2013-2014学年江苏省东台市第二教研片七年级上第一次月考数学试题【苏科版】

合集下载

苏科版七年级数学上册第一次月考试卷

苏科版七年级数学上册第一次月考试卷

苏科版七年级数学上册第一次月考试题一、单选题1.()32-的指数是( ) A .2B .﹣2C .3D .﹣32.在数轴上把表示2的点向右移动5个单位长度后,所得的对应点是( ) A .7 B .﹣3 C .6 D .8 3.下列各对数中互为相反数的是( )A .﹣(+5)和+(﹣5)B .﹣(﹣5)和+(﹣5)C .﹣(+5)和﹣5D .+(﹣5)和﹣54.下列各式中,结果为正数的是( ). A .﹣|﹣2|B .﹣(﹣2)C .﹣22D .(﹣2)×2 5.已知数轴上的点E 、F 、G 、H 表示的数分别是 4.2-、213、128、-0.8,那么其中离原点最近的点是( ) A .点EB .点FC .点GD .点H6.下面说法中正确的有( )A .非负数一定是正数B .有最小的正整数,有最小的正有理数C .﹣a 一定是负数D .正整数和正分数统称正有理数7.已知a ,b ,c 三个数的位置如图所示.则下列结论不正确的是( )A .a+b <0B .b ﹣a >0C .a+b >0D .a+c <08.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m 、n 、p 、q ,如图2,先让圆周上表示m 的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是( )A .mB .nC .pD .q二、填空题9.﹣3的相反数是__________.10.某地某天早晨气温是﹣2℃,到中午气温上升了9℃,这天中午气温是__________℃。

