黄河入海口水体反硝化细菌多样性
黄河入海口黄蓝原理

黄河入海口黄蓝原理
黄河入海口黄蓝原理是指黄河水与海水在入海口交汇时,由于密度不同而形成的黄色和蓝色两种颜色的现象。
这一现象是由于黄河水中悬浮着大量的泥沙和有机物质,使得水体呈现出黄色;而海水中则含有较少的悬浮物质,水体呈现出蓝色。
黄河入海口黄蓝原理的主要内容包括以下几个方面:
一、水体密度差异
黄河水和海水在入海口交汇时,由于黄河水中悬浮着大量的泥沙和有机物质,使得水体密度较大,而海水中则含有较少的悬浮物质,水体密度较小。
因此,两种水体在交汇时会出现密度差异,从而形成黄色和蓝色两种颜色的现象。
二、水体流速差异
黄河水和海水在入海口交汇时,由于黄河水流速较慢,而海水流速较快,因此两种水体在交汇时会出现流速差异。
这种流速差异也会影响水体的混合程度,从而进一步加强了黄色和蓝色两种颜色的对比度。
三、光线折射
黄河水和海水在入海口交汇时,由于两种水体的折射率不同,光线在两种水体中的传播速度也不同。
这种光线的折射现象也会影响水体的颜色,从而使得黄色和蓝色两种颜色更加鲜明。
总之,黄河入海口黄蓝原理是由于黄河水和海水在入海口交汇时,由于密度、流速和光线折射等因素的影响,形成了黄色和蓝色两种颜色的现象。
这一现象不仅是自然界的奇观,也是人们对自然界的认识和探索的重要内容。
黄河污染的研究报告

黄河污染的研究报告黄河是中国第二长江河,也是中国最大的黄土河流,因此黄河水质问题一直备受关注。
下面是一份关于黄河污染的研究报告。
黄河流域是中国重要的农业、工业和人口集中区域,自然资源丰富,但长期以来,不合理的工业发展和农业生产方式导致黄河水质遭受严重污染。
本次报告主要从四个方面进行分析,包括水质现状、污染原因、影响以及治理措施。
首先,黄河的水质现状较差。
根据监测数据显示,黄河水质中主要污染物为重金属、有机物和营养物。
其中重金属污染严重,特别是汞、铅、铬等超标现象频发。
有机物主要来自工业废水和农业排放,使得水体富营养化,导致藻类大量繁殖,引发水华问题。
其次,黄河水质污染的原因主要有以下几个方面。
一是工业废水排放。
许多工业企业未能合规处理废水,或使用简单的物理和化学方法处理废水,导致排放的废水中含有大量有机物和重金属。
二是农业面源和点源污染。
农田中使用的农药和化肥以及畜禽养殖过程中产生的粪便和尿液都会在降雨时通过径流进入河流,使水体中的营养物过量聚集。
三是城市污水处理不完善。
尽管许多城市建有污水处理厂,但由于经费和技术限制,部分污水处理厂无法有效处理废水,导致城市污水排入河流。
第三,黄河水质污染对环境和人类健康造成严重影响。
水质污染影响生态系统的健康和稳定,造成物种灭绝和生物多样性降低。
此外,污染物还会通过水源地和地下水的污染,对人类饮水安全造成威胁,引发肝癌、胃肠道疾病等健康问题。
最后,针对黄河水质污染问题,需要采取一系列的治理措施。
一是加强法律法规的制定和执行,严厉打击违法排放行为。
二是加大工业废水处理和农业面源污染治理的力度,鼓励企业投资建设环保设施和采用清洁生产技术。
三是加强城市污水处理设施建设和管理,提高污水处理能力。
四是加强监测和评估工作,及时掌握水质变化情况,调整治理策略。
综上所述,黄河水质污染问题严重,对环境和人类健康造成了严重威胁。
为了保护黄河水质,需要全社会共同努力,加大污染治理力度,提高水资源利用效率,实现可持续发展。
异养硝化-好氧反硝化细菌的研究进展

异养硝化-好氧反硝化细菌的研究进展异养硝化-好氧反硝化细菌(ANAMMOX)是一类能够同时进行硝化和反硝化过程的微生物。
其研究的重要性在于,通过利用这些细菌,可以有效地去除废水中的氨氮和硝态氮,实现废水处理的资源化和节能减排目标。
ANAMMOX细菌最早是在1990年代末期在荷兰的集水污水处理安装中被发现的,由于其具有高效、节能等特点,被广泛应用于废水处理中。
ANAMMOX细菌在废水处理过程中通过异养硝化-好氧反硝化过程,能够将废水中的氨氮和硝态氮转化为氮气,并排出系统外,实现氮的去除和回收。
相较于传统的硝化-反硝化工艺,ANAMMOX工艺具有更高的氮转化效率和更低的能耗,被认为是一种具有广阔应用前景的废水处理技术。
在ANAMMOX细菌的研究方面,目前已经取得了一系列的进展。
首先,通过对ANAMMOX微生物群落的研究,科学家们发现了大量的ANAMMOX细菌菌株,如广泛应用的"KSU"菌株、"KUUM"菌株以及新鲜发现的"MBE-I"菌株等。
这些菌株的发现不仅丰富了ANAMMOX微生物资源库,也为后续研究提供了更多的实验材料。
其次,在ANAMMOX细菌的代谢途径方面,研究者们发现了ANAMMOX细菌独特的代谢途径和相应的酶,如异硝化酶(hydrazine dehydrogenase)和亚硝酸还原酶(nitrite reductase)。
这些酶对于ANAMMOX过程起到了关键的作用,通过它们的催化作用,ANAMMOX细菌能够高效地将氨氮和亚硝态氮转化成氮气。
此外,ANAMMOX细菌的生理与生态适应性研究也取得了丰硕的成果。
研究者们发现,ANAMMOX细菌对环境条件的适应性较强,在不同的温度、pH值和营养条件下仍能正常运行。
此外,一些研究人员还发现了一些利用ANAMMOX细菌进行废水处理的策略,如厌氧好氧串联系统和结构化填料反应器等,这些技术改进能够提高废水处理的效果。
反硝化细菌nirS功能基因的多样性研究 论文答辩

三. 实验结果
3.8 nirS基因的系统进化分析
图3-12 渤海nirS基因系统进化树 图3-13 nirS基因进化树 Cluster I 图3-14 nirS基因进化树 Cluster IV
三. 实验结果
3.8 nirS基因的系统进化分析
表3-4 渤海沉积物各个站位在系统进化树中的克隆数分布 Cluster I II III IV B01 26 8 3 50 26 42 B03 14 B05 16 1 4 59 50 B07 28 3 2 72 1 62 B11 20 B15 23
0.91 124.82
35 33
34
6.16
131.89
1.75
3.04
7.65
三图3-1 PCR梯度扩增电泳图
图3-2 平行PCR扩增电泳图 电泳检测条带清晰,亮度 适宜,可将平行PCR扩增 得到PCR产物加在一起做 乙醇沉淀。
图3-3 纯化电泳图 纯化条带干净没有非特异 性扩增,DNA的纯化结果 较好,可用于连接实验。
渤海沿岸工农业和水产养殖 业迅猛发展,渤海海洋开发活 动加剧,再加上各个输入河流 带来的陆源营养物质,氮、磷 含量不断增加。
图1-1 渤海地图
一. 选题背景及意义
1.1 选题背景
反硝化作用由反硝化细菌还原硝酸盐或亚硝酸盐并释放N20、NO或N2 的过程,这个过程是氮素重返大气层的主要环节,对于维持整个氮循 环中氮的平衡起着举足轻重的作用 。
33
18
61.6%
78.8% 70.6% 65.5% 79.8%
25 29
19 14
84.8%
分 经过筛库后共获得有效克隆数524个,每个站位得到的有效克隆数 析 在8度分析
淡水湖泊微生物硝化反硝化过程与影响因素研究

