值与最小值.九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使24()()()()f f b f a b a ζ''≥--.数学分析-1样题(二)一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常数, 证明{}n a 收敛,并求其极限.二. (10分)设0lim ()0x x f x b →=≠, 用εδ-定义证明011lim()x x f x b→=.三. (10分)设0n a >,且1lim1nn n a l a →∞+=>, 证明lim 0n n a →∞=.四. (10分)证明函数()f x 在开区间(,)a b 一致连续⇔()f x 在(,)a b 连续,且lim ()x a f x +→,lim ()x bf x -→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且()0f a ≠,而函数2[()]f x 在a 可导,则函数()f x 在a 可导. 七. (12分)求函数()1f x x x ααα=-+-在的最大值,其中01α<<.八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有12()()f x f x ''≤.九. (12分)设(),0()0,0g x x f x x x ⎧ ≠⎪=⎨⎪ =⎩ 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.数学分析-2样题(一)一.(各5分,共20分)求下列不定积分与定积分: 1. arctan x x dx ⎰2. xe dx -⎰3.ln 0⎰4.20sin 1cos x xdx xπ+⎰二.(10分)设()f x 是上的非负连续函数, ()0baf x dx =⎰.证明()0f x = ([,])x a b ∈.三. (10分)证明20sin 0xdx xπ>⎰. 四. (15分)证明函数级数(1)nn x x∞=-∑在不一致收敛, 在[0,]δ(其中)一致收敛.五. (10分)将函数,0(),0x x f x x x ππππ+ ≤≤⎧=⎨- <≤⎩展成傅立叶级数.六. (10分)设22220(,)0,0xy x y f x y x y ⎧ +≠⎪=⎨⎪ +=⎩证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;(3) (,)f x y 在(0,0)可微.七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板? 八. (15分)设01σ<<, 证明111(1)n n n σσ∞=<+∑. 数学分析-2样题(二)一. (各5分,共20分)求下列不定积分与定积分:1.(0)a >2.1172815714x x dx x x++⎰3.10arcsin x dx ⎰4.1000π⎰二. (各5分,共10分)求下列数列与函数极限: 1. 221limnn k nn k→∞=+∑2. 20lim1xt xx x e dt e →-⎰三.(10分)设函数在[,]a b 连续,对任意[,]a b 上的连续函数()g x , ()()0g a g b ==,有()()0baf xg x dx =⎰.证明()0f x = ([,])x a b ∈.四. (15分)定义[0,1]上的函数列 证明{()}n f x 在[0,1]不一致收敛. 五. (10分)求幂级数(1)nn n x∞=+∑的和函数.六. (10分)用εδ-定义证明2(,)(2,1)lim (43)19x y x y →+=.七. (12分)求函数22(2)(2)(0)u ax x by y ab =-- ≠的极值.八. (13分)设正项级数1nn a∞=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞=.数学分析-3样题(一)一 (10分) 证明方程11(, )0F x zy y zx --++=所确定的隐函数(, )z z x y =满足方程.z z xy z xy x y∂∂+=-∂∂二 (10分) 设n 个正数12, , , n x x x L 之和是a ,求函数u =.三 (14分) 设无穷积分() af x dx +∞⎰收敛,函数()f x 在[, )a +∞单调,证明四 (10分) 求函数1220() ln() F y x y dx =+⎰的导数(0).y >五 (14分) 计算六 (10分) 求半径为a 的球面的面积S . 七 (10分) 求六个平面所围的平行六面体V 的体积I ,其中, , , i i i i a b c h 都是常数,且0 (1, 2, 3).i h i >= 八 (12分) 求22C xdy ydx x y -+⎰Ñ,其中C 是光滑的不通过原点的正向闭曲线.