11.如果向南走48m ,记作﹢48m ,则向北走56m ,记作_____________。

12.“社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为4280000个,数据4280000用科学记数法表示为 . 13.比较数的大小:45-_____ 23- 14.已知|x |=3,|y |=4,且x <y ,则x +y = ______ .15.数轴上点P 表示的数是﹣2,那么到P 点的距离是3个单位长度的点表示的数是_____. 16.已知()2320x y -++=,则x y =________.. 17.定义一种新运算,其运算规则是a b c d =ad -bc ,那么220.54-=____. 18.如图所示是计算机某计算程序,若开始输入x =2,则最后输出的结果是 ______ .19.(本题共6分)已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使数1表示的点与数﹣1表示的点重合,则此时数﹣2表示的点与数 表示的点重合; 操作二:(2)折叠纸面,使数5表示的点与数﹣1表示的点重合,回答下列问题: ①数6表示的点与数 表示的点重合;②若这样折叠后,数轴上有A 、B 两点也重合,且A 、B 两点之间的距离为11(A 在B 的左侧),则A 点表示的数为 ,B 点表示的数为 .三、解答题 20.计算题: (1)32215545353⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭(2)()()94811649-÷⨯÷- (3)()20181122106⎡⎤--⨯⨯-+⎣⎦ (4)()75373696418⎛⎫-+-⨯- ⎪⎝⎭(5)71993672-⨯(6)22218134333⎛⎫⨯-+⨯-⨯ ⎪⎝⎭21.请画一条数轴,把它们表示数轴上表示出来,并用“>”连接各数.153 4.5,02,224,,,---22.把下列各数填入相应的括号内.2-,5.2,0,π3,1.1212212221…,2005,0.3-. 整数集合:{ ⋯} 正数集合:{ ⋯} 分数集合:{ ⋯} 无理数集合:{ ⋯}23.去年“十•一”黄金周期间,某风景区在7天假期中每天接待游客的人数变化如下表:(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?(2)若9月30日游客人数为3万人,门票每人次200元, 2%的游客符合免费条件,8%的游客符合减半收费条件,求该风景区7天门票总收入是多少万元?24.已知:212112111,,,133********=-=-=-⨯⨯⨯ (1)照上面算式,你能猜出2_________;20052007=⨯ (2)利用上面的规律计算:1111114477101013301304++++⋯+⨯⨯⨯⨯⨯的值.25.观察下列各式的计算结果:2113131124422-=-==⨯ 2118241139933-=-==⨯ 2111535114161644-=-==⨯ 2112446115252555-=-==⨯··· (1)用你发现的规律填写下列各式的结果:2116-=______________×______________ 21110-=_______________×____________ (2)用你发现的规律计算:222111111234⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭···22111120132014⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭参考答案1.C【解析】【分析】在a n中,a为底数,n为指数.【详解】根据乘方的概念,()32-的指数是3,即答案选C.【点睛】此题考察了有理数乘方的概念,熟悉掌握相关知识是解题关键.2.A【解析】【分析】根据点在数轴上移动,向右移动则数字是增大.【详解】向右移动5个单位,则2+5=7.即答案选A.【点睛】本题考查了数轴、两点间的距离,了解数轴上点的移动规律是解题的关键.3.B【解析】试题解析:选项A、C、D中的两个数相等.只有选项B中的两个数互为相反数. 故选B.点睛:只有符号不同的两个数互为相反数.4.B【解析】A--=-,此选项错误,试题解析:.22().22B--=,此选项正确,2C-=-,此选项错误,.24()D-⨯=-,此选项错误..224故选B.5.D【解析】根据数轴上点到原点的距离是其绝对值,可知-0.8的绝对值最小,故其离原点最近.故选D.6.D【解析】【分析】根据有理数,即可解答.【详解】A、非负数是正数和0,故本选项错误;B、有最小的正整数,没有最小的正有理数,故本选项错误;C、-a不一定是负数还有可能是0,故本选项错误;D、正整数和正分数统称正有理数,正确;所以D选项是正确的.【点睛】本题主要考查有理数的定义,熟悉掌握是关键.7.C试题解析:∵从数轴可知:a<b<0<c,|a|>|c|>|b|,∴A、a+b<0,正确,故本选项错误;B、b-a>0,正确,故本选项错误;C、a+b>0,错误,故本选项正确;D、a+c<0,正确,故本选项错误;故选C.8.B【解析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,-1,-2,-3,则分别与圆周上表示字母为m,q,p,n的点重合.2016÷4=504,故-2016与m点重合.故选A.点睛:本题考查了数轴.找出圆运动的周期与数轴上的数字的对应关系是解答此类题目的关键.9.3【解析】【详解】解:一个数的相反数就是在这个数前面添上“﹣”号.所以﹣(﹣3)=3故答案为3考点:相反数10.7【解析】【分析】根据题意列出算式为(-2)+(+9),求出即可.【详解】解:(-2)+(+9)=7℃.故这天中午气温是7℃.故答案为:7.本题考查了有理数的加法运算,关键是能根据题意列出算式. 11.-56m 【解析】 【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 【详解】解:“正”和“负”相对,所以如果向南走48m ,记作+48m , 则乙向北走56m ,记为-56m . 故答案为:-56m . 【点睛】本题考查了正数与负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 12.4.28×106. 【解析】试题解析:64280000 4.2810.=⨯ 故答案为64.2810⨯.点睛:科学记数法的表示形式为:10n a ⨯,其中110.a ≤< 13.< 【解析】∵45 > 23, ∴45- < 23-(绝对值大的反而小).故答案是:<. 14.1或7 【解析】根据绝对值的意义,可知x=±3,y=±4,由于x <y ,可知x=3时,y=4或x=-3时,y=4,解得x+y=7或x+y=1.故答案为1或7.15.﹣5或1【解析】【分析】在数轴上表示出P点,找到与点P距离3个长度单位的点所表示的数即可.此类题注意两种情况:要求的点可以在已知点2-的左侧或右侧.【详解】解:如图,根据数轴可以得到在数轴上与点A距离3个长度单位的点所表示的数是:5-或1.故答案为:5-或1.【点睛】此题考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.16.-8【解析】由题意,得3020xy-=⎧⎨+=⎩,解得=32xy⎧⎨=-⎩.即x=3,y=−2.故答案为−8. 17.-9【解析】根据运算规则,得220.54-=(-2)×4-2×0.5=-8-1=-9.故答案为-9.18.22【解析】根据运算程序,可列式为2×4=8,8-2=6,6<10,再次输入为6×4=24,24-2=22>10,输出结果为22.故答案为22.点睛:此题是一个图表信息题,解题时根据图表找到计算关系,然后按要求计算,直到得出正确结果即可.19.(1)2;(2)①﹣2;②﹣3.5、7.5. 【解析】试题分析:(1)根据折叠的性质,判断出对称点是原点,推得此时数﹣2表示的点与数2表示的点重合即可.(2)根据数5表示的点与数﹣1表示的点重合,确定出对称点是表示2的点,①数6表示的点与对称点距离为4,在对称点左侧且与对称点距离为4的点是﹣2表示的点,据此解答即可.②根据题意,可得A 、B 两点距离对称点的距离为5.5,据此求出A 、B 两点表示的数各是多少即可.试题解析:(1)使数1表示的点与数﹣1表示的点重合,则此时数﹣2表示的点与数2表示的点重合.(2)根据数5表示的点与数﹣1表示的点重合,确定出对称点是表示2的点,①数6表示的点与对称点距离为4,在对称点左侧且与对称点距离为4的点是﹣2表示的点,∴数6表示的点与数﹣2表示的点重合.②根据题意,可得A 、B 两点距离对称点的距离为5.5,∵对称点是表示2的点,∴A 、B 两点表示的数分别是﹣3.5,7.5. 考点:数轴.20.(1)4 (2)1(3)-2 (4)-11 (5)-359912(6)-6 【解析】 【分析】根据有理数的混合运算法则,先化简再进行运算. 【详解】(1)原式=285-173+225-13=505-183=10-6=4(2)原式=-81·49·49·(-116)=1(3)原式=-116·(-4+10)=-1-1=-2(4)原式=-28+30-27+14=-11(5)原式=-(100-172)·36=-(3600-12)=-359912(6)原式=(13-18-4)·23=-6 【点睛】此题考查了有理数的混合运算,有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算. 2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解. 3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算. 4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.21.见解析,-4.5<-2<54-<0<2<132【解析】【分析】将数字化成相同形式再根据有理数大小的排序法则进行合理排序.【详解】见上图数轴红点从左往右-4.5<-2<54-<0<2<132【点睛】根据有理数大小的排序法则进行合理排序,并且明白画图原则是解答本题的关键. 22.详见解析.【解析】试题分析:依据整数,正数,分数,无理数的概念判断即可.试题解析:整数集合:{}2,0,2005,-正数集合: π5.2,,1.1211121112,2005,3⎧⎫⎨⎬⎩⎭分数集合:{}5.2,0.3,- 无理数集合:π,1.1212212221.3⎧⎫⎨⎬⎩⎭点睛:整数包含正整数,零,负整数.比0大的数叫做正数.无限不循环小数叫做无理数. 23.(1)2.4万人(2)34万人;6392万元【解析】试题分析:(1)根据有理数的加减法,即可解答;(2)计算出7天的总人数,再根据有理数的乘法,即可解答.试题解析:(1)根据题意,10月3日游客最多,比9月30日多:1.6+0.8+0.4=2.8(万人),10月7日游客最少,比9月30日多,1.6+0.8+0.4-0.4-0.8+0.2-1.4=0.4(万人),最多与最少相差:2.8-0.4=2.4(万人).(2)根据题意10月1日至10月7日游客人数分别是:3+1.6=4.6(万人),4.6+0.8=5.4(万人),5.4+0.4=5.8(万人),5.8-0.4=5.4(万人),5.4-0.8=4.6(万人),4.6+0.2=4.8(万人),4.8-1.4=3.4(万人),7天游客的总数是:4.6+5.4+5.8+5.4+4.6+4.8+3.4=34(万人),7天门票的总收入是:100×34×8%+200×34×90%=6392(万元).24.(1)1120052017-;(2)101304. 【解析】【分析】(1)根据规律进行变形;(2)每个分数都提取13后,将括号内裂项相消后即可得. 【详解】(1)∵212112111,,133********=-=-=-⨯⨯⨯,∴2112005200720052007=-⨯, 故答案:1120052017-; (2)1111114477101013301304++++⋯+⨯⨯⨯⨯⨯,1111111111(1),34477101013301304=-+-+-+-+⋯+- 11101(1).3304304=-=【点睛】考查学生对探究规律题的分析能力和运用能力,是中考常考题型,难度中等. 25.56 76 910 1110【解析】【分析】(1)根据平方差公式即可求解;(2)先根据平方差公式变形,再约分计算即可求解.【详解】 (1)211?6-=56·76,21911010-=·1110(2)222111111234⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭···22111120132014⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =132435223344⨯⨯⨯⨯⨯⨯ (2013)201520142014⨯⨯ =1201522014⨯ =20154028.【点睛】此题考查了有理数的混合运算,熟练掌握数字运算的规律是解本题的关键.。