淡水湖泊微生物硝化反硝化过程与影响因素研究杨柳燕;王楚楚;孙旭;郭丽芸;肖琳;宋晓骏【摘要】简述了参与硝化反硝化过程的微生物类型及其影响因素,指出湖泊中底栖动物提高了沉积物中氨氧化菌的丰度,加快了沉积物和上覆水反硝化过程,同时底栖动物的肠道也是反硝化场所并释放N2O.研究淡水湖泊中硝化反硝化微生物群落结构组成及多样性,阐述硝化反硝化的分子生物学机制,探索底栖动物对参与氮循环微生物群落结构与功能影响.【期刊名称】《水资源保护》【年(卷),期】2016(032)001【总页数】12页(P12-22,50)【关键词】淡水湖泊;微生物;硝化;反硝化;底栖动物【作者】杨柳燕;王楚楚;孙旭;郭丽芸;肖琳;宋晓骏【作者单位】南京大学环境学院,江苏南京210023;南京大学环境学院,江苏南京210023;南京大学环境学院,江苏南京210023;南京大学环境学院,江苏南京210023;南京大学环境学院,江苏南京210023;南京大学环境学院,江苏南京210023【正文语种】中文【中图分类】X172湖泊是陆地圈层重要组成部分。
我国湖泊众多,面积大于1.0 km2的湖泊有2 683个,大约占国土总面积的0.9%,然而我国部分湖泊富营养化问题日益严重,湖泊中大量死亡的水生生物沉降到湖底,分解耗氧,导致鱼类缺氧死亡,并产生氨、硫化物等物质,对水生态系统产生不利的影响[1]。
氮素是湖泊生态系统物质循环的重要组成部分,湖泊氮素循环在维持湖泊生态平衡中发挥重要的作用[2],因此,研究湖泊氮素微生物硝化反硝化过程及其影响因素作用具有十分重要的现实意义。
湖泊生态系统氮循环是一个开放的循环模式,发生在气-水界面、水体、水-泥界面、沉积物等介质中[3]。
氮素通过大气沉降、地表径流和生物固氮等途径输入湖泊,据推算太湖生物固氮量只占外源总氮输入量的 0.11%,大气沉降总氮为同季节径流入湖氮素负荷的18.6%,因此,通过径流外源性氮素输入是湖泊氮的主要来源[5]。
北京典型景观水体好氧反硝化菌组成特征

北京典型景观水体好氧反硝化菌组成特征骆坚平;刘玉娟;潘涛;李安峰【摘要】好氧反硝化菌对环境水体氮素的循环起到非常重要的作用.对北京市6个典型景观水体中好氧反硝化菌进行富集培养和分离,并开展菌株的16S rRNA基因测序和组成特征分析.结果表明,从6个水体中共富集分离得到80株好氧反硝化菌,均为变形菌门(Proteobacteria),聚类于其3个纲(α-Proteobacteria、β-Proteobacteria、γ-Proteobacteria),分属于9个属,31个物种.其中90%左右的菌株具有良好的好氧反硝化能力,是水体进行生物脱氮修复的重要微生物基础.在不同景观水体中,好氧反硝化菌表现出较为明显的分布差异性和性能差异性,除了普遍存在的假单胞菌属(Pseudomonas)和不动杆菌属(Acinetobacter)外,每个水体基本都有属于自己的特异菌属,其中重要的特异菌属包括Alishewanella、Delftia、Hydrogenophaga和Rheinheimera,这对水体修复具有指导意义.【期刊名称】《微生物学杂志》【年(卷),期】2015(035)006【总页数】6页(P21-26)【关键词】景观水体;好氧反硝化菌;组成特征【作者】骆坚平;刘玉娟;潘涛;李安峰【作者单位】北京市环境保护科学研究院,北京100037;国家城市环境污染控制工程技术研究中心,北京100037;北京市环境保护科学研究院,北京100037;国家城市环境污染控制工程技术研究中心,北京100037;北京市环境保护科学研究院,北京100037;国家城市环境污染控制工程技术研究中心,北京100037;北京市环境保护科学研究院,北京100037;国家城市环境污染控制工程技术研究中心,北京100037【正文语种】中文【中图分类】Q939.11+1;X172景观水体已成为我国城市规划建设的重要内容,但其水质现状却不容乐观,富营养化问题已严重影响了城市形象、居民生活和水生态系统安全。
反硝化细菌在污水处理作用中的研究

反硝化细菌在污水处理作用中的研究反硝化是一种重要的污水处理过程,它能够有效地降低废水中的硝酸盐含量,并同时去除有机物。
这一过程是由一类被称为反硝化细菌的微生物所驱动的。
本文将探讨反硝化细菌在污水处理作用中的研究进展。
首先,让我们了解一下反硝化细菌的基本特性。
它们是一类厌氧微生物,通常生活在富含有机废物的环境中,如污水处理厂或农田灌溉系统中。
反硝化细菌是一类嗜氨离子的细菌,它们能够利用硝酸盐和有机物作为电子受体,并将其还原为氨氮和一氧化氮等化合物。
此过程会产生大量的氮气,从而实现硝酸盐的去除。
为了更好地利用反硝化细菌进行污水处理,研究人员通过分离和鉴定不同种类的反硝化细菌,并深入研究了它们的生理特性和代谢途径。
目前已经发现了多种反硝化细菌,如异硝酸盐还原菌、亚硝酸盐还原菌和氨氧还原菌等。
这些细菌具有不同的适应环境和代谢特性,可以根据实际需求进行选择和利用。
除了对反硝化细菌的研究外,研究人员还致力于改进反硝化过程的操作条件和工艺设计。
已有研究表明,控制温度、pH 值和DO(溶解氧)浓度等因素对反硝化细菌的活性和代谢有重要影响。
通过优化这些操作条件,可以提高反硝化细菌的阻抗力和活性,从而提高污水处理效果。
此外,一些研究还探索了利用特定菌种的技术,如厌氧微生物固定化和反硝化细菌生物膜等。
这些技术可以促进反硝化细菌的生长和代谢,并且具有抗冲击负荷和适应性较强的特点。
这些新技术的应用将进一步提高反硝化细菌在污水处理中的效果和稳定性。
另一个研究方向是利用基因工程技术改良反硝化细菌的代谢途径和特性。
通过改变细菌的基因组或引入外源基因,可以提高反硝化细菌对废水中不同污染物的降解能力。
此外,还有研究试图利用基因工程改造反硝化细菌菌株的环境适应性和生长速率等特性,以提高其在实际应用中的效益。
最后,反硝化细菌在废水处理中的应用也面临一些挑战和限制。
例如,高水温、高盐度和有毒物质等环境因素可能抑制反硝化细菌的生长和活性。
农业农村部关于进一步加强黄河流域水生生物资源养护工作的通知

农业农村部关于进一步加强黄河流域水生生物资源养护工作的通知文章属性•【制定机关】农业农村部•【公布日期】2022.02.21•【文号】农渔发〔2022〕5号•【施行日期】2022.02.21•【效力等级】部门规范性文件•【时效性】现行有效•【主题分类】自然生态保护,渔业资源正文农业农村部关于进一步加强黄河流域水生生物资源养护工作的通知农渔发〔2022〕5号山西省、内蒙古自治区、山东省、河南省、陕西省、甘肃省、青海省、宁夏回族自治区农业农村(农牧)厅,四川省水产局:黄河是中华民族的母亲河,是中华文明的发祥地。
由于受到人类活动长期影响,黄河水生生物多样性遭到破坏,渔业资源呈现衰退趋势,水生生物资源保护工作日益成为黄河流域生态保护的短板。
为提升黄河流域水生生物多样性保护水平,促进渔业可持续发展,推动黄河流域生态保护和高质量发展,现就进一步加强黄河流域水生生物资源养护工作通知如下。
一、总体要求(一)指导思想坚持以习近平生态文明思想为指导,全面贯彻习近平总书记关于推动黄河流域生态保护和高质量发展的重要讲话精神,认真落实《黄河流域生态保护和高质量发展规划纲要》和《关于进一步加强生物多样性保护的意见》有关要求,坚持绿水青山就是金山银山的理念,补短板、重保护、促发展,完善制度体系,强化科技支撑,严格执法监管,保护渔业资源,修复水域生态环境,加强黄河流域水生生物资源养护工作,努力开创黄河渔业水域生态保护和高质量发展新局面。
(二)主要原则保护优先,自然恢复。
坚持把水生生物资源养护工作摆在推进黄河流域生态保护的突出位置,以自然恢复为主,全面加强黄河流域水生生物资源及其栖息地、渔业水域生态环境保护。