九 (10分) 求dS z ∑⎰⎰,其中∑是球面2222x y z a ++=被平面 (0)z h h a =<<所截的顶部. 数学分析-3样题(二)一 (10分) 求曲面2233, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面2221x xy y z -+-=与221x y +=交线上到原点最近的点. 三 (14分) 设函数()f x 在[1, )+∞单调减少,且lim ()0x f x →+∞=,证明无穷积分1() f x dx +∞⎰与级数1001()n f n =∑同时收敛或同时发散.四 (12分) 证明ln (0).ax bx e e bdx a b x a--+∞-=<<⎰五 (12分) 设函数()f x 在[, ]a A 连续,证明 [, ]x a A ∀∈,有六 (10分) 求椭圆区域221112221221: ()() 1 (0)R a x b y c a x b y c a b a b +++++≤-≠的面积A .七 (10分) 设222()() VF t f xy z dx dy dz =++⎰⎰⎰,其中2222: (0)V x y z t t ++≤≥,f 是连续函数,求'()F t .八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数. 九 (12分) 计算 Sxyz dx dy ⎰⎰,其中S 是球面2221x y z ++=在0, 0x y ≥≥部分并取球面外侧.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析题库(1-22章)五.证明题1.设A ,B 为R 中的非空数集,且满足下述条件:(1)对任何B b A a ∈∈,有b a <;(2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A = 2.设A ,B 是非空数集,记B A S ⋃=,证明:(1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf = 3. 按N -ε定义证明352325lim 22=--+∞→n n n n 4.如何用ε-N 方法给出a a n n ≠∞→lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列.5.用δε-方法验证:3)23(2lim 221-=+--+→x x x x x x . 6. 用M -ε方法验证:211lim2-=-+-∞→xx x x . 7 . 设a x x x =→)(lim 0ϕ,在0x 某邻域);(10δx U ︒内a x ≠)(ϕ,又.)(lim A t f at =→证明A x f x x =→))((lim 0ϕ.8.设)(x f 在点0x 的邻域内有定义.试证:若对任何满足下述条件的数列{}n x ,(1))(0x U x n ︒∈,0x x n →,(2)0010x x x x n n -<-<+,都有A x f n n =∞→)(lim ,则A x f x x =→)(lim 0.9. 证明函数⎩⎨⎧=为无理数为有理数x ,x x x f ,0,)(3 在00=x 处连续,但是在00≠x 处不连续.10.设)(x f 在(0,1)内有定义,且函数)(x f e x 与)(x f e -在(0,1)内是递增的,试证)(x f 在(0,1)内连续.11. 试证函数2sin x y =,在),0[+∞上是不一致连续的.12. 设函数)(x f 在(a,b )内连续,且)(lim x f a x +→=)(lim x f b x -→=0,证明)(x f 在(a,b )内有最大值或最小值.13. 证明:若在有限区间(a,b )内单调有界函数)(x f 是连续的,则此函数在(a,b )内是一致连续的.14 . 证明:若)(x f 在点a 处可导,f (x )在点a 处可导.15. 设函数),()(b a x f 在内可导,在[a,b]上连续,且导函数)(x f '严格递增,若)()(b f a f =证明,对一切),(b a x ∈均有()()()f x f a f b =<16. 设函数)(x f 在],[+∞a 内可导,并且()0f a <,试证:若当),(+∞∈a x 时,有()0f x c '>>则存在唯一的),(+∞∈a ξ使得0)(=ξf ,又若把条件()f x c '>减弱为/()0()f x a x ∞><<+,所述结论是否成立?17. 证明不等式21(0)2xx e x x >++>18.设f 为(,)-∞+∞上的连续函数,对所有,()0x f x >,且lim x →+∞()f x lim x →-∞=()0f x =,证明()f x 必能取到最大值.19. 