七年级数学第一次月考卷(苏科版2024)(解析版)【测试范围:第一章~第二章】

七年级数学第一次月考卷(苏科版2024)(解析版)【测试范围:第一章~第二章】

2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)考前须知:1.本卷试题共24题,单选6题,填空10题,解答8题。

2.测试范围:第一章~第二章(苏科版2024)。

第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a 一定是负数,其中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a 不一定是负数,故④不正确,故选:B .【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.3.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.4.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.5.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A6.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)7.将数据52.93万用科学记数法表示为.【答案】5.293×105【分析】本题主要考查科学记数法,根据科学记数法的表示方法求解即可.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.【详解】解:52.93万=529300=5.293×105.故答案为:5.293×105.8.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.9.绝对值大于1且不大于5的负整数有.【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.10.下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京早的点时数):城市纽约伦敦东京巴黎时差/时―13―8+1―7如果北京时间是9月13日17时,那么伦敦的当地时间是9月日时.【答案】13 9【分析】本题考查了正负数在实际生活中的应用.这是一个典型的正数与负数的实际运用问题,我们应联系现实生活认清正数与负数所代表的实际意义.此题中正数表示在北京时间向后推几个小时,即加上这个正数;负数表示向前推几个小时,即加上这个负数,据此解答即可.【详解】解:17―8=9,∵―8表示向前推8个小时,∴北京时间是9月13日17时,那么伦敦的当地时间是9月13日9时,故答案为:13,9.11.如图,将一刻度尺放在数轴上.若刻度尺上0cm和5cm对应数轴上的点表示的数分别为―3和2,则刻度尺上7cm对应数轴上的点表示的数是.【答案】4【分析】本题考查数轴的概念.由数轴的概念即可求解.【详解】解:∵0cm和5cm对应数轴上的点表示的数分别为―3和2,∴数轴的单位长度是1cm,∴原点对应3cm的刻度,∴数轴上与7cm刻度对齐的点表示的数是4,故答案为:4.12.如图所示是计算机程序计算,若开始输入x=―2,则最后输出的结果是.【答案】16【分析】本题主要考查了与程序流程图有关的有理数计算.先代入x=―2,计算出结果,若结果不大于10,则把计算的结果重新输入计算,如此往复直至计算的结果大于10即可.【详解】解:―2+4―(―2)=―2+4+2=4<10,4+4―(―2)=4+4+2=10,10+4―(―2)=10+4+2=16>0,故答案为:16.13.若(2a―1)2与2|b―3|互为相反数,则a b=.【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a―1)2与2|b―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a,b.【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.若a |a |+b |b |+c |c |+d |d |=2,则|abcd |abcd 的值为 .【答案】-1【分析】先根据a |a |+b |b |+c |c |+d |d |=2,a |a |,b |b |,c |c |,d |d |的值为1或-1,得出a 、b 、c 、d 中有3个正数,1个负数,进而得出abcd 为负数,即可得出答案.【详解】解:∵当a 、b 、c 、d 为正数时,a |a |,b |b |,c |c |,d |d |的值为1,当a 、b 、c 、d 为负数时,a |a |,b |b |,c |c |,d |d |的值为-1,又∵a |a |+b |b |+c |c |+d |d |=2,∴a 、b 、c 、d 中有3个正数,1个负数,∴abcd 为负数,∴|abcd |abcd =-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a 、b 、c 、d 中有3个正数,1个负数,是解题的关键.15.新定义如下:f(x)=|x ―3|, g(y)=|y +2|; 例如:f(―2)=|―2―3|=5,g(3)=|3+2|=5;根据上述知识, 若f(x)+g(x)=6, 则x 的值为 .【答案】72或―52【分析】本题考查了新定义,求代数式的值,化简绝对值,绝对值方程,正确理解新定义是解题的关键.根据f(x)+g(x)=6得出含绝对值的方程,解方程可得答案.【详解】解:由题可得:|x ―3|+|x +2|=6,当x ≥3时,x ―3+x +2=6,解得x =72;当―2<x <3时,3―x +x +2=6,方程无解;当x ≤―2时,3―x ―x ―2=6,解得x =―52;故答案为:72或―52.16.定义一种关于整数n 的“F ”运算:(1)当n 是奇数时,结果为3n +5;(2)当n 是偶数时,结果是n 2k (其中k 是使n 2k 是奇数的正整数),并且运算重复进行.例如:取n =58,第一次经F运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74,……;若n =9,则第2023次运算结果是 .【答案】8【分析】此题考查的是探索规律题.由题意所给的定义新运算可得当n =9时,第一次经F 运算是32,第二次经F 运算是1,第三次经F 运算是8,第四次经F 运算是1,⋯,由此规律可进行求解.【详解】解:由题意n =9时,第一次经F 运算是3×9+5=32,第二次经F 运算是3225=1,第三次经F 运算是3×1+5=8,第四次经F 运算是823=1,⋯;从第二次开始出现1、8循环,奇数次是8,偶数次是1,∴第2023次运算结果8,故答案为:8.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―(+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)= 1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a|=5,|b|=3,且|a―b|=b―a,可以得到a、b的值,然后代入所求式子计算即可;(2)根据a与b互为相反数,c与d互为倒数,x的绝对值等于2,可以得到a+b=0,cd=1,x=±2,然后代入所求式子计算即可.【详解】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,∵|a―b|=b―a,∴b≥a,∴a=―5,b=±3,当a=―5,b=3时,a―b=―5―3=―8,当a=―5,b=―3时,a―b=―5―(―3)=―5+3=―2,由上可得,a+b的值是―8或―2;(2)∵a与b互为相反数,c与d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴当x=2时,x―(a+b+cd)+a+b cd=2―(0+1)+0 =2―1=1;当x=―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k―1)―(2k+1)+3×(2k―1)=―101,解得:k=―49,当k为偶数时,根据题意得,(2k+1)+(2k―3)―3(2k―1)=―101,解得,k=51(舍去),综上,k=―49.24.如图,数轴上有A,B,C三个点,分别表示数―20,―8,16,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P在点Q的左边,点M在点N的左边),PQ=2,MN=4,线段MN以每秒1个单位的速度从点B开始向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点Q回到点A时,线段PQ、MN同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN 保持长度不变).(1)当t =20时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ =PM 时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t 的代数式表示点运动后所表示的数.(1)当t =20时,根据起点位置以及运动方向和运动速度,即可得点M 表示的数为8、点Q 表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t=18.25或t=19.75,∴重合部分长度为1.5时所对应的t的值是5.5或8.5或18.25或19.75.。