充分发挥渔业水域生态系统自我修复能力,科学开展水生生物资源增殖和水域生态修复,促进黄河水域生态系统休养生息。
统筹谋划,协同治理。
充分认识黄河流域生态系统的统一性、完整性,把水生生物资源和渔业水域生态环境保护作为流域综合治理的重要内容,全面布局、科学规划、系统保护、重点修复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Microbes Environ. V ol. 29, No. 1, 107-110, 2014https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME13111Short CommunicationDiversity and Distribution of nirK-Harboring Denitrifying Bacteria in the Water Column in the Yellow River EstuaryJ ing L i1, g uangshan W ei1, n ingxin W ang2, and Z heng g ao1*1State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People’s Republic of China; and 2College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People’s Republic of China(Received August 30, 2013—Accepted January 14, 2014—Published online March 13, 2014)We investigated the diversity and community composition of denitrifying bacteria in surface water from the Yellow River estuary. Our results indicated that the diversity of the denitrifying community in freshwater based on the nirK gene was higher than that in seawater. Furthermore, phylogenetic analysis suggested that the bacteria community could be distributed into eight clusters (Clusters I to VIII). Redundancy analysis (RDA) revealed that community compositions were related to multiple environment factors, such as salinity and nitrate concentration. The results of the present study have provided a novel insight into the denitrifying community in water columns in estuaries.Key words: denitrification, nirK gene, Yellow River estuary, water columnNutrient removal has played an important role in preventing the eutrophication of receiving waters (22). Denitrification, as an effective way to remove nitrogen, is an alternative anaerobic respiration process that removes nitrogen via the microbial stepwise reduction of NO3− to gaseous products (NO, N2O, N2) (5). Nitrite reductase is the rate limiting enzyme in denitrification, and catalyzes the step from nitrite reduction to nitric oxide. Thus, it has commonly been used as a molecular marker of denitrifying bacteria. Two main classes of functionallyequivalent nitrite reductase have been identified in denitrifying bacteria: a copper-containing NirK enzyme and cytochrome cd1 NirS nitrite reductase (2, 16, 25). The nirK gene, which encodes nitrite reductase, has extensively been used in recent years to clarify the composition of the denitrifier community and diversity in the water columns of freshwater and seawater (10, 14, 17, 21).An estuary is a complex ecosystem that receives extensive river discharges of various terrestrial and anthropogenic materials, such as nutrients and pollutions (9). Terrestrial inputs and physiochemical parameters have been shown to have a marked impact on the diversity and community c omposition of denitrifying bacteria in the water column of an estuary. The Yellow River estuary is located in the eastern coastal area of China, and high concentrations of nitrogen are a feature in this water column. The importation of n itrogen has recently been shown to be increasing in the Yellow River estuary (13). However, the diversity and c ommunity