2016-2017学年高中数学北师大版版选修2-1课时作业:第三章 圆锥曲线与方程4.1曲线与方程
(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(答案解析)(4)

一、选择题1.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( )A .25B .45C .15D .232.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( )A .)+∞B .C .)+∞D . 3.过抛物线24y x =焦点F ,斜率为k (0k >)的直线交抛物线于A ,B 两点,若3AF BF =,则k =( )A B .2 C D .1 4.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A B C .14 D .45.已知双曲线2221(0)x y a a -=>与椭圆22183x y +=有相同的焦点,则a =( )A B .C .2 D .46.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=7.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( )A .y x =B .y =C .y x =D .y =8.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF ≥,则离心率的取值范围为( ) A.⎛ ⎝⎦ B.2] C.1⎤⎥⎝⎦D.1] 9.椭圆22221x y a b+=(0a b >>)上一点M 关于原点的对称点为N ,F 为椭圆的一个焦点,若0MF NF ⋅=,且3MNF π∠=,则该椭圆的离心率为( ) A.1BCD110.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( ) A .11,164⎛⎫ ⎪⎝⎭ B .11,84⎡⎫⎪⎢⎣⎭ C .11,162⎛⎫ ⎪⎝⎭ D .11,82⎡⎫⎪⎢⎣⎭ 11.以下关于圆锥曲线的命题中是真命题为( )A .设,AB 是两定点,k 为非零常数,若||||PA PB k -=,则动点P 的轨迹为双曲线的一支;B .过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;C .方程22520x x -+=的两根可分别作为椭圆和双曲线的离心率;D .双曲线221925x y -=与椭圆22135y x +=有相同的焦点. 12.12,F F 为双曲线2214x y -=-的两个焦点,点P 在双曲线上,且1290F PF ︒∠=,则12F PF △的面积是( )A .2B .4C .8D .16二、填空题13.直线l 过抛物线28y x =的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点到y 轴的距离是2,则AB =______.14.12F F 、分别为椭圆2214x y +=的左、右焦点,P 为该椭圆上一点,且1260F PF ︒∠=,则12F PF ∆的内切圆半径等于___________15.已知抛物线24y x = 上一点的距离到焦点的距离为5,则这点的坐标为_______. 16.已知双曲线221x my +=的虚轴长是实轴长的2倍,则实数m =______.17.已知椭圆()222:1024x y C b b+=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______. 18.在平面直角坐标系中,已知椭圆22:12+=x E y ,直线10x y +-=与椭圆E 交于A ,B 两点,则△AOB 的外接圆圆心的坐标为______.19.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PF PA的最小值为 ________. 20.在平面直角坐标系xOy 中,抛物线()220y px p =>的焦点为F ,准线为l ,()2,0C p ,过抛物线上一点A 作l 的垂线,垂足为B ,AF 与BC 相交于点E .若2AF CF =,且ACE △的面积为p 的值为______.三、解答题21.已知椭圆()2222:10x y C a b a b+=>>的离心率e =,一条准线方程为x (1)求椭圆C 的方程;(2)设,G H 为椭圆上的两个动点,G 在第一象限,O 为坐标原点,若OG OH ⊥,GOH ,求OG 的斜率.22.已知椭圆C :22221x y a b +=(0a b >>,焦距为2. (1)求椭圆C 的标准方程;(2)点P 为椭圆C 的上顶点,过点P 作两条相互垂直的直线1l ,2l 分别与椭圆相交于M 、N 两点,若4tan 3∠=PNM ,求直线1l 的方程. 附:多项式因式分解公式()()32238642322-+-=--+t t t t t t . 23.过椭圆)(2222:10x y C a b a b+=>>右焦点2F 的直线交椭圆于A ,B 两点,1F 为其左焦点,已知1AF B △的周长为8 (1)求椭圆C 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥?若存在,求出该圆的方程;若不存在,请说明理由.24.已知椭圆2222:1(0)x y C a b a b +=>>经过点()2,1P ,离心率为2. (1)求椭圆C 的方程;(2)过点P 作两条互相垂直的弦PA ,PB 分别与椭圆C 交于A ,B .(i )证明直线AB 过定点;(ii )求点P 到直线AB 距离的最大值.25.我们把经过椭圆的焦点且与过焦点的轴垂直的弦称为椭圆的正焦弦.已知椭圆22221(0)x y a b a b +=>>的正焦弦长为1,且点⎛ ⎝⎭在椭圆上. (1)求椭圆的方程;(2)经过点11,28P ⎛⎫- ⎪⎝⎭作一直线交椭圆于,A B 两点如果点P 为线段AB 的中点,求直线AB 的斜率;(3)若直线l 与(2)中的直线AB 平行,且与椭圆交于M ,N 两点,试求MON △(O 为坐标原点)面积的最大值.26.在平面直角坐标系中,(10,C ,圆(222:12C x y +=,动圆P 过1C 且与圆2C 相切.(1)求动点P 的轨迹C 的标准方程; (2)若直线l 过点()0,1,且与曲线C 交于A 、B ,已知AB 的中点在直线14x =-上,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF =+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===, 设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则334y = 所以MQF 的周长最小时,点Q 的坐标为533,44⎛⎫- ⎪ ⎪⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+. 故选:B.【点睛】 本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.2.A解析:A【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解.【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=,点()2,0F c 到直线1AF 的距离为2a ,2a =,可得()a n m c b =+, 则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=, A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->,即2220c a ->,则可得e >故选:A.【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 3.A解析:A【分析】 将直线方程代入抛物线可得212224k x x k++=,121=x x ,由3AF BF =可得1232x x =+,联立方程即可解出k .【详解】由题可得()1,0F ,则直线方程为()1y k x =-,将直线代入抛物线可得()2222240k x k x k -++=, 设()()1122,,,A x y B x y ,则212224k x x k++=,121=x x , 由抛物线定义可得121,1AF x BF x =+=+,3AF BF =,则1232x x =+, 结合212224k x x k++=可得1222312,x x k k =+=,代入121=x x ,则223121k k⎛⎫+⋅= ⎪⎝⎭,由0k >,可解得k = 故选:A.【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y ,,()22B x y ,;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式;(5)代入韦达定理求解.4.B解析:B【分析】 由曲线的对称性,以及数形结合分析得115b a =,从而求得其离心率. 【详解】 如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=, 渐近线OA 的斜率tan 15a k AOM b =∠==,所以115b a =, 所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.5.C解析:C【分析】先求出椭圆焦点坐(椭圆的半焦距),再由双曲线中的关系计算出a .【详解】 椭圆22183x y +=的半焦距为c ∴双曲线中215a +=,∴2a =(∵0a >).故选:C .【点睛】晚错点睛:椭圆与双曲线中都是参数,,a b c ,但它们的关系不相同:椭圆中222a b c =+,双曲线中222+=a b c ,不能混淆.这也是易错的地方.6.D解析:D【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程.【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-, ()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =, 所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=.