苏教版七年级数学上册第一次月考试卷及答案【真题】

苏教版七年级数学上册第一次月考试卷及答案【真题】

苏教版七年级数学上册第一次月考试卷及答案【真题】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°3.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=,90C ∠=,45A ∠=,30D ∠=,则12∠+∠等于( )A .150B .180C .210D .2704.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示( )A.同位角、同旁内角、内错角B.同位角、内错角、同旁内角C.同位角、对顶角、同旁内角D.同位角、内错角、对顶角6.﹣6的倒数是()A.﹣16B.16C.﹣6 D.67.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.28.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃9.如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2的度数为()A.130°B.120°C.115°D.100°10.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<0二、填空题(本大题共6小题,每小题3分,共18分)181________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.3.分解因式:32x 2x x -+=_________.4.如图,已知直线AB 、CD 、EF 相交于点O ,∠1=95°,∠2=32°,则∠BOE=________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()43203x x --= (2)23211510x x -+-=2.化简求值: ()1已知a 是13的整数部分,3b =,求54ab +的平方根.()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.3.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.4.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?(3)在(2)的条件下,已知一辆大型渣土运输车运输话费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、D5、B6、A7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、()()2a b a b++.3、()2 x x1-.4、53°5、16、48三、解答题(本大题共6小题,共72分)1、(1)x=9;(2)x=8.52、(1)±3;(2)2a+b﹣1.3、24°.4、(1)证明略;(2)∠AED+∠D=180°,略;(3)110°5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土方5吨;(2)4种;(3)选择“派出大型渣土运输车10辆、小型渣土运输车10辆”的方案划算.。

苏科版七年级上第一次月考数学试题及答案

苏科版七年级上第一次月考数学试题及答案

一、选择题(每题3分)1.下面四个数中比-2小的数是()A.1 B.0 C.-1 D.-32.下列说法正确的是()A.无限小数是无理数; B.零是整数,但不是正数,也不是负数;C.分数包括正分数、负分数和零;D.有理数不是正数就是负数.3. 一只长满羽毛的鸭子大约重 ( )A、50克B、2千克C、20千克D、5千克4.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. c>a>0>b;B. a>b>0>c ;C. b>0>a >c;D. b>0>c>a5. 一个数的相反数是非负数,这个数是()A 负数B 非负数C 正数D 非正数6. 下列各式中,正确的是()A -|-16|>0B|0.2|>|-0.2| C -47>-57 D |-6|<07. 把一根木棒锯成3段需12分钟,那么把它锯成10段需( )A、48分钟B、54分钟C、60分钟D、66分钟8.绝对值大于2,而小于5的所有正整数之和为()A 7B 8C 9D 109 下列叙述正确的是()A 若|a|=|b|,则a=bB 若|a|>|b|,则a>bC 若a<b|,则|a|<|b|D 若|a|=|b|,则a=±b10 .已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()A. 3瓶B. 4瓶C. 5瓶D. 6瓶二、填空题(每题4分)11. 用科学记数法表示250 200 000 00012.A市某天的温差为7°C,如果这天的最高气温为5°C,这天的最低气温是。

13.离原点3个单位长度的点有个,它所表示的有理数是;14.数轴上一点A表示的数为-5,将A先向右移2个单位,再向左移10个单位,则这个点表示的数是;15.在数轴上,到原点距离不大于2的所有整数有;16.(1)若=5,则x= ;(2)若=,则x= ;17. 计算三、问答题21.(4分)将下列各数填入相应的集合内;-2.5, -2.232232223…, 0, 11, 4.312, 0.101001000…,有理数集合﹛…﹜无理数集合﹛…﹜正数集合﹛…﹜负数集合﹛…﹜22.(6分)用数轴上的点表示下列各数及其相反数,并用“﹤”将他们连接起来 4, -0.5, -(-2), 0, +3.5, -(+5)23.计算(每小题5分)(1)12-(-18 )+(-7 )-15 ( 2) 4+(-2)+(-4)+1+(+2)(3) ;(4)x x3-321433⎛⎫⎛⎫-⨯--⨯⎪ ⎪⎝⎭⎝⎭32)65()43(21--+---π15 (-2.5)3=(5) (-0.125)×(-8)-[1-3×(-2)]; (6) ;( 8)(10) ()×(-12)(分配律) (9)24. (6分)出租车司机小李某天下午在东西走向的中山东路上进行运营。

东台2014-2015学年七年级上学期数学第一次月考试题及标准答案

东台2014-2015学年七年级上学期数学第一次月考试题及标准答案

亲爱地同学,祝贺你完成了一个阶段地学习,现在是展示你地学习成果之际,你可以尽情地发挥,祝你取得好成绩!1. 地倒数是 A .3 B.31-C.9D ,3- 2. 比-1大2地数是A.-2B.-3C.1D.-13. 小明和小丽在做关于日历地数学游戏,小虎用十字框在 日历上框地五个数字地和是x,则x 一定不是()A .125B .100C .75D .504.一个数地绝对值等于它本身,这样地数是( )A .0B .0和1C .正数D .非负数5. 下列说法不正确地是 ( )A .0既不是正数,也不是负数 B .1是绝对值最小地正数 C .一个有理数不是整数就是分数 D .0地绝对值是06.两个数地商是正数,下面判断中正确地是 ( )A 、和是正数 B 、差是正数 C 、积是正数 D 、以上都不对 7.令人瞩目地2014南京青奥会圆满结束,此次青奥会各场馆售出门票总数量约为 7001200张,请用科学计数法表示()A .510012.70⨯ B .610012.7⨯ C .6100012.7⨯ D .71070012.0⨯ 8. 在-||―2,||―()-2,-()+2,―⎝⎛⎭⎫―12,-[+()-2],+[-⎝⎛⎭⎫+12错误!未指定书签。