composition of denitrifying bacteria in surface water in the Yellow River estuary remain unknown. In this study, we investigated the diversity and distribution of denitrifying bacteria in the water column in the Yellow River estuary and revealed relationships between the denitrifying community and environmental parameters.Four samples were collected from the Yellow River e stuary on October 21, 2010 (Fig. S1). Samples from sites A and B were taken from freshwater sources, whereas samples from sites C and D were from seawater sources. Water samples at each site were taken in triplicate at a depth of 0.5 m by a water sampler (Wildlife Supply Company, USA). A l L water sample from each site was filtered through 0.22 µm millipore filters. These filters were stored at −80°C until DNA was extracted. The physicochemical variables at each sampling site were measured three times and the average values are shown in Table 1. Significant differences were observed in the salinity in all sampling sites, ranging from 2.3 to 26.7 g L−1. The concentrations of total nitrogen, dissolved oxygen, and nitrate were markedly higher in freshwater than in s eawater samples. In contrast, the concentrations of chemical oxygen demand were lower in freshwater than in seawater samples.The genomic DNA of each sample was extracted using the E.N.Z.A.TM Water DNA Kit (Omega, USA) according to the manufacturer’s instructions. Fragments of the nirK and nirS genes were amplified using the primer pairs F1aCu-R3Cu for nirK (6) and nirS1FnirS6R for nirS (3). The PCR amplification conditions are shown in Table S1. No nirS PCR products were obtained in any of the four samples by repeated PCR. The purified PCR products were ligated into the pMD18T simple vector (TaKaRa, Japan), and then transformed into Escherichia coli DH5α competent cells to construct the gene libraries. Approximately 80 colonies were selected from the clone library of each sample. The clones in each library were screened by restriction fragment length polymorphism (RFLP). The PCR products (8 µL) were added to 20 µL reactions and incubated at 37°C for 2 h, containing 1 U each of the enzymes Hae III and Msp I (TaKaRa, Japan) and 2 µL buffer (24). The representative clones were then selected for sequencing in Majorbio Biomedical Technology Co. Ltd. (Shanghai, China).Amino acid sequences sharing 95% similarity were clustered into a single operational taxonomic unit (OTU0.95) by* Corresponding author. E-mail: gaozheng@; Tel: +86–538–8249697; Fax: +86–538–8242217.L i et al.108MOTHUR software (18). Phylogenetic trees were constructed by the MEGA 5.1 program (19) using the neighborjoining method and maximum composite likelihood model. The diversity indexes were calculated by Biodap software (20). Redundancy analysis (RDA) was performed in CANOCO 4.5 for Windows (1).In total, 229 clones of nirK genes were analyzed, with 63, 60, 50 and 56 clones being obtained from sites A, B, C, and D, respectively. The numbers of OTUs in each library were 24, 23, 14, and 14, respectively, and the coverage of each library varied from 77.8% to 92.7% (Table 2). The library