故选:D【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法. 7.C解析:C【分析】求出椭圆焦点坐标,得双曲线的焦点坐标,再由焦点到渐近线的距离可求得,a b,得渐近线方程.【详解】由题意已知椭圆的焦点坐标为(,即为双曲线的焦点坐标,双曲线中c =渐近线方程为b y x a=±,其中一条为0bx ay -=,1==,1b =,∴a = ∴渐近线方程为y x =. 故选:C .【点睛】 关键点点睛:本题考查椭圆与双曲线的焦点坐标,考查双曲线的渐近线方程,关键是求出,a b .解题时要注意椭圆中222a b c =+,双曲线中222+=a b c .两者不能混淆. 8.C解析:C【分析】 根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m=+的取值范围, 进而求得()222422c a c <≤-,再求离心率的范围即可 【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==,所以,四边形12PFQF 为矩形,12=QFPF ;由11QF PF ≥1m n≤<, 由椭圆定义可得2222,4m n a m n c +=+=①;平方相减可得()222mn a c =-②;由①②得()2222242c m n m n mn n m a c +==+-; 令=+m n t n m,令3m v n ⎫=∈⎪⎪⎣⎭,所以,12,3t v v ⎛=+∈ ⎝⎦, 即()222422c a c <≤-,所以,()222223a c c a c -<≤-,所以,()222113e e e -<≤-,所以,2142e <≤-解得12e <≤ 故选:C【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①;平方相减可得()222mn a c =-②;由①②得()2222242c m n m n mn n m a c +==+-,然后利用换元法得出()222113e e e -<≤-,进而求解 属于中档题 9.D解析:D【分析】E 是另一个焦点,由对称性知MENF 是平行四边形,从而得MENF 是矩形.3MEF MNF π∠=∠=,在直角三角形MEF 中用c 表示出两直角边,再上椭圆定义得,a c 的等式,求得离心率.【详解】如图,E 是另一个焦点,由对称性知MENF 是平行四边形, ∵0MF NF ⋅=,∴MF NF ⊥,∴MENF 是矩形.3MNF π∠=,∴3MEF π∠=,∴1cos 232ME EF c c π==⨯=,2sin 3MF c π==,∴1)2MF ME c a +==,∴1c e a ===. 故选:D .【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到,a c 的关系,本题利用椭圆的对称性,引入另一焦点E 后形成一个平行四边形MENF ,再根据向量数量积得垂直,从而得到矩形,在矩形中利用椭圆的定义构造出,a c 的关系.求出离心率.10.B解析:B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210my my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解. 【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())()2,0,2,0,0,0A BM -,1,22FM AB ==所以2||1||8FM AB =, 设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫-⎪+⎝⎭, 所以221||2m MF m +=+,又()()2222281||2m AB m +==+, 所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则弦长为AB ===k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.11.C解析:C 【分析】①根据双曲线定义可得出判断;②不妨在单位圆x 2+y 2=1中,用代入法求得P 的轨迹方程可得判断;③求出方程22520x x -+=根,利用椭圆与双曲线的离心率的范围可得出判断; ④求出双曲线和椭圆的焦点坐标可得答案; 【详解】①设A 、B 为两个定点,k 为非零常数,当||||||PA PB k AB -==时,则动点P 的轨迹是以A 为端点的一条射线线,因此不正确; ②∵()12OP OA OB =+,∴P 为弦AB 的中点,不妨在单位圆x 2+y 2=1中,定点A (1,0),动点11(,)B x y ,设P (x ,y ),用代入法求得P 的轨迹方程是212x ⎛⎫- ⎪⎝⎭+y 2=14,∴点P 的轨迹为圆,错误;③解方程22520x x -+=可得两根12,2.因此12可以作为椭圆的离心率,2可以作为双曲线的离心率,因此方程的两根可分别作为椭圆和双曲线的离心率,正确;④由双曲线221925x y -=可得c,其焦点(,同理可得椭圆22135y x +=焦点为(0,,因此没有相同的焦点,错误; 综上可知:其中真命题的序号为 ③. 故选:C . 【点睛】本题综合考查了圆锥曲线的定义、标准方程及其性质,考查了推理能力,属于中档题.12.B解析:B 【分析】先求出双曲线的a,b,c ,再利用12Rt PF F 中三边关系求出128PF PF =,再由直角三角形面积公式即得结果. 【详解】由2214x y -=-得标准方程为2214x y -=得221,4a b ==,2145c ∴=+=c ∴= 故12Rt PF F 中,()222212121212121222=2F F PF PF PF PFPF PF PF PF F F c ⎧==+⎪⎪=⎨+-=-⎪⎪⎩128PF PF ∴=所以12118422S PF PF =⋅=⨯=. 故选:B. 【点睛】本题考查了双曲线的定义和几何性质,考查了直角三角形的边长关系和面积公式,属于中档题.二、填空题13.【分析】设再表达出的坐标再利用抛物线的弦长公式求解即可【详解】设则利用中点坐标公式知又点M 到y 轴的距离为2故即又故利用过抛物线焦点的弦长公式故答案为:8【点睛】方法点睛:本题主要考查了过抛物线焦点的解析:【分析】设()()1122,,,A x y B x y ,再表达出M 的坐标,再利用抛物线的弦长公式求解即可. 【详解】设()()1122,,,A x y B x y ,则利用中点坐标公式知1212,22x x y y M ++⎛⎫⎪⎝⎭,又点M 到y 轴的距离为2,故1222x x +=,即124x x +=, 又28,4p p ==,故利用过抛物线焦点的弦长公式12448AB x x p =++=+=. 故答案为:8 【点睛】方法点睛:本题主要考查了过抛物线焦点的弦长公式,有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式12AB x x p =++,若不过焦点,则必须用一般弦长公式,考查学生的运算能力与转化思想,属于一般题.14.【分析】由题意知由余弦定理可得由面积公式即可求解【详解】因为分别为椭圆的左右焦点为该椭圆上一点所以则由余弦定理得即所以故的面积设的内切圆半径为则解得故答案为:【点睛】本题主要考查了椭圆的定义椭圆的简解析:13- 【分析】由题意知12124,F P PF F F +==1243F PPF =‖,由面积公式12121211sin |)2602(S F P PF F P PF F F r ︒=⋅+⋅=‖+|即可求解.【详解】因为12F F 、分别为椭圆2214x y +=的左、右焦点,P 为该椭圆上一点,所以12124,F P PF F F +==则由余弦定理得,2221212122cos 60F F F P PF F P PF ︒=+-‖,()2121212122cos602F P PF F P PF F P PF ︒=+--,即1212163F PPF =-‖,所以1243F PPF =‖, 故12PF F ∆的面积121sin 602S F P PF ︒=⋅‖=设12F PF ∆的内切圆半径为r ,则12121|)(4122(F P PF F F r r S +⋅=+⋅==+|,解得1r =-1 【点睛】本题主要考查了椭圆的定义,椭圆的简单几何性质,余弦定理,面积公式,属于中档题.15.【解析】由抛物线定义得即这点的坐标为 解析:(4,4)±【解析】由抛物线定义得215,4444x x y y +=∴=∴=⨯⇒=± ,即这点的坐标为()4,4±16.【分析】化双曲线方程为标准方程求得的值依题意列方程解方程求得的值【详解】双曲线方程化为标准方程得故依题意可知即解得【点睛】本小题主要考查双曲线的标准方程考查双曲线的虚轴和实轴考查运算求解能力属于基础题解析:1-4【分析】化双曲线方程为标准方程,求得,a b 的值,依题意列方程,解方程求得m 的值. 【详解】双曲线方程化为标准方程得2211y x m-=-,故1,a b == 依题意可知2b a =2=,解得14m =-.【点睛】本小题主要考查双曲线的标准方程,考查双曲线的虚轴和实轴,考查运算求解能力,属于基础题.17.【分析】作出图形利用椭圆的定义可求得利用余弦定理可求得的值进而可求得的值【详解】根据椭圆的定义:在焦点中由余弦定理可得:则所以故答案为:【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数考查解析:32【分析】作出图形,利用椭圆的定义可求得2PF ,利用余弦定理可求得c 的值,进而可求得b 的值. 【详解】根据椭圆的定义:2231PF a =-=,在焦点12PF F △中,由余弦定理可得:222212121242cos 73c F F PF PF PF PF π==+-⋅=,274c ∴=,则22279444b a c =-=-=,所以,32b =. 故答案为:32.【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数,考查计算能力,属于中等题.18.【分析】首先联立方程求得设圆心坐标利用其到△三个顶点的距离相等列出等量关系式求得结果【详解】联立方程可得:设圆心坐标则得:故答案为:【点睛】该题考查的是有关圆的问题涉及到的知识点有求直线与椭圆的交点解析:51,62⎛⎫⎪⎝⎭【分析】首先联立方程221012x y x y +-=⎧⎪⎨+=⎪⎩,求得()0,1A ,41,33B ⎛⎫- ⎪⎝⎭,设圆心坐标(),x y ,利用其到△AOB 三个顶点的距离相等,列出等量关系式,求得结果.【详解】联立方程221012x y x y +-=⎧⎪⎨+=⎪⎩可得:()0,1A ,41,33B ⎛⎫- ⎪⎝⎭, 设圆心坐标(),x y ,则()22222241133x y x y x y ⎛⎫-++=+=+- ⎛⎫ ⎪⎝⎭⎪⎝⎭, 得:56x =,12y =, 故答案为:51,62⎛⎫⎪⎝⎭.【点睛】该题考查的是有关圆的问题,涉及到的知识点有求直线与椭圆的交点,三角形外接圆的圆心的求法,属于简单题目.19.【分析】过P 做准线的垂线根据定义可得将所求最小转化为的最小结合图像分析出当PA 与抛物线相切时最小联立直线与抛物线方程根据判别式求出PA 斜率k 进而可得的值代入所求即可【详解】由题意可得抛物线的焦点准线【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PMPAM PA=∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。