]中,负数地个数有()A .2个B .3个C .4个D .5个9.如图所示,根据有理数a 、b 在数轴上地位置,下列关系正确地是 ( )A .||a >||bB .a >-bC .b <-aD .a +b >010.下列各对数中,互为相反数地是( )A .()22-+--和 B .()()66+--+和 C .()3344--和D .()4455--和11.下列交换加数地位置地变形中,正确地是A 、14541445-+-=-+-B 、1311131134644436-+--=+-- C 、 12342143-+-=-+-D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-16.在数轴上点A 表示地数是-2,那么点A 离原点地距离是______个单位长度,在同一数轴上与点A 相距6个单位长度地点表示地数是.17.若一个数地平方是16,则这个数是.18.现定义某种运算“*”,对任意两个有理数b a 、,有ba b a =*,则()23*-=;19. 某次数学测验共20道选择题,规则是:选对一道题得5分,选错一道题得-1分,不选得零分,王明同学地卷面成绩是:选对16道题,选错2道题,有2道题未做,他地卷面得分是 .20.下表是国外城市与北京地时差(带正号地数表示同一时刻比北京时间早地时数)如果现在是北京时间10月9日10:00,那么巴黎时间是. 21. 绝对值小于214地所有整数地和为. 22.计算:1-2+3-4+…+97-98+99=________.23.你地“24点游戏”玩得怎么样了?请你将“10,4,6,3-”这四个数添加“÷⨯-+、、、”和括号进行运算,使其计算结果为24,这个算式是_________________________.三.认真算一算:(本大题共36分) 24.计算:(每题4分,共24分) (1) 13)18()14(20----+- (2)3×(-4)+28÷(-7)(3)⎝⎛⎭⎫-37×0.125×⎝⎛⎭⎫-213×()-8(4)⎪⎭⎫⎝⎛-+-⨯-31432124(5))16()161559(-⨯-(6)18.035)5(124-+⎪⎭⎫⎝⎛-⨯-÷-25.(本题6分)若1-a +()22+b =0,求:()20072008a b a ++地值.26.(本题共6分,)已知a 是最小地正整数,b 是a 地相反数,c 地绝对值为3,试求a +b -c 地值.四.动手画一画(本题6分)27.在数轴上画出表示-1.5 ,2,-1地点,并写出它们地绝对值.(3分+3分)29.(10分)在抗洪抢险中,人民解放军地冲锋舟沿东西方向地河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天地航行路程记录如下(单位:千米):+14,9-, 8+,7-,+13,6-,10+,5-. (1)B 地在A 地何处?(3分)(2)若冲锋舟每千米耗油0.5升,一天共耗油多少升?(3分) (3)冲锋舟在当天地航行过程中离A 地最远距离是多少?(4分)做完试卷啦,不要忘记检查一下呀!版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.Emxvx。

江苏省东台市七年级数学上学期第一次阶段检测试卷(含解析)

江苏省东台市七年级数学上学期第一次阶段检测试卷(含解析)

江苏省东台市七年级数学上学期第一次阶段检测试卷一.选择题1.下列说法正确的是()①有理数包括正有理数和负有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A. ②B. ①③ C. ①② D. ②③④2.下列各式正确的是()A. ﹣|﹣3|=3B. +(﹣3)=3 C. ﹣(﹣3)=3 D. ﹣(﹣3)=﹣33.下列运算正确的是()A.B.C.D.4.已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A. a+b>0B. a>b C. ab<0 D. b﹣a>0二.填空题5.平方得25的数是________。

6.数轴上一点A表示的数为﹣5,将点A先向右移2个单位,再向左移10个单位,则这个点表示的数是________.7.绝对值不大于5的所有整数和为________8.比较大小:﹣|﹣0.8|________﹣(﹣0.8)(填“>”或“<”或“=”).9.写出满足下列两个条件“①是负数;②是无限不循环小数.”的一个数:________.10.据测算,我国每年因沙漠造成的直接经济损失超过5400 000万元,这个数用科学记数法表示为________万元.11.某冬天中午的温度是5℃,下午上升到7℃,由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是________℃.12.把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略括号的和的形式是________.13.已知a、b为有理数,且a<0,b>0,a+b<0,将四个数a、b、-a、-b按从小到大的顺序排列是________14.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则=________(直接写出答案).三.解答题15.把下列各数分别填入相应的集合里.﹣ 5,﹣2.626 626 662…,0,π,﹣,0.12,|﹣6|.(1)正数集合:{________}(2)负数集合:{________}(3)有理数集合:{________};(4)无理数集合:{________}.16.在数轴上表示下列各数:0,–2.5,,–2,+5,.并用“<”连接各数.比较大小: ________< ________< ________< ________< ________< ________17. 计算下列各题:(1) +(-)-(-)+(+);(2) +(-71) ++(-9 );(3)-9 ×81(4)(﹣36)×(﹣+ ﹣)(5)-15+(-2)2×( -)-÷3;(6)18.已知、互为相反数且,、互为倒数,的绝对值是最小的正整数,求的值________19.小明有5张写着不同数字的卡片,请按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?答:我抽取的2张卡片是________、________,乘积的最大值为________.(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?答:我抽取的2张卡片是________、________,商的最小值为________.(3)从中取出4张卡片,用学过的运算方法,使结果为24。

东台市联谊学校2013/2014学年度第一学期12月份质量抽测初一数学考试试卷

东台市联谊学校2013/2014学年度第一学期12月份质量抽测初一数学考试试卷
3
考试号:
。 吨。
; (2) (3) _____ 3 。 。 个。 。
;指数为