of site A had the highest richness based on ACE and Chao1, while the ShannonWeiner index and Simpson’s index indicated that the diversity of site B was higher than that of other samples. We also found that the rarefaction curves for seawater samples were markedly flatter than those for freshwater samples (Fig. S2). These results revealed that diversity and richness were markedly higher in freshwater than in seawater samples.The NirK compositions and relative ratios differed among different sampling sites (Fig. 1). OTU30 and OTU36 were the dominant OTUs in sites A and B. Nevertheless, most dominant clones in sites C and D were significantly different from those in sites A and B. The most dominant OTU was OTU16 in site C, followed by OTU17, whereas OTU13 and OTU6 were the dominant OTUs in site D. Detailed data are shown in Table S2. No common OTU was shared in the four sampling sites (Fig. 1 and Fig. S3). Community composition analysis and Venn diagrams revealed that OTU5, OTU30, and OTU36 appeared in sites A, B, and C, but were absent in site D. Furthermore, OTU27 existed in all sampling sites, except for site C. Furthermore, twelve OTUs were shared in more than one site, and 47 OTUs were detected in only one site (Table S2 and Table S3), which indicated the representive OTUs of each site.A neighborjoining (NJ) phylogenetic tree based on amino acid sequences was generated from the 59 NirK OTUs in all sampling sites (Fig. 2). The NirK sequences from these samples were grouped into eight Clusters (I to VIII). Cluster I contained sequences from four sampling sites, the reference sequences of which came from various environments including lake water, sewage, and sediment (8, 11, 12). Thus, theseresults indicated that Cluster I may be a ubiquitous denitrifying group. Clusters IV and VI also contained sequences from all sampling sites (mainly from seawater samples). Theses equences were similar to those in two lakes (lakes Plußsee and Schöhsee), the Baltic Sea (10), and the San Francisco Bay estuary (12). Cluster III contained sequences from all sampling sites except site D, which was closely related to clones previously described from activated sludge (7, 15). The main sequences of Clusters II and V were from freshwater sources (sites A and B), and were closely related to those from Lake Kinneret (8), activated sludge (7, 15), and the San Francisco Bay estuary (12). The NirK amino acid sequences deduced from nirK gene sequences in the Yellow River estuary were closely related to sequences from different habitats, which indicated that these clones were widely distributed denitrifying bacteria and may be able to flexibly adapt to various environments.RDA analysis was employed to determine the influence of environmental factors on the nirK -harboring denitrifier com munity (Fig. 3). The first and second dimensions explained 82.9% and 13.4% of the total variance, respectively. RDA analysis revealed that the community compositions of denitrifying bacteria were related to multiple environment factors, such as salinity and nitrate concentration. The resultsTable 1. Physicochemical