北师大版高中数学选修2-1精练:第三章 圆锥曲线与方程 习题课3 Word版含答案

习题课——直线与圆锥曲线的综合问题课后训练案巩固提升A组1、直线y=x+b交抛物线y=x2于A,B两点,O为抛物线顶点,OA⊥OB,则b的值为( )A、-1B、0C、1D、2详细解析:设A( x1,y1 ),B( x2,y2 ),将y=x+b代入y=x2,化简可得x2-2x-2b=0,故x1+x2=2,x1x2=-2b,所以y1y2=x1x2+b( x1+x2 )+b2=b2、又OA⊥OB,所以x1x2+y1y2=0,即-2b+b2=0,则b=2或b=0,经检验b=0时,不满足OA⊥OB,故b=2、正确答案:D2、( 2016·全国丙高考)已知O为坐标原点,F是椭圆C:=1( a>b>0 )的左焦点,A,B分别为C的左、右顶点,P为C上一点,且PF⊥x轴、过点A的直线l与线段PF交于点M,与y轴交于点E、若直线BM经过OE的中点,则C的离心率为( )A、B、C、D、详细解析:由题意,不妨设直线l的方程为y=k( x+a ),k>0,分别令x=-c与x=0,得|FM|=k( a-c ),|OE|=ka、设OE的中点为G,由△OBG∽△FBM,得,即,整理,得,故椭圆的离心率e=,故选A、正确答案:A3、已知双曲线=1( a>0,b>0 )的渐近线均和圆C:x2+y2-6x+8=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( )A、=1B、=1C、-y2=1D、x2-=1详细解析:圆C:x2+y2-6x+8=0可化为( x-3 )2+y2=1,∴圆心为( 3,0 ),半径为1、双曲线=1( a>0,b>0 )的渐近线方程为y=±x、∵双曲线的渐近线与圆C相切,∴=1、又双曲线的右焦点为圆C的圆心,∴c=3、结合c2=a2+b2解得b=1,a=2、∴双曲线的方程为-y2=1、故选C、正确答案:C4、已知双曲线=1( a>0,b>0 )与直线y=2x有交点,则双曲线的离心率的取值范围是( )A、( 1,)B、( 1,)∪( ,+∞ )C、( ,+∞ )D、[,+∞ )详细解析:直线y=2x必过原点,要使直线与双曲线有交点,则双曲线渐近线的斜率|k|>2,即>2,则有>4,所以e2=>5,所以e>、故选C、正确答案:C5、若过椭圆=1内一点( 2,1 )的弦被该点平分,则该弦所在直线的方程是、详细解析:设弦两端点分别为A( x1,y1 ),B( x2,y2 ),则=1,=1,两式相减并把x1+x2=4,y1+y2=2代入得,=-、∴所求直线的方程为y-1=-( x-2 ),即x+2y-4=0、正确答案:x+2y-4=06、过原点的直线l与双曲线C:=1( a>0,b>0 )的左、右两支分别相交于A,B两点,F( -,0 )是双曲线C的左焦点,若|FA|+|FB|=4,=0,则双曲线C的方程为、详细解析:∵,∴FA⊥FB,∴△AFB为直角三角形、∵过原点的直线l与双曲线C:=1( a>0,b>0 )的左、右两支分别相交于A,B两点,F( -,0 )是双曲线C的左焦点,∴|AB|=2、设|FB|=x,则|FA|=4-x,∴x2+( 4-x )2=12,∴x2-4x+2=0,∴x=2±,∴|FB|=2+,|FA|=2-,∴2a=|FB|-|FA|=2,∴a=,∴b=1,∴双曲线C的方程为-y2=1、正确答案:-y2=17、设O为坐标原点,F为抛物线y2=4x的焦点,A为抛物线上一点,且=-4,则点A的坐标为、详细解析:设A,则,∵F( 1,0 ),∴、∴=-=-4、整理得,+12-64=0,∴=4,即y0=±2、∴点A坐标为( 1,±2 )、正确答案:( 1,±2 )8、焦点分别为( 0,5)和( 0,-5)的椭圆截直线y=3x-2所得弦的中点的横坐标为,求此椭圆的方程、解设椭圆的方程为=1( a>b>0 ),且a2-b2=( 5)2=50,①由消去y,得( a2+9b2 )x2-12b2x+4b2-a2b2=0、设弦两端点的横坐标分别为x1,x2,则x1+x2=、∵,∴,即a2=3b2,②此时Δ>0、由①②得a2=75,b2=25,∴椭圆的方程为=1、9、抛物线y2=x上存在P,Q两点关于直线y-1=k( x-1 )对称,求k的取值范围、解设P( x1,y1 ),Q( x2,y2 ),∴①-②,得( y1-y2 )( y1+y2 )=x1-x2,∴∴y1+y2=-k、∴-1=k=[( y1+y2 )2-2y1y2-2]、∴-k-2=k[k2-2y1( -k-y1 )-2],∴2k+2k2y1+k3-k+2=0,∴Δ=4k4-8k( k3-k+2 )>0,∴k( -k3+2k-4 )>0,∴k( k3-2k+4 )<0,∴k( k+2 )( k2-2k+2 )<0,∴k∈( -2,0 )、10、导学号90074086如图,已知抛物线C的顶点为O( 0,0 ),焦点为F( 0,1 )、( 1 )求抛物线C的方程;( 2 )过点F作直线交抛物线C于A,B两点、若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值、解( 1 )由题意可设抛物线C的方程为x2=2py( p>0 ),则=1,所以抛物线C的方程为x2=4y、( 2 )设A( x1,y1 ),B( x2,y2 ),直线AB的方程为y=kx+1、由消去y,整理得x2-4kx-4=0,所以x1+x2=4k,x1x2=-4、从而|x1-x2|=4、由解得点M的横坐标x M=、同理,点N的横坐标x N=、所以|MN|=|x M-x N|==8、令4k-3=t,t≠0,则k=、当t>0时,|MN|=2>2、当t<0时,|MN|=2、综上所述,当t=-,即k=-时,|MN|的最小值是、B组1、等腰直角三角形ABO内接于抛物线y2=2px( p>0 ),O为抛物线的顶点,OA⊥OB,点A在x轴上方,则△ABO的面积是( )A、8p2B、4p2C、2p2D、p2详细解析:由抛物线的对称性及OA⊥OB知直线OA的方程为y=x,由得A( 2p,2p ),则B( 2p,-2p ),所以|AB|=4p,所以S△ABO=×4p×2p=4p2、故选B、正确答案:B2、抛物线y=2x2上两点A( x1,y1 ),B( x2,y2 )关于直线y=x+m对称,且x1·x2=-,则m等于( )A、B、2 C、D、3详细解析:依题意知k AB==-1,而y2-y1=2( ),∴x2+x1=-,且在直线y=x+m上,即+m,y2+y1=x2+x1+2m,∴2( )=x2+x1+2m,2[( x2+x1 )2-2x2x1]=x2+x1+2m,∴2m=3,m=、正确答案:A3、已知两直线x=±1分别过椭圆=1的两个焦点,则直线y=kx+2与椭圆至多有一个交点的充要条件是、详细解析:由题意知椭圆的焦点坐标为( ±,0 ),∵两直线x=±1分别经过椭圆的两个焦点,∴4-b2=1,∴b2=3、∴椭圆方程为=1、直线y=kx+2与椭圆至多有一个交点的充要条件是将直线方程与椭圆方程联立后,所得一元二次方程的判别式Δ≤0,即方程( 4k2+3 )x2+16kx+4=0的判别式162k2-16( 4k2+3 )≤0,即k2≤,∴-≤k≤、正确答案:-≤k≤4、设F1,F2分别是椭圆+y2=1的左、右焦点,若P是该椭圆上的一个动点,则的最大值和最小值分别为、详细解析:易知a=2,b=1,c=,所以F1( -,0 ),F2( ,0 ),设P( x,y ),则=( --x,-y )·( -x,-y )=x2+y2-3=x2+1--3=( 3x2-8 ),因为x∈[-2,2],故当x=0,即点P为椭圆的短轴端点时,有最小值-2、当x=±2,即点P为椭圆的长轴端点时,有最大值1、正确答案:1,-25、已知F是双曲线C:x2-=1的右焦点,P是C的左支上一点,A( 0,6)、当△APF周长最小时,该三角形的面积为、详细解析:设双曲线的左焦点为F1,如图、由双曲线的定义知|PF|=2a+|PF1|,∴△APF的周长为|PA|+|PF|+|AF|=|PA|+( 2a+|PF1| )+|AF|=|PA|+|PF1|+( 2a+|AF| )、由于2a+|AF|是定值,要使△APF的周长最小,则应使|PA|+|PF1|最小,即P,A,F1三点共线、∵A( 0,6),F1( -3,0 ),∴直线AF1的方程为=1,即x=-3、将其代入x2-=1得y2+6y-96=0,解得y=2或y=-8( 舍去),因此点P的纵坐标为2、∴S△APF==·|F1F|·y A-·|F1F|·y P=×6×6×6×2=12、正确答案:126、已知椭圆+y2=1,求斜率为2的弦的中点轨迹方程、解设直线与椭圆相交所得弦为AB,A( x1,y1 ),B( x2,y2 ),弦的中点为M( x,y ),则两式相减,得( x1-x2 )( x1+x2 )+2( y1-y2 )( y1+y2 )=0、因此=-=-=2,所以x+4y=0,由题意知点M( x,y )落在椭圆内部,则有+y2<1,即<1,解得-<x<,因此所求的轨迹方程为x+4y=0、7、已知点M( -2,0 ),N( 2,0 ),动点P满足条件|PM|-|PN|=2、记动点P的轨迹为W、( 1 )求W的方程;( 2 )若A,B是W上的不同两点,O是坐标原点,求的最小值、解( 1 )依题意,知点P的轨迹是以M,N为焦点的双曲线的右支,因此所求方程为=1( x>0 )、( 2 )当直线AB的斜率不存在时,设直线AB的方程为x=x0,此时A( x0,),B( x0,-),=2、当直线AB的斜率存在时,设直线AB的方程为y=kx+b,代入双曲线方程=1中,得( 1-k2 )x2-2kbx-b2-2=0,①依题意可知方程①有两个不相等的正数根,设A( x1,y1 ),B( x2,y2 ),则得|k|>1,=x1x2+y1y2=x1x2+( kx1+b )( kx2+b )=( 1+k2 )x1x2+kb( x1+x2 )+b2==2+>2、综上可知的最小值为2、8、导学号90074087已知点A( x1,y1 ),B( x2,y2 )( x1x2≠0 )是抛物线y2=2px( p>0 )上的两个动点,O是坐标原点,向量满足||=||、设圆C的方程为x2+y2-( x1+x2 )x-( y1+y2 )y=0、( 1 )求证线段AB是圆C的直径;( 2 )当圆C的圆心到直线x-2y=0的距离的最小值为时,求p的值、( 1 )证明因为||=||,所以( )2=( )2,即+2-2,整理,得=0,所以x1x2+y1y2=0、①设M( x,y )是以线段AB为直径的圆上的任意一点,则=0,即( x-x1 )( x-x2 )+( y-y1 )( y-y2 )=0、展开上式并将①式代入,得x2+y2-( x1+x2 )x-( y1+y2 )y=0、从而可知线段AB是圆C的直径、( 2 )解设圆C的圆心坐标为( x,y ),则因为=2px( p>0 ),=2px2( p>0 ),所以x1x2=、由( 1 )知x1x2+y1y2=0,所以x1x2=-y1y2,所以-y1y2=、因为x1x2≠0,所以y1y2≠0,所以y1y2=-4p2、所以x=)=+2y1y2 )-( y2+2p2 ),所以圆心的轨迹方程为y2=px-2p2、设圆心C( x,y )到直线x-2y=0的距离为d,则d=、当y=p时,d有最小值,由题设得,所以p=2、。