姓名:
22 ,-3.14, , 0.2, 0.23,5.1010010001 中,其中无理数有 3 7
7.定义运算:a☆b=a(b+7) ,则方程 3☆x=2☆(-4)的解为
1 8.如图所示是计算机程序计算,若开始输入 x =- ,则最后输出的结果是_______。 2 输入 x 值 4x+1
21. (每小题 4 分,共 8 分) 计算: (1)(-1)2× 23-(-4)÷ 2 ; 3 1 1 (2)25× -(-25)× +25× (- ). 4 2 4
22. (本题 6 分) 先化简再求值已知 x 2 y 1 0 ,求 4 xy [(2 x2 5xy y 2 ) 2( x2 3xy)] 的值。

26.(本题满分 8 分) 小明在商场里看中了一件夹克衫,售货员说: “我这儿所有商品都是在进价上加 50%的利润再 标价的,这件夹克衫我给你按标价打8折,你就付 168 元,我可只赚了你 8 元钱啊! ”小明经过思考 后觉得售货员的说法不可信,请你通过计算,说明售货员是否诚信?
第 4 页 共 4 页
2
23. (每小题 5 分,共 10 分) 解方程: (1)6x-4=3x+2 ; 2y-1 y+2 (2) = -1. 3 4
24. (本题满分 6 分) 如图是由五个相同的小正方体搭成的几何体,画出它的三视图.
A 正面
B 第 5 题图 主视图
C
D
左视图
俯视图
第 3 页 共 4 页
25.(本题满分 8 分) 甲、 乙两人骑自行车, 同时从相距 50km 的两地相向而行, 甲的速度为 15km/h,乙的速度为 10km/h, 问:经过多长时间,甲、乙两人相距 25km?