properties of water column samples collected from the Yellow River estuarySample Tem a (°C)pH Sal b (g L −1)TN c (mg L −1)NO 3−N d (mg L −1)TP e (mg L −1)DO f (mg L −1)COD g (mg L −1)A 13.98.38 2.311.0* 2.36*0.0729.520.2B 13.98.45 3.0 5.7 3.35*0.1159.518.2C 14.18.1424.7* 3.10.110.0797.663.0*D 14.18.1026.7* 4.50.040.0797.553.6*ences (P <0.05) according to Duncan’s multiple range test using SAS version 9.1 software.Table 2. Community diversity and predicted richness of NirK sequences from each sampling siteSampling site No. of clones No. of OTUs a C (%)b S ACE c S Chao1d D e H f J gA 632477.859.055.10.117 2.560.80B 602378.346.349.00.067 2.790.89C 501488.020.119.80.137 2.190.83D 561492.719.017.40.116 2.270.86a, Number of OTUs defined by the furthest neighbor algorithm in MOTHUR at 95% similarity; b, Coverage =l −(n i /N )×100, where n i refers to the number of clones appearing only once in each library and N refers to the total number of clones in the library; c, Richness-based coverage estimator;d, the estimated richness; e, Simpson’s index; f, Shannon-Wiener index; g, Evenness index.Fig. 1. Relative abundance of OTUs in sampling sites A, B, C, and D.nirK -Harboring Bacteria in the Yellow River Estuary 109obtained also indicated that Clusters I, II, and V positively correlated with total nitrogen, nitrate, dissolved oxygen, total phosphorus, and pH, and negatively correlated with temperature, salinity, and chemical oxygen demand. The opposite results were obtained for Clusters IV and VI (Fig. 3 and Table S4). The relationship among sampling sites, community composition, and environmental factors indicated that samples from sites A and B were more similar than those from sites C and D. Dang et al. (4) reported a relationship between denitrifying bacteria and the surrounding environment in the Jiaozhou Bay, and the different environmental adaptation strategies of various denitrifying bacteria was subsequently proposed. We demonstrated in the present study that salinity significantly influenced the diversity and com munity composition of denitrifying bacteria. On one hand, we found that the diversity of the denitrifying community inversely correlated with salinity (Table 1 and Table 2). Similar results have also been reported in previous studies on different habitats (17, 23). On the other hand, the community compositions of denitrifiers were distinct due to their salini ties (Fig. 2 and Fig. 3). This result may have been caused by the selection effect of salinity. In a previous study, denitrifying communities in the freshwater of Lake Kinneret were shown to differ from those of marine habitats, suggesting the differentiation of marine and freshwater denitrifying bacteria (8). These results revealed that environmental factors may play critical roles in controlling the diversity and spatiald istribution of the denitrifying community.In summary, this study showed that denitrifying bacteria existed in surface water and were very diverse in the Yellow River estuary. The community compositions and relative ratios of bacterial communities markedly changed with the different sampling sites. To the best of our knowledge, this is the first study to examine the denitrifying bacteria community in the Yellow River estuary, and the results obtained have provided a novel insight into the denitrifying community in the estuary, especially in surface water.The representative sequences of nirKfragments reported inFig. 