若函数()f x 在[0,1]上二阶可导, 且(0)0f =,(1)1f =,(0)(1)0f f ''==,则存在(0,1)c ∈使得|()|2f c ''≥.20. 应用函数的单调性证明2sin ,(0,);2xx x x ππ<<∈ 21. 设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f m(m 为实数), 试问:(1)m 等于何值时,f 在0x =连续; (2)m 等于何值时,f 在0x =可导; (3)m 等于何值时,f '在0x =连续;22. 设()f x 在[0,1]上具有二阶导数,且满足条件()f x a ≤,()f x b ''≤,其中,a b 都是非负常数,c 是(0,1)内的任一点,证明()22b fc a '≤+23. 设函数],[)(b a x f 在上连续,在(a,b )内二阶可导,则存在),(b a ∈ξ使得)(4)()()2(2)(2ξf a b a f b a f b f ''-=++-24. 若)(x f 在点0x 的某个领域上有)1(+n 阶连续导函数,试由泰勒公式的拉格朗日型余项推导佩亚诺型余项公式.25. 用泰勒公式证明:设函数)(x f 在[]b a ,上连续,在()b a ,内二阶可导,则存在),(b a ∈ξ,使得)(4)()()2(2)(''2ξf a b a f b a f b f -=++-.26. 设函数)(x f 在[]2,0上二阶可导,且在[]2,0上1)(≤x f ,1)(''≤x f .证明在[]2,0上成立2)(''≤x f .27. 设f 是开区间I 上的凸函数,则对任何[]I ⊂βα,,f 在βα,上满足利普希茨(Lipschitz)条件,即存在0L >,对任何[]βα,,'''∈x x ,成立'''''')()(x x L x f x f -≤-.28. 设()f x 在 [,](0)a a +∞ >上满足Lipschitz 条件:|()()|||f x f y k x y -≤-, 证明()f x x在[,]a +∞上一致连续.29. 试证明方程11nn x xx -++⋅⋅⋅+=在区间1(,1)2内有唯一实根。
30. 设函数)(x f 在点a 具有连续的二阶导数,试证明:)()(2)()(lim''2a f ha f h a f h a f h =--++→ 31. 设)(x f 在),(b a 上可导,且A x f x f b x a x ==-→+→)(lim )(lim 0.求证:存在),(b a ∈ξ,使0)(='ξf .32. 设)(x f 在],[b a 上连续,在),(b a 内有n 阶导数,且存在1-n 个点),(,,,121b a x x x n ∈- 满足:)()()()()()2()1(121121b f x f x f x f a f b x x x a n n =====<<<<<--求证:存在),(b a ∈ξ,使0)()(=ξn f .33. 设函数f 在点0x 存在左右导数,试证f 在点0x 连续. 34. 设函数f 在],[b a 上可导,证明:存在),(b a ∈ξ,使得)()()]()([222ξξf a b a f b f '-=-.35.应用拉格朗日中值定理证明下列不等式:aab a b b a b -<<-ln ,其中b a <<0.36.证明:任何有限数集都没有聚点. 37.设(){},nna b 是一个严格开区间套,即满足1221n n a a a b b b <<<<<<<,且()lim 0n n n b a →∞-=.证明:存在唯一的一点ξ,使得,1,2,n n a b n ξ<<=.38.设{}n x 为单调数列.证明:若{}n x 存在聚点,则必是唯一的,且为{}n x 的确界. 39.若函数()f x 在闭区间[,]a b 上连续,证明()f x 在[,]a b 上一致连续. 40.若函数()f x 在闭区间[,]a b 上连续, 证明()f x 在[,]a b 上有界. 41.若函数()f x 在闭区间[,]a b 上连续,证明()f x 在[,]a b 上有最大值.42.若函数()f x 在闭区间[,]a b 上连续且单调增加,1(),(,],()(),,x a f t dt x a b x a F x f a x a ⎧∈⎪-=⎨⎪=⎩⎰证明()F x 为[,]a b 上的增函数. 43.函数()f x 在闭区间[0,1]上连续.证明220(sin )(cos )f x dx f x dx ππ=⎰⎰.44.若函数()f x 在闭区间[,]a b 上单调,证明()f x 在[,]a b 上可积. 45.若函数()f x 在闭区间[,]a b 上连续,且()f x 不恒等于零,证明()2()0ba f x dx >⎰.46.