江苏省盐城市东台市 七年级(上)第一次月考数学试卷

江苏省盐城市东台市 七年级(上)第一次月考数学试卷

七年级(上)第一次月考数学试卷一、选择题(本大题共8小题,共16.0分)1.如果收入50元,记作+50元,那么支出30元记作()A. +30元B. −30元C. +80元D. −80元2.-3的倒数的相反数是()A. 13B. −13C. 3D. −33.如果a>0,b<0,a+b<0,那么下列各式中大小关系正确的是()A. −b<−a<b<aB. −a<b<a<−bC. b<−a<−b<aD. b<−a<a<−b4.按照有理数加法法则,计算(+180)+(-20)的正确过程是()A. −(180−20)B. +(180+20)C. +(180−20)D. −(180+20)5.下列各组数中,数值相等的是()A. 32和23B. −32和(−3)2C. (−2)3和−23D. −(−2)和−|−2|6.若|x-2|=1,则x的值是()A. 3B. 1C. 1或3D. 3或−17.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A. 2,4B. 1,4C. 3,4D. 3,18.如图,A、B两点在数轴上表示的数分别为a、b,下列结论:①a-b>0;②a+b<0;③(b-1)(a+1)>0;④b−1|a−1|>0.其中结论正确的是()A. ①②B. ③④C. ①③D. ①②④二、填空题(本大题共8小题,共16.0分)9.比较大小:-23______-34.10.立方等于它本身的数是______.11.在数轴上,与表示-5的点距离为4的点所表示的数是______.12.如果|a|=7,|b|=4,则a+b=______.13.已知|x-4|+(y+2)2=0,则y x的值是______.14.我国第一艘航母“辽宁舰”最大排水量为67500吨,67500这个数用科学记数法表示这个数字是______.15.下列说法正确的是______(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或-3;(5)0乘以任何数都是0.16.(-2)2003+(-2)2004=______.三、计算题(本大题共4小题,共41.0分)17.计算.(1)(-1.6)+(-2.7)+(-2.3)+2.7(2)13-25+12-16(3)(-2)×(-5)÷(-5)+9.(4)(-3)2-(112)3×29-6÷|-23|(5)-14+(1-0.5)×13×|2-(-3)2|18.用简便方法计算.(1)-0.5+314+2.6-512+1.15(2)(-12+16-38+524)÷(-124)19.若|x|=x,并且|x-3|=3-x,请求出所有符合条件的整数x的值,并计算这些值的和.20.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)四、解答题(本大题共4小题,共27.0分)21.在数轴上分别画出表示下列各数的点:-(-3),0,-|-1.25|,13,-2,并将这些数从小到大用“<”号连接起来.22.把下列各数填入相应的括号内:-6,9.3,−16,42,0,-0.33,1.414,-2π,125,-3.3030030003…,-2.47⋅⋅正数集合:______整数集合:______负分数集合:______无理数集合:______23.对于任意非零有理数a、b,定义运算如下:a*b=(a-b)÷(a+b),求(-3)*5的值.24.先阅读,再解题:因为1−12=11×2,12−13=12×3,13−14=13×4,…所以11×2+12×3+13×4+…+149×50=(1−12)+(12−13)+(13−14)+…+(149−150)= 1−12+12−13+13−14+…+149−150=1−150=4950参照上述解法计算:11×3+13×5+15×7+…+149×51.答案和解析1.【答案】B【解析】解:∵收入50元,记作+50元,∴支出30元记作-30元.故选:B.收入为“+”,则支出为“-”,由此可得出答案.本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.【答案】A【解析】解:-3的倒数是-,∴-3的倒数的相反数是,故选:A.先表示出-3的倒数,继而可得其倒数的相反数.本题主要考查倒数与相反数,解题的关键是熟练掌握倒数和相反数的定义.3.【答案】D【解析】解:∵a>0,b<0,∴a为正数,b为负数,∵a+b<0,∴负数b的绝对值较大,则a、b、-a、-b在数轴上的位置如图所示:,由数轴可得:b<-a<a<-b,故选:D.首先根据题目所跟的条件确定a、b的正负,以及绝对值的大小,再根据分析画出数轴标出a、b、-a、-b在数轴上的位置,根据数轴上的数左边的总比右边的小即可选出答案.此题主要考查了有理数的比较大小,关键是利用数轴表示出a、b、-a、-b在数轴上的位置.4.【答案】C【解析】解:(+180)+(-20)=+(180-20)=160.故选:C.根据有理数的加法法则计算即可求解.考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.5.【答案】C【解析】解:∵32=9,23=8,9≠8,故选项A错误;∵-32=-9,(-3)2=9,-9≠9,故选项B错误;∵(-2)3=-8,-23=-8,-8=-8,故选项C正确;∵-(-2)=2,-|-2|=-2,2≠-2,故选项D错误;故选:C.将选项中的数据进行化简,然后进行对比,即可解答本题.本题考查有理数的乘方、相反数、绝对值,解题的关键是明确它们各自的含义,对式子进行化简.6.【答案】C【解析】解:∵|x-2|=1,∴x-2=1或x-2=-1,∴x=3或x=1.故选:C.根据±1的绝对值是1解答.本题考查了绝对值的性质,要注意互为相反数的两个数的绝对值相等.7.【答案】A【解析】解:根据题意得:用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是2,4,故选:A.根据题中阅读材料中法国“小九九”的手势方法判断即可.此题考查了有理数的乘法,弄清题中的手势方法是解本题的关键.8.【答案】B【解析】解:由a、b在数轴上的位置可知,-1<a<0,b>1,①∵a<0,b>0,∴a-b<0,故本小题错误;②∵-1<a<0,b>1,∴a+b>0,故本小题错误;③∵-1<a<0,b>1,∴b-1>0,a+1>0,∴(b-1)(a+1)>0,故本小题正确;④∵b>1,∴b-1>0,∵|a-1|>0,∴>0,故本小题正确.故选:B.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.本题考查的是数轴与实数的相关知识,先根据a、b在数轴上的位置判断出a、b的取值范围是解答此题的关键.9.【答案】>【解析】解:∵|-|==,|-|==,而<,∴->-.故答案为:>.先计算|-|==,|-|==,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.10.【答案】1,-1,0【解析】解:立方等于它本身的数是:1,-1,0.故答案为:1,-1,0.直接利用立方的性质得出符合题的答案.此题主要考查了有理数的乘方运算,正确掌握运算法则是解题关键.11.【答案】-9或-1【解析】解:该点可能在-5的左侧,则为-5-4=-9,也可能在-5的右侧,即为-5+4=-1;故答案为:-9或-1.根据数轴的特点,数轴上与表示-5的距离为4的点有两个:一个在数轴的左边,一个在数轴的右边,分两种情况讨论即可求出与表示-5的距离为4的点表示的数.此题主要考查了实数与数轴之间的对应关系,解题应该会根据距离和已知的一点的坐标确定另一点的坐标方法:左减右加.12.【答案】±11或±3【解析】解:∵|a|=7,|b|=4,∴a=±7,b=±4,当a=7,b=4时,∴a+b=11,当a=7,b=-4时,∴a+b=3,当a=-7,b=4时,∴a+b=-3,当a=-7,b=-4时,∴a+b=-11,故答案为:±11或±3根据绝对值的定义以及有理数的运算即可求出答案.本题考查有理数的运算,解题的关键是熟练运用有理数的运算以及绝对值的定义,本题属于基础题型.13.【答案】16【解析】解:∵|x-4|+(y+2)2=0,∴x=4,y=-2,∴y x=(-2)4=16.故答案为:16.直接利用绝对值的性质和偶次方的性质得出x,y的值,进而得出答案.此题主要考查了绝对值的性质和偶次方的性质,正确得出x,y的值是解题关键.14.【答案】6.75×104【解析】解:67500=6.75×104.故答案为:6.75×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.【答案】(4)(5)【解析】解:(1)两个有理数的和为负数时,这两个数中至少有一个是负数,故原说法错误;(2)如果两个数的差是正数,那么被减数大于减数,即这两个数可能都是正数或可能都是负数或可能一个正数一个负数或可能一个是0一个是负数,故原说法错误;(3)几个不是0的有理数相乘,当负因数个数为奇数时,乘积一定为负,故原说法错误;(4)数轴上到原点的距离为3的点表示的数是3或-3,故原说法正确;(5)0乘以任何数都是0,故原说法正确.故答案为(4)(5).根据有理数的加法法则判断(1);根据有理数的减法法则判断(2);根据有理数的乘法法则判断(3)与(5);根据绝对值的几何意义判断(4).此题考查了有理数的加减法,乘法,以及绝对值,熟练掌握运算法则是解本题的关键.16.【答案】22003【解析】解:(-2)2003+(-2)2004=(-2)2003×(1-2)=22003.故答案为:22003.直接提取公因式(-2)2003,进而分解因式求出答案.此题主要考查了因式分解的应用,正确找出公因式是解题关键.17.【答案】解:(1)原式=[(-1.6)+(-2.3)]+(-2.7+2.7)=-3.9;(2)原式=(13+12-25)-16=-16;(3)原式=10÷(-5)+9=-2+9=7;(4)原式=9-94×29-6×32=9-12-9=-12;(5)原式=-1+12×13×7=-1+76=16.【解析】(1)利用加法的交换律和结合律计算可得;(2)根据加减运算法则计算可得;(3)根据乘除混合运算顺序和运算法则计算可得;(4)根据有理数混合运算顺序和运算法则计算可得;(5)根据有理数混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则及运算律.18.【答案】解:(1)原式=-0.5+3.25+2.6-5.5+1.15=(-0.5-5.5)+(3.25+2.6+1.15)=-6+7=1;(2)原式=(-12+16-38+524)×(-24)=-12×(-24)+16×(-24)-38×(-24)+524×(-24)=12-4+9-5=12.【解析】(1)原式利用加法交换律和结合律计算可得;(2)除法变换为乘法,再利用乘法分配律计算可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则及运算律.19.【答案】解:∵|x|=x,并且|x-3|=3-x,∴x≥0且x-3≤0,∴0≤x≤3,∴所有符合条件的整数x的值是0,1,2,3,∴这些值的和是:0+1+2+3=6.【解析】根据|x|=x,并且|x-3|=3-x,可以求得x的取值范围,从而可以写出所有符合条件的整数x的值,并计算这些值的和.本题考查绝对值,解答本题的关键是明确题意,求出符合条件的x的值.20.【答案】解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5-(-3)=5.5(千克),故最重的一筐比最轻的一筐重5.5千克;(2)列式1×(-3)+4×(-2)+2×(-1.5)+3×0+1×2+8×2.5=-3-8-3+2+20=8(千克),故20筐白菜总计超过8千克;(3)用(2)的结果列式计算2.6×(25×20+8)=1320.8≈1321(元),故这20筐白菜可卖1321(元).【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.此题的关键是读懂题意,列式计算,注意计算结果是去尾法.21.【答案】解:∴-2<-|-1.25|<0<13<-(-3)【解析】先化简-(-3)、-|-1.25|,再把各数表示在数轴上,用“<”连接.本题考查了有理数大小的比较,数轴、相反数及绝对值的相关知识,难度较小.解决本题的关键是掌握借助数轴比较有理数大小的方法22.【答案】9.3,42,1.414,125;-6,42,0,−16,-0.33,-2.47⋅⋅,-2π,-3.3030030003…【解析】解:正数集合:9.3,42,1.414,;整数集合:-6,42,0,负分数集合:,-0.33,-2.,无理数集合:-2π,-3.3030030003…,根据实数的分类法则即可求出答案.本题考查实数的分类,解题的关键是熟练运用实数的分类,本题属于基础题型.23.【答案】解:根据题意,(-3)*5=(-3-5)÷(-3+5)=-8÷2=-4.【解析】套用公式可得(-3)*5=(-3-5)÷(-3+5),进一步计算即可.本题主要考查有理数的混合运算,解题的关键是根据公式列出算式.24.【答案】解:原式=12(1-13+13-15+15-17+…+149-151)=12(1-151)=12×5051=2551.【解析】根据题中给出的材料可知利用通分的逆运算把分式拆成两个分数的加法或减法的形式,可使计算简便.解此类题目的关键是熟悉分数的通分方法,利用通分的逆运算把分式拆成两个分数的加法或减法的形式,可使计算简便.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级 姓名 学号 得分
一、填空题(每小题2分,共20分)
1. -3
2的倒数是 。