2016-2017学年高中数学(北师大版选修2-1)配套课时作业:第三章 空间向量与立体几何 2.1

§2 抛物线2.1 抛物线及其标准方程课时目标 1.掌握抛物线的定义、四种不同标准形式的抛物线方程、准线、焦点坐标及对应的几何图形.2.会利用定义求抛物线方程.1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不过F)的距离________的点的集合叫做抛物线,点F 叫做抛物线的________,直线l 叫做抛物线的________. 2.抛物线的标准方程 (1)方程y 2=±2px ,x 2=±2py(p>0)叫做抛物线的标准方程.(2)抛物线y 2=2px(p>0)的焦点坐标是________,准线方程是__________,开口方向________.(3)抛物线y 2=-2px(p>0)的焦点坐标是________,准线方程是__________,开口方向________.(4)抛物线x 2=2py(p>0)的焦点坐标是__________,准线方程是__________,开口方向________.(5)抛物线x 2=-2py(p>0)的焦点坐标是________,准线方程是__________,开口方向________.一、选择题1.抛物线y 2=ax(a ≠0)的焦点到其准线的距离是( ) A .|a|4 B .|a|2 C .|a| D .-a 2 2.与抛物线y 2=14x 关于直线x -y =0对称的抛物线的焦点坐标是( )A .(1,0)B .(116,0)C .(0,0)D .(0,116)3.抛物线y 2=2px(p>0)上一点M 到焦点的距离是a(a>p2),则点M 的横坐标是( )A .a +p 2B .a -p2C .a +pD .a -p4.已知抛物线的方程为标准方程,焦点在x 轴上,其上点P(-3,m)到焦点F 的距离为5,则抛物线方程为( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x5.方程2[(x +3)2+(y -1)2]=|x -y +3|表示的曲线是( )A.圆B.椭圆C.直线D.抛物线6.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为()A.172B.3 C. 5 D.92二、填空题7.抛物线x2+12y=0的准线方程是__________.8.若动点P在y=2x2+1上,则点P与点Q(0,-1)连线中点的轨迹方程是__________.9.已知抛物线x2=y+1上一定点A(-1,0)和两动点P,Q,当PA⊥PQ时,点Q的横坐标的取值范围是______________.三、解答题10.已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值,并写出抛物线的焦点坐标和准线方程.11.平面上动点P到定点F(1,0)的距离比P到y轴的距离大1,求动点P的轨迹方程.能力提升12.已知抛物线y 2=2px(p>0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A .12B .1C .2D .4 13.AB 为抛物线y =x 2上的动弦,且|AB|=a (a 为常数且a ≥1),求弦AB 的中点M 离x 轴的最近距离.1.理解抛物线定义,并能判定一些有关抛物线的点的轨迹问题.2.四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口方向为坐标轴的正方向;系数为负时,开口方向为坐标轴的负方向.3.焦点在y 轴上的抛物线的标准方程x 2=2py 通常又可以写成y =ax 2,这与以前学习的二次函数的解析式是完全一致的,但需要注意的是,由方程y =ax 2来求其焦点和准线时,必须先化成标准形式.§2 抛物线2.1 抛物线及其标准方程知识梳理1.相等 焦点 准线2.(2)(p 2,0) x =-p 2 向右 (3)(-p 2,0) x =p 2 向左 (4)(0,p 2) y =-p2 向上(5)(0,-p 2) y =p2向下作业设计1.B [因为y 2=ax ,所以p =|a|2,即该抛物线的焦点到其准线的距离为|a|2.]2.D [y 2=14x 关于直线x -y =0对称的抛物线为x 2=14y ,∴2p =14,p =18,∴焦点为⎝⎛⎭⎫0,116.] 3.B [由抛物线的定义知:点M 到焦点的距离a 等于点M 到抛物线的准线x =-p2的距离,所以点M 的横坐标即点M 到y 轴的距离为a -p2.]4.B [点P(-3,m)在抛物线上,焦点在x 轴上,所以抛物线的标准方程可设为y 2=-2px(p>0).由抛物线定义知|PF|=3+p2=5.所以p =4,所以抛物线的标准方程是y 2=-8x.] 5.D [原方程变形为 (x +3)2+(y -1)2=|x -y +3|2,它表示点M(x ,y)与点F(-3,1)的距离等于点M 到直线x -y +3=0的距离.根据抛物线的定义,知此方程表示的曲线是抛物线.] 6.A [如图所示,由抛物线的定义知,点P 到准线x =-12的距离d 等于点P 到焦点的距离|PF|.因此点P 到点(0,2)的距离与点P 到准线的距离之和可转化为点P 到点(0,2)的距离与点P到点F 的距离之和,其最小值为点M(0,2)到点F ⎝⎛⎭⎫12,0的距离,则距离之和的最小值为4+14=172.] 7.y =3解析 抛物线x 2+12y =0,即x 2=-12y ,故其准线方程是y =3. 8.y =4x 29.(-∞,-3]∪[1,+∞)解析 由题意知,设P(x 1,x 21-1),Q(x 2,x 22-1),又A(-1,0),PA ⊥PQ ,∴PA →·PQ →=0, 即(-1-x 1,1-x 21)·(x 2-x 1,x 22-x 21)=0,也就是(-1-x 1)·(x 2-x 1)+(1-x 21)·(x 22-x 21)=0.∵x 1≠x 2,且x 1≠-1,∴上式化简得x 2=11-x 1-x 1=11-x 1+(1-x 1)-1,由基本不等式可得x 2≥1或x 2≤-3.10.解 设抛物线方程为y 2=-2px (p>0), 则焦点F ⎝⎛⎭⎫-p2,0, 由题意,得⎩⎪⎨⎪⎧m 2=6p , m 2+⎝⎛⎭⎫3-p22=5,解得⎩⎪⎨⎪⎧ p =4,m =26,或⎩⎪⎨⎪⎧p =4,m =-2 6.故所求的抛物线方程为y 2=-8x ,m =±2 6. 抛物线的焦点坐标为(-2,0),准线方程为x =2. 11.解 方法一 设P 点的坐标为(x ,y), 则有(x -1)2+y 2=|x|+1,两边平方并化简得y 2=2x +2|x|.∴y 2=⎩⎪⎨⎪⎧4x , x ≥0,0, x<0,即点P 的轨迹方程为y 2=4x (x ≥0)或y =0 (x<0).方法二 由题意,动点P 到定点F(1,0)的距离比到y 轴的距离大1,由于点F(1,0)到y 轴的距离为1,故当x<0时,直线y =0上的点适合条件;当x ≥0时,原命题等价于点P 到点F(1,0)与到直线x =-1的距离相等,故点P 在以F 为焦点,x =-1为准线的抛物线上,其轨迹方程为y 2=4x.故所求动点P 的轨迹方程为y 2=4x (x ≥0)或y =0 (x<0). 12.C [方法一 由抛物线的标准方程得准线方程为x =-p 2.∵准线与圆相切,圆的方程为(x -3)2+y 2=16,∴3+p2=4,∴p =2.方法二 作图可知,抛物线y 2=2px (p>0)的准线与圆(x -3)2+y 2=16相切于点(-1,0),所以-p2=-1,p =2.]13.解设A、M、B点的纵坐标分别为y1、y2、y3.A、M、B三点在抛物线准线上的射影分别为A′、M′、B′,如图所示.由抛物线的定义,知|AF|=|AA′|=y1+1 4,|BF|=|BB′|=y3+1 4,∴y1=|AF|-14,y3=|BF|-14.又M是线段AB的中点,∴y2=12(y1+y3)=12⎝⎛⎭⎫|AF|+|BF|-12≥12×⎝⎛⎭⎫|AB|-12=14(2a-1).等号在AB过焦点F时成立,即当定长为a的弦AB过焦点F时,M点与x轴的距离最近,最近距离为14(2a-1).。
高中数学北师大版版选修2-1课时作业第三章 圆锥曲线与方程4.2_4.3圆锥曲线的共同特征直线与圆锥曲线的交点

圆锥曲线的共同特征直线与圆锥曲线的交点课时目标.了解圆锥曲线的共同特征,并会简单的应用.会判断直线与圆锥曲线的位置关系以及求与弦的中点有关的问题..圆锥曲线的共同特征圆锥曲线上的点到的距离与它到的距离之比为定值.当时,该圆锥曲线为椭圆;当时,该圆锥曲线为抛物线;当时,该圆锥曲线为双曲线..曲线的交点设曲线:(,)=,:(,)=,(,)是与的公共点(\\(,)),故求曲线交点即求方程组(\\((,(=(,(=))的实数解.一、选择题.如图中共顶点的椭圆①②与双曲线③④的离心率分别为、、、,其大小关系为( ).<<<.<<<.<<<.<<<.直线=与曲线+=(∈且≠)的公共点的个数为( ).....已知双曲线-= (>,>)的右焦点为,若过点且倾斜角为°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ).() .(-).(,+∞) .,+∞).已知抛物线的方程为=,过点(,-)和点()的直线与抛物线没有公共点,则实数的取值范围是( ).(-∞,-)∪(,+∞)∪.(-∞,-)∪(,+∞).(-∞,-)∪(,+∞).若直线=+和椭圆+=有且只有一个交点,那么的值为( ).已知抛物线=(>),过其焦点且斜率为的直线交抛物线于、两点,若线段的中点的纵坐标为,则该抛物线的准线方程为( ).=.=-.=.=-二、填空题.已知长方形,=,=,则以、为焦点,且过、两点的椭圆的离心率为..过椭圆+=的右焦点作一条斜率为的直线与椭圆交于,两点,为坐标原点,则△的面积为..点()平分双曲线-=的一条弦,则这条弦所在直线的方程是.三、解答题.中心在坐标原点、焦点在轴上的椭圆,它的离心率为,与直线+-=相交于、两点,若以为直径的圆经过坐标原点,求椭圆方程.能力提升.设抛物线=的焦点为,过点(,)的直线与抛物线相交于,两点,与抛物线的准线相交于点,=,则△与△的面积之比等于( ).设双曲线:-= (>)与直线:+=相交于两个不同的点、.()求双曲线的离心率的取值范围;()若设直线与轴的交点为,且=,求的值.。