设函数()f x 为(,)-∞+∞上以p 为周期的连续周期函数.证明对任何实数a ,恒有()()a ppaf x dx f x dx +=⎰⎰.47.若函数()f x 在[0,)+∞上连续,且lim ()x f x A →+∞=,证明01lim()xx f t dt A x →+∞=⎰.48.若函数()f x 和()g x 在[,]a b 上可积,证明()()()222()()()()bbba aaf x dxg x dx f x g x dx ⋅≥⎰⎰⎰.49.若函数()f x 在[,]a a -上可积,且为偶函数,证明0()2()aaaf x dx f x dx -=⎰⎰.50.若函数()f x 在[,]a b 上可积,证明函数()(),[,]xax f t dt x a b Φ=∈⎰在[,]a b 上连续.51.若函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任何实数,则存在0[,]x a b ∈,使得0()f x μ=. 52. 若函数()f x 在[,]a b 上连续,证明函数()(),[,]xax f t dt x a b Φ=∈⎰在[,]a b 上处处可导,且()()(),[,]xad x f t dt f x x a b dx 'Φ==∈⎰.53.若数列{}n b 有lim n n b →∞=∞,则级数()11n n n bb ∞+=-∑发散.54.设1n n u ∞=∑为正项级数,且存在常数(0,1)q ∈,使得对一切1n ≥,成立1n nu q u +≤.证明级数1nn u∞=∑收敛.55.设1n n u ∞=∑和1n n v ∞=∑为正项级数,且对一切1n ≥,成立11n n n n u v u v ++≤.级数1n n v ∞=∑收敛.证明级数1nn u∞=∑也收敛.56.设正项级数1nn u∞=∑收敛.证明级数21nn u∞=∑也收敛.试问反之是否成立?57.设0,1,2,n a n ≥=,且{}n na 有界,证明级数21nn a∞=∑收敛.58.设级数21n n a ∞=∑收敛.证明级数1(0)nn n a a n ∞=>∑也收敛. 59.若lim 0nn n a k b →∞=≠,且级数1n n b ∞=∑绝对收敛,证明级数1n n a ∞=∑也收敛. 若上述条件中只知道级数1nn b∞=∑收敛,能推得级数1nn a∞=∑也收敛吗?60.设0n a >,证明级数()()()112111nn n a a a a ∞=+++∑收敛.61. 221)(x n xx S n +=. 证明在) , (∞+∞-内)(x S n −→−−→−0, ) (∞→n .62. 设数列}{n a 单调收敛于零.试证明:级数∑nx ancos 在区间] 2 , [απα-)0(πα<<上一致收敛.63. 几何级数∑∞=0n nx在区间] , [a a -)10(<<a 上一致收敛;但在) 1 , 1(-内非一致收敛.64. 设数列}{n a 单调收敛于零 . 证明 : 级数∑nx ancos 在区间] 2 , [απα-)0(πα<<上一致收敛.65. 证明级数∑∞=-+-121) 1(n n nx在R 内一致收敛 .66. 证明函数∑∞==0!2)(n nn n x x f 满足微分方程 R ∈=-'-''x y y y ,02.67. 设⎪⎩⎪⎨⎧=≠=.0, 1,0 ,sin )(x x x xx f 证明对)0( , )(n f n ∀存在并求其值.68. 证明:幂级数∑∞=1n n n x 的和函数为∑∞=1n n n x )1ln(x --=,∈x ) 1 , 1 [-.并求级数∑∞=+1132n n n n和Leibniz 级数∑∞=+-11) 1(n n n 的和.69. 证明:幂级数∑∞=1n nnx的和函数为∑∞=1n nnx2(1)xx =- , 1 ||<x .并利用该幂级数的和函数求幂级数∑∞=+1123n n n nx 的和函数以及数项级数∑∞=-+1121n n n 的和. 70. 证明幂级数∑∞=++-01212) 1 (n n n n x 的和函数为arctgx ,并利用该幂级数的和函数求数项级数∑∞=+-012) 1 (n nn 的和. 71. 设)(x f 是以π2为周期的分段连续函数, 又 )(x f 满足)()(x f x f -=+π.求证 )(x f 的Fourier 系数 满足,0,0220===n n b a a .,2,1 =n72. 设)(x f 是以π2为周期的分段连续函数, 又设 )(x f 是偶函数,且满足()()f x f x =-π.求证: )(x f 的Fourier 系数,012=-n a .,2,1 =n73.求证函数系{} nx x x sin ,,2sin ,sin 是],0[π上的正交函数系. 74.设)(x f 是以2L 为周期的连续的偶函数。