. 2、如果水位升高1.2米,记为+1.2米,那么水位下降0.8米,记为 .
3、如果一个数的相反数等于它本身,这个数是 ;
4、—37050.123用科学计数法表示是____ .
5、如果一个数的绝对值为3,那么这个数为 。

6、某种细胞每过30分钟便由1个分裂成2个,则1个细胞经过2小时分裂成 个。

7、某地上午气温为10℃,下午上升2℃,到半夜又下降15℃,则半夜的气温为____ 。

8、在数轴上点A 表示数—4,点B 和点A 的距离为5,则点B 表示的数为_______。

9、填空:1+3=22,1+3+5=32 ,1+3+5+7=42 , ……
从而猜想:135+++……22005_____+=
10、若0a <,0b <,a b <,则a 与b 的大小关系是a____b 。

填“>”“=”或“<”。

二、选择题(每小题2分,共20分)
1、计算-5+4的结果是( )
A .1
B .-1
C .-5
D .-6
2、下列用科学记数法表示200000,正确的是( )
(A)5210⨯ (B) 50.210⨯ (C) 4210⨯ (D) 40.210⨯
3、有一种记分方法:以80分为准,88分记为+8分,某同学得74分,则应记为( )
A 、+74分
B 、—74分
C 、+6分
D 、—6分
4、两个数的和为正数,那么这两个数是 ( )
A.都是正数
B.都是负数
C.一正一负
D.至少有一个为正数
5、下列运算正确的是( )
A 、()()()()42644--++---=-
B 、()()()()426412--++---=-
C 、()()()()42648--++---=-
D 、()()()()426410--++---=-
6.一个数的平方是49, 这个数是( )
A.7
B.-7
C.+7或—7
D.+9或—9
7、一个数的倒数等于它本身,这个数是( )A .1 B .1- C .±1 D .±1和08、下列比较大小正确的是 ( )
A .(21)(21)--<+-,
B .1210823--> ,
C .227(7)33
--=-- , D . 5465-<- 9、马虎同学做了以下4道计算题:①0(1)1--=;②11()122÷-=-;③ 111236
-+=-; ④2005(1)2005-=-。

请你帮他检查一下,他一共做对了 ( )
A 、1题
B 、2题
C 、3题
D 、4题
10、下列说法正确的是( )
A 、a 一定不是负数,
B 、a 一定为正数,
C 、a -一定是负数,
D 、—a 一定是负数
三、解答题(本题共60分)
1. (本题8分)将下列各数填入相应的集合中:—7 , 0,
722,—2231, -2.55555……, 3.01, +9 ,4.020020002…, +10﹪, -2π, 5
100。

无理数集合:{ …};负有理数集合:{ …};
正分数集合:{ …};非负整数集合:{ …};
2、计算(每小题3分,共9分):
(5)、[]
326)3(251)5.01(1-+⨯⨯---
(6)、()()()()1234++-+++-+……()()99100+++-
4、(本题7分)一辆货车从超市出发,向东走了3km 到达小刚家,继续向东走了2km 到达小红家,又向西走了8km 到达小英家,最后回到超市。

⑴请以超市为原点,以向东方向为正方向,用1个单位长度表示1km ,画出数轴。

并在数轴上标出小刚家、小红家、小英家的位置;(3分)
⑵小英家距小刚家有多远?(2分)
⑶货车一共行驶了多少千米?(2分)
5、(本题4分)已知a 、b 互为相反数且0≠a ,c 、d 互为倒数,m 的绝对值是最小的正整数,求()cd b a b a m -++-2008
20072的值
6、(本题4分)初一年级举行篮球循环赛,规则是:胜一场得2分,平一场得0分,负
一场得-2分,比赛结果是初一(3)班2胜1平4负,问该班最后得分是多少?
7、(本题4分)8袋大米,以每袋50千克为准,超过的千克记作正数分别为:-2、+1、+4、+6、-3、-4、+5、-3,求8袋大米共重多少千克?
8、(本题6分)有一种“二十四点”游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算使其结果等于24。

例:对1,2,3,4可作运算:(1+2+3)×4=24 [注意:上述运算与4×(2+3+1)应视做相同方法的运算]
这个运算也适用于整数,现有四个有理数3,4,-6,10运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:
(1)
(2)
(3)。

相关文档
最新文档