选修2-1第三章圆锥曲线与方程1.1椭圆及其标准方程(一)

1.1椭圆及其标准方程(一)明目标、知重点 1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形.1.椭圆的定义我们把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距.2.椭圆的标准方程探究点一椭圆的定义思考1给你两个图钉、一根无弹性的细绳、一张纸板,能画出椭圆吗?答固定两个图钉,绳长大于图钉间的距离是画出椭圆的关键.思考2在这一过程中,移动的笔尖(动点)满足的几何条件是什么?答到两个定点的距离和等于常数.小结平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.两个定点F1、F2称为焦点,两焦点之间的距离称为焦距,记为2c.若设M为椭圆上的任意一点,则|MF1|+|MF2|=2a.思考3在椭圆定义中,将“大于|F1F2|”改为“等于|F1F2|”或“小于|F1F2|”的常数,其他条件不变,点的轨迹是什么?答当距离之和等于|F1F2|时,动点的轨迹就是线段F1F2;当距离之和小于|F1F2|时,动点的轨迹不存在.探究点二椭圆的标准方程思考1观察椭圆的形状,你认为怎样选择坐标系才能使椭圆的方程较简单?并写出求解过程.答(1)如图所示,以经过椭圆两焦点F1,F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy.(2)设点:设点M(x,y)是椭圆上任意一点,且椭圆的焦点坐标为F1(-c,0),F2(c,0).(3)列式:依据椭圆的定义式|MF1|+|MF2|=2a列方程,并将其坐标化为(x+c)2+y2+(x-c)2+y2=2a.①(4)化简:通过移项、两次平方后得到:(a2-c2)x2+a2y2=a2(a2-c2),为使方程简单、对称、和谐,引入字母b,令b2=a2-c2,可得椭圆标准方程为x2a2+y2b2=1 (a>b>0).②(5)从上述过程可以看到,椭圆上任意一点的坐标都满足方程②,以方程②的解(x,y)为坐标的点到椭圆的两个焦点F1(-c,0),F2(c,0)的距离之和为2a,即以方程②的解为坐标的点都在椭圆上.由曲线与方程的关系可知,方程②是椭圆的方程,我们把它叫作椭圆的标准方程.思考2建系时如果焦点在y轴上会得到何种形式的椭圆方程?答焦点在y轴上,椭圆方程为y2a2+x2b2=1 (a>b>0).思考3怎样判定给定的椭圆焦点在哪个坐标轴上?答看x2,y2的分母的大小,哪个分母大,焦点就在哪个坐标轴上.较大的分母是a2,较小的分母是b2.如果x2项的分母大,焦点就在x轴上,如果y2项的分母大,则焦点就在y轴上.思考4椭圆方程中的a、b以及参数c有什么意义,它们满足什么关系?答椭圆方程中,a表示椭圆上的点M到两焦点间距离的和的一半,可借助图形帮助记忆,a、b、c(都是正数)恰构成一个直角三角形的三条边,a是斜边,c是焦距的一半,叫半焦距.a、b、c始终满足关系式a2=b2+c2.例1 (1)已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点⎝⎛⎭⎫52,-32,求它的标准方程;(2)若椭圆经过两点(2,0)和(0,1),求椭圆的标准方程. 解 (1)方法一 因为椭圆的焦点在x 轴上, 所以设它的标准方程为x 2a 2+y 2b 2=1 (a >b >0).由椭圆的定义知 2a =⎝⎛⎭⎫52+22+⎝⎛⎭⎫-322+ ⎝⎛⎭⎫52-22+⎝⎛⎭⎫-322=210, 所以a =10.又因为c =2, 所以b 2=a 2-c 2=10-4=6.因此,所求椭圆的标准方程为x 210+y 26=1.方法二 设标准方程为x 2a 2+y 2b 2=1 (a >b >0).依题意得⎩⎪⎨⎪⎧254a 2+94b 2=1a 2-b 2=4,解得⎩⎪⎨⎪⎧a 2=10b 2=6.∴所求椭圆的标准方程为x 210+y 26=1.(2)方法一 当椭圆的焦点在x 轴上时,设所求椭圆的方程为x 2a 2+y 2b 2=1 (a >b >0).∵椭圆经过两点(2,0),(0,1),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,则⎩⎪⎨⎪⎧a =2,b =1.∴所求椭圆的标准方程为x 24+y 2=1;当椭圆的焦点在y 轴上时,设所求椭圆的方程为y 2a 2+x 2b 2=1 (a >b >0).∵椭圆经过两点(2,0)、(0,1),∴⎩⎨⎧0a 2+4b 2=1,1a 2+0b 2=1,则⎩⎪⎨⎪⎧a =1,b =2,与a >b 矛盾,故舍去.综上可知,所求椭圆的标准方程为x 24+y 2=1.方法二 设椭圆方程为mx 2+ny 2=1 (m >0,n >0, m ≠n ).∵椭圆过(2,0)和(0,1)两点,∴⎩⎪⎨⎪⎧4m =1,n =1, ∴⎩⎪⎨⎪⎧m =14,n =1.综上可知,所求椭圆的标准方程为x 24+y 2=1.反思与感悟 求椭圆标准方程的方法(1)定义法,即根据椭圆的定义,判断出轨迹是椭圆,然后写出其方程.(2)待定系数法,即设出椭圆的标准方程,再依据条件确定a 2、b 2的值,可归纳为“先定型,再定量”,其一般步骤是:①定类型:根据条件判断焦点在x 轴上还是在y 轴上,还是两种情况都有可能,并设椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0);也可设椭圆方程为mx 2+ny 2=1 (m >0,n >0,m ≠n ). ②确定未知量:根据已知条件列出关于a 、b 、c 的方程组,解方程组,可得a 、b 的值,然后代入所设方程即可.跟踪训练1 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点距离的和是10; (2)焦点在y 轴上,且经过两个点(0,2)和(1,0); (3)经过点(63,3)和点(223,1). 解 (1)∵椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∵2a =10,∴a =5,又∵c =4,∴b 2=a 2-c 2=52-42=9. ∴所求椭圆的标准方程为x 225+y 29=1.(2)∵椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆经过点(0,2)和(1,0),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1⇒⎩⎪⎨⎪⎧a 2=4,b 2=1,故所求椭圆的标准方程为y 24+x 2=1.(3)方法一 ①当椭圆的焦点在x 轴上时,设椭圆的标准方程为 x 2a 2+y 2b 2=1(a >b >0). ∵点(63,3)和点(223,1)在椭圆上, ∴⎩⎪⎨⎪⎧(63)2a 2+(3)2b2=1,(223)2a 2+12b2=1,∴⎩⎪⎨⎪⎧a 2=1,b 2=9.而a >b >0.∴a 2=1,b 2=9不合题意,即焦点在x 轴上的椭圆的方程不存在.②当椭圆的焦点在y 轴上时,设椭圆的标准方程为 y 2a 2+x 2b 2=1(a >b >0). ∵点(63,3)和点(223,1)在椭圆上,∴⎩⎪⎨⎪⎧(3)2a 2+(63)2b 2=1,12a 2+(223)2b 2=1,∴⎩⎪⎨⎪⎧a 2=9,b 2=1.∴所求椭圆的标准方程为y 29+x 2=1.方法二 设椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). ∵点(63,3)和点(223,1)都在椭圆上, ∴⎩⎨⎧m ·(63)2+n ·(3)2=1,m ·(223)2+n ·12=1,即⎩⎨⎧2m3+3n =1,8m9+n =1.∴⎩⎪⎨⎪⎧m =1,n =19.∴所求椭圆的标准方程为x 2+y 29=1. 例2 已知方程x 2k -4-y 2k -10=1表示焦点在x 轴上的椭圆,则实数k 的取值范围为__________.答案 7<k <10解析 化成椭圆标准形式得x 2k -4+y 210-k=1,根据其表示焦点在x 轴上的椭圆,则⎩⎪⎨⎪⎧k -4>0,10-k >0,k -4>10-k ,解得7<k <10.反思与感悟 (1)利用椭圆方程解题时,一般首先要化成标准形式. (2)x 2m +y2n=1表示椭圆的条件是⎩⎪⎨⎪⎧m >0,n >0,m ≠n ;表示焦点在x 轴上的椭圆的条件是⎩⎪⎨⎪⎧m >0,n >0,m >n ;表示焦点在y 轴上的椭圆的条件是⎩⎨⎧m >0,n >0,n >m .跟踪训练2 若方程x 2m -y 2m 2-2=1表示焦点在y 轴上的椭圆,那么实数m 的取值范围是( )A .m >0B .0<m <1C .-2<m <1D .m >1且m ≠ 2答案 B解析 ∵方程x 2m -y 2m 2-2=1表示焦点在y 轴上的椭圆,将方程改写为y 22-m 2+x 2m=1,∴有⎩⎪⎨⎪⎧2-m 2>m ,m >0,解得0<m <1.探究点三 椭圆的定义及标准方程的应用例3 已知椭圆的方程为x 24+y 23=1,椭圆上有一点P 满足∠PF 1F 2=90°(如图).求△PF 1F 2的面积. 解 由已知得a =2,b =3, 所以c =a 2-b 2=4-3=1.从而|F 1F 2|=2c =2.在△PF 1F 2中,由勾股定理可得 |PF 2|2=|PF 1|2+|F 1F 2|2, 即|PF 2|2=|PF 1|2+4.又由椭圆定义知|PF 1|+|PF 2|=2×2=4, 所以|PF 2|=4-|PF 1|.从而有(4-|PF 1|)2=|PF 1|2+4.解得|PF 1|=32.所以△PF 1F 2的面积S =12·|PF 1|·|F 1F 2|=12×32×2=32,即△PF 1F 2的面积是32.反思与感悟 (1)椭圆上一点P 与椭圆的两焦点F 1、F 2构成的三角形称为焦点三角形,解关于椭圆中的焦点三角形问题时要充分利用椭圆的定义、三角形中的正弦定理、余弦定理等知识.