2. Phylogenetic analysis of denitrifying bacteria based on NirK sequences obtained in the Yellow River estuary. A 5% cut-off in the amino acid sequence was used to define OTUs by MOTHUR. The neighborjoining method was used and bootstrap analysis was performed with 1,000 replications. Bootstrap values above 50 were indicated at branch points. The aniA gene from Moraxella catarrhalis (YP_003626300) was used as an outgroup.L i et al. 110this study have been deposited in GenBank under the accession numbers KF143898 to KF144045.AcknowledgementsThis study was financially supported by grants from the National Natural Science Foundation of China (No. 41306150), Promotive Research Fund for Excellent Young and MiddleAged Scientists of Shandong Province, China (No. BS2012HZ011), A Project of Shandong Province Higher Educational Science and Technology Program, China (No. J10LC09), and Open Funding Project of Key Laboratory of Marine Biogenetic Resources, SOA, China (No. HY201205).References1. Braak, C.J.F. ter., and P. Smilauer. 2002. CANOCO ReferenceManual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca.2. Braker, G., J.Z., Zhou, L.Y. Wu, A.H. Devol, and J.M. Tiedje. 2000.Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities. Appl. Environ. Microbiol. 66:2096–2104.3. Brettar, I., E.R. Moore, and M.G. Höfle. 2001. Phylogeny anda bundance of novel denitrifying bacteria isolated from the waterc olumn of the central Baltic Sea. Microb. Ecol. 42:295–305.4. Dang, H., C. Wang, J. Li, T. Li, F. Tian, W. Jin, Y. Ding, and Z.Zhang. 2009. Diversity and distribution of sediment nirSencoding bacterial assemblages in response to environmental gradients in the eutrophied Jiaozhou Bay, China. Microb. Ecol. 58:161–169.5. Dell, E.A., D. Bowman, T. Rufty, and W. Shi. 2010. The communitycomposition of soildenitrifying bacteria from a turfgrass environment. Res. Microbiol. 161:315–325.6. Hallin, S., and P.E. Lindgren. 1999. PCR detection of genes encodingnitrite reductase in denitrifying bacteria. Appl. Environ. Microbiol.65:1652–1657.7. Hallin, S., I.N. Throbäck, J. Dicksved, and M. Pell. 2006. Metabolicprofiles and genetic diversity of denitrifying communities in activated sludge after addition of methanol or ethanol. Appl. Environ.Microbiol. 72:5445–5452.8. Junier, P., O.S. Kim, K.P. Witzel, J.F. Imhoff, and O. Hadas. 2008.Habitat partitioning of denitrifying bacterial communities carrying nirS or nirK genes in the stratified water column of Lake Kinneret, Israel. Aquat. Microb. Ecol. 51:129–140.9. Kennish, M.J. 2002. Environmental threats and environmental futureof estuaries. Environ. Conserv. 29:78–107.10. Kim, O.S., J.F. Imhoff, K.P. Witzel, and P. Junier. 2011. Distributionof denitrifying bacterial communities in the stratified water column and sedimentwater interface in two freshwater lakes and the Baltic Sea. Aquat. Ecol. 45:99–112.11. Mao, Y., L.R. Bakken, L. Zhao, and Å. Frostegård. 