对于求焦点三角形的面积,结合椭圆定义,建立关于|PF 1|(或|PF 2|)的方程求得|PF 1|(或|PF 2|)的长度;有时把|PF 1|·|PF 2|看成一个整体,运用公式|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|及余弦定理求出|PF 1|·|PF 2|,而无需单独求出,这样可以减少运算量. (2)焦点三角形的周长等于2a +2c .跟踪训练3 如图所示,点P 是椭圆x 25+y 24=1上的一点,F 1和F 2是焦点,且∠F 1PF 2=30°,求△F 1PF 2的面积. 解 在椭圆x 25+y 24=1中,a =5,b =2,∴c =a 2-b 2=1.又∵P 在椭圆上,∴|PF 1|+|PF 2|=2a =25,① 由余弦定理知:|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 30° =|F 1F 2|2=(2c )2=4,② ①式两边平方,得|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=20,③ ③-②,得(2+3)|PF 1|·|PF 2|=16, ∴|PF 1|·|PF 2|=16(2-3),∴S △PF 1F 2=12|PF 1|·|PF 2|·sin 30°=8-4 3.1.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A .5B .6C .7D .8 答案 D解析 由椭圆定义知点P 到另一个焦点的距离是10-2=8.2.若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A .-9<m <25B .8<m <25C .16<m <25D .m >8答案 B解析 依题意有⎩⎪⎨⎪⎧25-m >0m +9>0m +9>25-m,解得8<m <25,即实数m 的取值范围是8<m <25.3.已知F 1,F 2是定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是( ) A .椭圆 B .直线 C .圆 D .线段答案 D解析 ∵|MF 1|+|MF 2|=8=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2,故选D.4.已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1、F 2的连线夹角为直角,则|PF 1|·|PF 2|=________. 答案 48解析 依题意a =7,b =26,c =49-24=5, |F 1F 2|=2c =10,由于PF 1⊥PF 2, 所以由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=100.又由椭圆定义知|PF 1|+|PF 2|=2a =14, ∴(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|=100, 即196-2|PF 1|·|PF 2|=100. 解得|PF 1|·|PF 2|=48. [呈重点、现规律]1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a , 当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.对于求解椭圆的标准方程一般有两种方法:可以通过待定系数法求解,也可以通过椭圆的定义进行求解.3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解;也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免了分类讨论达到了简化运算的目的.一、基础过关1.已知焦点坐标为(0,-4),(0,4),且a =6的椭圆方程是( ) A.x 236+y 220=1 B.x 220+y 236=1 C.x 236+y 216=1 D.x 216+y 236=1 答案 B2.设F 1,F 2是椭圆x 225+y 29=1的焦点,P 为椭圆上一点,则△PF 1F 2的周长为( )A .16B .18C .20D .不确定 答案 B解析 △PF 1F 2的周长为|PF 1|+|PF 2|+|F 1F 2|=2a +2c .因为2a =10,c =25-9=4,所以周长为10+8=18.3.“1<m <3”是“方程x 2m -1+y 23-m =1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 当方程x 2m -1+y 23-m =1表示椭圆时,必有⎩⎪⎨⎪⎧m -1>0,3-m >0,所以1<m <3;但当1<m <3时,该方程不一定表示椭圆,例如当m =2时,方程变为x 2+y 2=1,它表示一个圆.4.设P 是椭圆 x 216+y 212=1上一点,P 到两焦点F 1,F 2的距离之差为2,则△PF 1F 2是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形答案 B 解析 由椭圆定义知|PF 1|+|PF 2|=2a =8.又|PF 1|-|PF 2|=2,∴|PF 1|=5,|PF 2|=3.又|F 1F 2|=2c =216-12=4,∴△PF 1F 2为直角三角形.5.已知椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于______________. 答案 4或8解析 由⎩⎪⎨⎪⎧ 10-m >0m -2>0,得2<m <10, 由题意知(10-m )-(m -2)=4或(m -2)-(10-m )=4,解得m =4或m =8.6.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________. 答案 a >3或-6<a <-2解析 由于椭圆焦点在x 轴上,∴⎩⎪⎨⎪⎧ a 2>a +6,a +6>0,即⎩⎪⎨⎪⎧(a +2)(a -3)>0,a >-6. ⇔a >3或-6<a <-2.7.已知椭圆两焦点为F 1、F 2,a =32,过F 1作直线交椭圆于A 、B 两点,求△ABF 2的周长.解 如图所示,设椭圆方程为x 2a 2+y 2b 2=1 (a >b >0), 又∵a =32. ∴△ABF 2的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =6.二、能力提升8.设椭圆x 212+y 23=1的两个焦点为F 1、F 2,点P 在椭圆上,若线段PF 1的中点Q 恰好在y 轴上,那么|PF 1|是|PF 2|的( )A .7倍B .5倍C .4倍D .3倍答案 A9.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a(a >0),则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段答案 D解析 ∵a +9a ≥2a ·9a=6, 当且仅当a =9a,a =3时取等号, ∴当a =3时,|PF 1|+|PF 2|=6=|F 1F 2|,点P 的轨迹是线段F 1F 2;当a >0,且a ≠3时,|PF 1|+|PF 2|>6=|F 1F 2|,点P 的轨迹是椭圆. 10.已知椭圆x 225+y 29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O 为坐标原点,那么线段ON 的长是________.答案 4解析 设椭圆的另一个焦点为E ,则|MF |+|ME |=10,∴|ME |=8,又ON 为△MEF 的中位线,∴|ON |=12|ME |=4. 11.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.解 设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0). 设焦点F 1(-c,0),F 2(c,0)(c >0).∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0,而F 1A →=(-4+c,3),F 2A →=(-4-c,3),∴(-4+c )·(-4-c )+32=0,∴c 2=25,即c =5.∴F 1(-5,0),F 2(5,0).∴2a =|AF 1|+|AF 2| =(-4+5)2+32+(-4-5)2+32 =10+90=410.∴a =210,∴b 2=a 2-c 2=(210)2-52=15.∴所求椭圆的标准方程为x 240+y 215=1. 12.椭圆x 29+y 24=1的焦点为F 1、F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,求点P 横坐标的取值范围.解 如图所示,以F 1F 2为直径的圆x 2+y 2=5与椭圆x 29+y 24=1交于A 、B 、C 、D 四点,则∠F 1AF 2=∠F 1BF 2=∠F 1CF 2=∠F 1DF 2=90°,由⎩⎪⎨⎪⎧x 2+y 2=54x 2+9y 2=36. 得x =±355,如果点P 在椭圆弧AB 及CD 上,即在圆的内部,那么∠F 1PF 2是钝角,故-355<x <355. 三、探究与拓展13.在Rt △ABC 中,∠CAB =90°,AB =2,AC =22,曲线E 过C 点,动点P 在E 上运动,且保持|P A |+|PB |的值不变,求曲线E 的方程.解 如图,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系,在Rt △ABC 中,BC =AC 2+AB 2=322, ∵|P A |+|PB |=|CA |+|CB |=22+322=22, 且|P A |+|PB |>|AB |,∴由椭圆定义知,动点P 的轨迹E 为椭圆,且a =2,c =1,b =1.∴所求曲线E 的方程为x 22+y 2=1.。
高中数学 第三章 圆锥曲线与方程 3.3.1 双曲线及其标准方程课时作业 北师大版选修2-1

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学 习 资 料 专 题3.3.1 双曲线及其标准方程[基础达标]1.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A .(22,0) B .(52,0) C .(62,0) D .(3,0)解析:选C.将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c =a 2+b 2=62,故右焦点的坐标为(62,0). 2.已知双曲线C 的右焦点为F (3,0),c a =32,则C 的标准方程是( )A.x 24-y 25=1 B .x 24-y 25=1C.x 22-y 25=1 D .x 22-y 25=1解析:选B.由题意可知c =3,a =2,b =c 2-a 2=32-22=5,故双曲线的标准方程为x 24-y 25=1.3.若双曲线x 24-y 212=1上的一点P 到它的右焦点的距离为8,则点P 到它的左焦点的距离是( )A .4B .12C .4或12D .6解析:选C.设P 到左焦点的距离为r ,c 2=12+4=16,c =4,a =2,c -a =2,则由双曲线定义|r -8|=4,∴r =4或r =12,4,12∈[2,+∞),符合题意.4.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1、F 2,P 为双曲线C 的右支上一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于( )A .24B .36C .48D .96解析:选C.a =3,b =4,c =5,|PF 2|=|F 1F 2|=2c =10,|PF 1|=2a +|PF 2|=6+10=16,F 2到PF 1的距离为6,故S △PF 1F 2=12×6×16=48.5.已知F 1,F 2为双曲线x 2-y 2=2的左,右焦点,点P 在该双曲线上,且|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14 B .35 C.34D .45解析:选C.双曲线方程可化为x 22-y 22=1,a =b =2,c =2,由⎩⎨⎧|PF 1|=2|PF 2||PF 1|-|PF 2|=22,得|PF 2|=22,|PF 1|=42,又∵|F 1F 2|=2c =4,在△F 1PF 2中,由余弦定理得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(42)2+(22)2-422×42×22=34. 6.双曲线8kx 2-ky 2=8的一个焦点为(0,3),则k 的值为________. 解析:依题意,双曲线方程可化为y 2-8k -x 2-1k=1,已知一个焦点为(0,3),所以-8k -1k =9,解得k =-1.答案:-17.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-6,0)和C (6,0),若顶点B 在双曲线x 225-y 211=1的左支上,则sin A -sin Csin B=________.解析:A (-6,0),C (6,0)为双曲线x 225-y 211=1的左,右焦点.由于B 在双曲线左支上,在△ABC 中,由正弦定理知,|BC |=2R sin A ,|AB |=2R sin C ,2R sin B =|AC |=12,根据双曲线定义|BC |-|AB |=10,故sin A -sin C sin B =2R sin A -2R sin C 2R sin B =|BC |-|AB ||AC |=1012=56. 答案:568.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若|PQ |=16,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:显然点A (5,0)为双曲线的右焦点.由题意得,|FP |-|PA |=6,|FQ |-|QA |=6,两式相加,利用双曲线的定义得|FP |+|FQ |=28,所以△PQF 的周长为|FP |+|FQ |+|PQ |=44.答案:449.设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切.求圆C 的圆心轨迹L 的方程.解:依题意得两圆的圆心分别为F 1(-5,0),F 2(5,0), 从而可得|CF 1|+2=|CF 2|-2或|CF 2|+2=|CF 1|-2, 所以||CF 2|-|CF 1||=4<|F 1F 2|=25,所以圆心C 的轨迹是双曲线,其中a =2,c =5,b 2=c 2-a 2=1, 故C 的圆心轨迹L 的方程是x 24-y 2=1.10.双曲线x 29-y 216=1的两个焦点为F 1,F 2,点P 在双曲线上.若PF 1⊥PF 2,求点P 到x轴的距离.解:设P 点为(x 0,y 0),而F 1(-5,0),F 2(5,0),则PF 1→=(-5-x 0,-y 0),PF 2→=(5-x 0,-y 0).∵PF 1⊥PF 2,∴PF 1→·PF 2→=0,即(-5-x 0)(5-x 0)+(-y 0)·(-y 0)=0, 整理,得x 20+y 20=25①. 又∵P (x 0,y 0)在双曲线上, ∴x 209-y 2016=1②. 联立①②,得y 20=25625,即|y 0|=165.因此点P 到x 轴的距离为165.[能力提升]1.如图,从双曲线x 23-y 25=1的左焦点F 引圆x 2+y 2=3的切线FP 交双曲线右支于点P ,T 为切点,M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |等于( )A. 3 B . 5 C.5- 3D .5+ 3解析:选C.|OM |-|MT |=12|PE |-(|MF |-|FT |)=|FT |-12(|PF |-|PE |)=5-12×2 3=5- 3.2.已知双曲线的方程为x 2-y 24=1,如图,点A 的坐标为(-5,0),B 是圆x 2+(y -5)2=1上的点,点C 为其圆心,点M 在双曲线的右支上,则|MA |+|MB |的最小值为________.解析:设D (5,0),则A 、D 为双曲线的两个焦点,连接BD ,MD ,由双曲线的定义,得|MA |-|MD |=2a =2.∴|MA |+|MB |=2+|MB |+|MD |≥2+|BD |,又点B 是圆x 2+(y -5)2=1上的点,圆的圆心为C (0,5),半径为1,故|BD |≥|CD |-1=10-1,从而|MA |+|MB |≥2+|BD |≥10+1,当点M ,B 在线段CD 上时上式取等号,即|MA |+|MB |的最小值为10+1.答案:10+13.已知双曲线过P 1(-2,325)和P 2(437,4)两点,求双曲线的标准方程.解:法一:当双曲线的焦点在x 轴上时,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).由P 1,P 2在双曲线上,知⎩⎪⎨⎪⎧(-2)2a 2-(325)2b2=1.(437)2a 2-42b 2=1,解之得⎩⎪⎨⎪⎧1a 2=-116,1b 2=-19.不合题意,舍去;当双曲线的焦点在y 轴上时,设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0).由P 1,P 2在双曲线上, 知⎩⎪⎨⎪⎧(325)2a 2-(-2)2b2=1,42a 2-(437)2b2=1,解之得⎩⎪⎨⎪⎧1a 2=19,1b 2=116,即a 2=9,b 2=16.故所求双曲线方程为y 29-x 216=1.法二:设双曲线方程为mx 2+ny 2=1(mn <0), 由P 1,P 2在双曲线上,知⎩⎪⎨⎪⎧(-2)2m +(325)2n =1(437)2m +42n =1,解得⎩⎪⎨⎪⎧m =-116n =19,故所求方程为y 29-x 216=1.4.设点P 到点M (-1,0),N (1,0)的距离之差为2m ,到x 轴,y 轴的距离之比为2,求m 的取值范围.解:设点P 的坐标为(x ,y ),依题意,有|y ||x |=2,即y =±2x (x ≠0).所以点P (x ,y ),M (-1,0),N (1,0)三点不共线, 所以||PM |-|PN ||<|MN |=2. 又因为||PM |-|PN ||=2|m |>0, 所以0<|m |<1.所以点P 在以M ,N 为焦点的双曲线上,且a 2=m 2,c 2=1, 所以b 2=1-m 2,所以x 2m 2-y 21-m 2=1.①把y =±2x (x ≠0)代入①,得x 2=m 2(1-m 2)1-5m2. 因为1-m 2>0,所以1-5m 2>0, 解得0<|m |<55, 所以m 的取值范围为⎝ ⎛⎭⎪⎫-55,0∪⎝⎛⎭⎪⎫0,55.。
高中数学北师大版版选修2-1课时作业第三章 圆锥曲线与方程3.2双曲线的简单性质 Word版含解析

双曲线的简单性质课时目标了解双曲线的范围、对称性、顶点、离心率、渐近线等几何性质,会根据几何性质求双曲线方程,及学会由双曲线的方程研究几何性质..双曲线的简单几何性质.()()双曲线-=的两个顶点为(-)、(,).设(,-)、(,),线段叫做双曲线的,它的长等于,叫做双曲线的半实轴长,线段叫做双曲线的,它的长等于,叫做双曲线的半虚轴长.实轴和虚轴等长的双曲线叫做等轴双曲线,等轴双曲线的渐近线方程为=±.()当双曲线的离心率由小变大时,双曲线的形状就从扁狭逐渐变得,原因是=,当增大时,也增大,渐近线的斜率的绝对值.一、选择题.下列曲线中离心率为的是( )-=-=-=-=.双曲线-=的渐近线方程是( ).=±.=±.=±.=±.双曲线与椭圆+=有相同的焦点,它的一条渐近线方程为=,则双曲线的方程为( ) .-=.-=.-=.-=.设双曲线-=(>,>)的虚轴长为,焦距为,则双曲线的渐近线方程为( ).=±.=±.=±.=±.直线过点(,)且与双曲线-=仅有一个公共点,则这样的直线有( ) .条.条.条.条.已知双曲线-= (>,>)的左、右焦点分别为、,点在双曲线的右支上,且=,则此双曲线的离心率的最大值为( ).二、填空题.两个正数、的等差中项是,一个等比中项是,且>,则双曲线-=的离心率=..在△中,,,分别是∠,∠,∠的对边,且=,-=,则顶点运动的轨迹方程是..与双曲线-=有共同的渐近线,并且经过点(-,)的双曲线方程为.三、解答题.根据下列条件,求双曲线的标准方程.()经过点,且一条渐近线为+=;()()与两个焦点连线互相垂直,与两个顶点连线的夹角为..已知双曲线的中心在原点,焦点、在坐标轴上,离心率为,且过点(,-).()求此双曲线的方程;()若点(,)在双曲线上,求证:⊥;()求△的面积.能力提升.设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ).、是双曲线的左、右焦点,是双曲线上一点,且∠=°,△=,又离心率为,求双曲线的方程.。
北师大版高中数学选修2-1《圆锥曲线与方程》课时练习(附答案)

5.如图 ,已知椭圆的方程为
= 1,若点 P 在第二象限 ,且∠ PF1F2= 120°,求△PF1F2 的面积 .