2008. Functionalrobustness and gene pools of a wastewater nitrification reactor:c omparison of dispersed and intact biofilms when stressed by lowoxygen and low pH. FEMS. Microbiol. Ecol. 66:167–180.12. Mosier, A.C., and C.A. Francis. 2010. Denitrifier abundance andactivity across the San Francisco Bay estuary. Environ. Microbiol.Rep. 2:667–676.13. Mou, X., Z. Sun, L. Wang, and C. Wang. 2011. Nitrogen cycle of atypical Suaeda salsa marsh ecosystem in the Yellow River estuary. J.Environ. Sci. 23:958–967.14. Oakley, B.B., C.A. Francis, K.J. Roberts, C.A. Fuchsman, S.Srinivasan, and J.T. Staley. 2007. Analysis of nitrite reductase (nirK and nirS) genes and cultivation reveal depauperate community of denitrifying bacteria in the Black Sea suboxic zone. Environ.Microbiol. 9:118–130.15. Osaka, T., S. Yoshie, S. Tsuneda, A. Hirata, N. Iwami, and Y.Inamori. 2006. Identification of acetate- or methanol-assimilating bacteria under nitratereducing conditions by stableisotope probing.Microb. Ecol. 52:253–266.16. Philippot, L., S. Hallin, and M. Schloter. 2007. Ecology of denitrifying prokaryotes in agricultural soils. Adv. Agron. 96:249–305.17. Santoro, A.E., A.B. Boehm, and C.A. Francis. 2006. Denitrifierc ommunity composition along a nitrate and salinity gradient in acoastal aquifer. Appl. Environ. Microbiol. 72:2102–2109.18. Schloss, P.D., S.L. Westcott, T. Ryabin, et al. 2009. IntroducingMOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl.Environ. Microbiol. 75:7537–7541.19. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S.Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739.20. Thomas, G., D. Clay, and A. Magurran. 2000. Biodapecological,diversity and its measurement. Available from http://nhsbig.inhs.uiuc.edu/populations/biodap.zip.21. Yan, T., M.W. Fields, L. Wu, Y. Zu, J.M. Tiedje, and J. Zhou. 2003.Molecular diversity and characterization of nitrite reductase gene fragments (nirK and nirS) from nitrate and uraniumcontaminated groundwater. Environ. Microbiol. 5:13–24.22. Yao, S., J. Ni, Q. Chen, and A.G. Borthwick. 2013. Enrichment andcharacterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature. Bioresour.Technol. 127:151–157.23. Yoshie, S., N. Noda, S. Tsuneda, A. Hirata, and Y. Inamori. 2004.Salinity decreases nitrite reductase gene diversity in denitrifyingb acteria of wastewater treatment systems. Appl. Environ. Microbiol.70:3152–3157.24. Zhang, R., V. Thiyagarajan, and P.Y. Qian. 2008. Evaluation oft erminalrestriction fragment length polymorphism analysis inc ontrasting marine environments. FEMS. Microbiol. Ecol. 65:169–178.25. Zumft, W.G. 1997. Cell biology and molecular basis of denitrification.Microbiol. Mol. Biol. Rev. 61:533–616. Fig. 3. The RDA ordination plot for the relationship between thedistribution of Clusters and environmental factors in the Yellow Riverestuary. Correlations between clusters or environmental factors andRDA axes are represented by the length and angle of arrows. A, B, C,and D represent the four sampling sites.。