6.给出如下定义 :把由半椭圆
= 1(x≥ 0)与半椭圆
=1( x≤0) 合成的曲线称作 “果圆 ”,其中
a2=b 2+c 2,a> 0,b>c> 0,如图 ,点 F0 ,F 1,F 2 是相应椭圆的焦点 ,A1,A2 和 B1,B2 分别是 “果圆 ”与 x,y 轴的交点 . (1) 若 △F0F1F2 是边长为 1 的等边三角形 ,求“果圆 ”的方程 ;
|PF 2|2=|PF 1|2+|F 1F 2| 2-2|PF 1||F 1F2|cos 120°,
即 |PF2 |2=|PF 1|2+ 4+ 2|PF 1|.
①
由椭圆的定义 ,得 |PF 1|+|PF 2|= 4,
即 |PF2 |= 4-|PF 1|.
②
②代入 ①,解得 |PF 1|= .
所以
|PF 1|·|F 1F2 |·sin 120 °=
北师大版高中数学选修 2-1 第三章《圆锥曲线与方程》同步课时作业
3.1.1 椭圆及其标准方程
A组
1.F 1,F2 是定点 ,|F 1F 2|= 6,动点 M 满足 |MF 1|+|MF 2|= 6,则点 M 的轨迹是 (
)
A .椭圆
B .直线
C .线段
D .圆
2.已知椭圆 C 上任意一点 P(x,y)都满足关系式 为( )
B .4
C .6
D.
5.已知 F 1,F2 是椭圆 C: 积为 9,则 b= ( )
A.3
B.9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4 曲线与方程 4.1 曲线与方程
课时目标 1.结合实例,了解曲线与方程的对应关系.2.了解求曲线方程的步骤.3.会求简单曲线的方程.
1.在平面直角坐标系中,如果某曲线C(看作满足某种条件的点的集合或轨迹)上的点与一个二元方程f(x ,y)=0的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都在曲线上.那么这个方程叫做________________;这条曲线叫做________________.
2.如果曲线C 的方程是f(x ,y)=0,点P 的坐标是(x 0,y 0),则①点P 在曲线C 上⇒ ____________;②点P 不在曲线C 上⇒______________.
一、选择题
1.方程x +|y -1|=0表示的曲线是( )
2.已知直线l 的方程是f(x ,y)=0,点M(x 0,y 0)不在l 上,则方程f(x ,y)-f(x 0,y 0)=0表示的曲线是( )
A .直线l
B .与l 垂直的一条直线
C .与l 平行的一条直线
D .与l 平行的两条直线 3.下列各对方程中,表示相同曲线的一对方程是( )
A .y =x 与y 2=x
B .y =x 与x y
=1
C .y 2-x 2=0与|y|=|x|
D .y =lg x 2与y =2lg x
4.已知点A(-2,0),B(2,0),C(0,3),则△ABC 底边AB 的中线的方程是( ) A .x =0 B .x =0(0≤y≤3) C .y =0 D .y =0(0≤x≤2)
5.在第四象限内,到原点的距离等于2的点的轨迹方程是( ) A .x 2+y 2=4
B .x 2+y 2=4 (x>0)
C .y =-4-x 2
D .y =-4-x 2 (0<x<2)
6.如果曲线C 上的点的坐标满足方程F(x ,y)=0,则下列说法正确的是( ) A .曲线C 的方程是F(x ,y)=0 B .方程F(x ,y)=0的曲线是C
C .坐标不满足方程F(x ,y)=0的点都不在曲线C 上
D .坐标满足方程
二、填空题
7.若方程ax 2
+by =4的曲线经过点A(0,2)和B ⎝ ⎛⎭
⎪⎫12,3,
则a =________,b =________. 8.到直线4x +3y -5=0的距离为1的点的轨迹方程为_______________.
9.已知点O(0,0),A(1,-2),动点P 满足|PA|=3|PO|,则点P 的轨迹方程是________________. 三、解答题
10.已知平面上两个定点A ,B 之间的距离为2a ,点M 到A ,B 两点的距离之比为2∶1,求动点M 的轨迹方程.
11.动点M 在曲线x 2+y 2
=1上移动,M 和定点B(3,0)连线的中点为P ,求P 点的轨迹方程.
能力提升
12.若直线y =x +b 与曲线y =3-4x -x 2
有公共点,则b 的取值范围是( )
A .[]-1,1+22
B .[]1-22,1+22
C .[]1-22,3
D .[]1-2,3
13.在平面直角坐标系中,已知动点P(x ,y),PM⊥y 轴,垂足为M ,点N 与点P 关于x 轴对称,且OP →·MN →
=4,求动点P 的轨迹方程.
1.曲线C 的方程是f(x ,y)=0要具备两个条件:①曲线C 上的点的坐标都是方程f(x ,y)=0的解;②以方程f(x ,y)=0的解为坐标的点都在曲线C 上.
2.求曲线的方程时,要将所求点的坐标设成(x ,y),所得方程会随坐标系的不同而不同.
3.方程化简过程中如果破坏了同解性,就需要剔除不属于轨迹上的点,找回属于轨迹而遗漏的点.求轨迹时需要说明所表示的是什么曲线,求轨迹方程则不必说明.
§4 曲线与方程 4.1 曲线与方程
知识梳理
1.(2)曲线的方程 方程的曲线 2.f(x 0,y 0)=0 f(x 0,y 0)≠0 作业设计
1.B 可以利用特殊值法来选出答案,如曲线过点(-1,0),(-1,2)两点.]
2.C 方程f(x ,y)-f(x 0,y 0)=0表示过点M(x 0,y 0)且和直线l 平行的一条直线.] 3.C 考虑x 、y 的范围.]
4.B 直接法求解,注意△ABC 底边AB 的中线是线段,而不是直线.] 5.D 注意所求轨迹在第四象限内.] 6.C 直接法:
原说法写成命题形式即“若点M(x ,y)是曲线C 上的点,则M 点的坐标适合方程F(x ,y)=0”,其逆否命题是“若M 点的坐标不适合方程F(x ,y)=0,则M 点不在曲线C 上”,此即说法C .
特值方法:作如图所示的曲线C ,考查C 与方程F(x ,y)=x 2
-1=0的关系,显然A 、B 、D 中的说法都不正确.] 7.16-8 3 2
8.4x +3y -10=0和4x +3y =0
解析 设动点坐标为(x ,y),则|4x +3y -5|
5
=1,
即|4x +3y -5|=5.
∴所求轨迹方程为4x +3y -10=0和4x +3y =0.
9.8x 2+8y 2
+2x -4y -5=0 10.解
以两个定点A ,B 所在的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系(如图所示). 由于|AB|=2a ,
则设A(-a,0),B(a,0),动点M(x ,y). 因为|MA|∶|MB|=2∶1,
所以(x +a )2+y 2∶(x -a )2+y 2
=2∶1,
即(x +a )2+y 2=2(x -a )2+y 2
,
化简得⎝
⎛⎭⎪⎫x -5a 32+y 2=169a 2
.
所以所求动点M 的轨迹方程为 ⎝ ⎛⎭
⎪⎫x -5a 32+y 2=169a 2.
11.解 设P(x ,y),M(x 0,y 0),∵P 为MB 的中点, ∴⎩⎪⎨⎪⎧
x =x 0+32y =y
2
,即⎩⎪⎨
⎪⎧
x 0=2x -3
y 0=2y
,
又∵M 在曲线x 2
+y 2=1上,∴(2x-3)2+4y 2
=1.
∴点P 的轨迹方程为(2x -3)2+4y 2
=1.
12.C 曲线方程可化简为(x -2)2+(y -3)2
=4 (1≤y≤3),即表示圆心为(2,3),半径为2的半圆,依据数形结合,当直线y =x +b 与此半圆相切时须满足圆心(2,3)到直线y =x +b 的距离等于2,解得b =1+22或b =1-22,因为是下半圆故可得b =1-22,当直线过(0,3)时,解得b =3, 故1-22≤b≤3.]
13.解 由已知得:M(0,y),N(x ,-y), ∴MN →
=(x ,-2y), 则OP →·MN →=(x ,y)·(x,-2y)=x 2-2y 2
=4,
即所求动点P 的轨迹方程为x 24-y
22
=1.。