误差试卷

合集下载

误差理论试卷及答案

误差理论试卷及答案
上述四次测量的测量精度相同,确定x、y的最佳估计值及其精度。本题18分)
四、
对一温度测量仪进行标定,被测温度x由标准场提供,其误差可忽略不
计。通过试验得到的被测温度x与测温仪的输出电压y的数值如下:
确定y对x的线性回归方程表达式,并进行方差分析与回归方程的显著性检验;
(附:F0。10(1,4)=4.54,F0。05(1,4)=7.71,F0。01(1,4)=21.2)(本题20分)
五、
在光学计上用量块组作为标准件,重复测量圆柱体直径9次,已知单次
测量的标准差为0.3微米,用算术平均值作为直径测量结果。量块组由三块
量块组成,各量块的标准不确定度分别为0.15微米、0.10微米、0.08微米,
201.0
200.7
200.6
200.8
200.8
200.8
已知功率计的系统误差为0.2mW,除此以外不再含有其它的系统误差。求当置信
概率为99.73%时激光器的输出功率及其极限误差。(本题20分)
三、
对x和y两个量进行组合测量,测量方程如下:
⎧xy50.04
⎪2xy70.02

⎪⎩2x2y100.05
量的估计方法有何不同?分别写出它们的特征量均值与方差的估计公式。
《误差理论与数据处理》试卷二

用电压表和电流表来测量某一纯电阻性电子器件的功耗时,已知用电压表
测得器件上的直流电压降是12.00V,其测量极限误差是0.04V,用电流表测
得通过器件的电流是2.00A,其测量极限误差是0.02A。另外,电压表和电
上述测得值求得被测角度的测量结果,问该测量结果的标准差为多少?
(本题10分)
三.测某一温度值15次,测得值如下:(单位:℃)

误差理论和测量平差试卷及答案6套试题+答案

误差理论和测量平差试卷及答案6套试题+答案

误差理论和测量平差试卷及答案6套试题+答案(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《误差理论与测量平差》课程自测题(1)一、正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y 相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为±;23±。

则:1.这两段距离的中误差( )。

2.这两段距离的误差的最大限差( )。

3.它们的精度( )。

4.它们的相对精度( )。

三、 选择填空。

只选择一个正确答案(25分)。

1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±秒,如果要使其中误差为±秒,则还需增加的测回数N=( )。

《误差理论与测量平差基础》考试试卷(含参考答案)

《误差理论与测量平差基础》考试试卷(含参考答案)

《误差理论与测量平差基础》考试试卷一、名词解释1.观测条件2.偶然误差3.精确度4.多余观测5.权6.权函数式7.相对误差椭圆8.无偏性二、填空题1.观测误差包括偶然误差、、。

2.偶然误差服从分布,其图形越陡峭,则方差越。

3.独立观测值L1和L2的协方差为。

4.条件平差的多余观测数为减去。

5.间接平差的未知参数协因数阵由计算得到。

6.观测值的权与精度成关系,权越大,则中误差越。

7. 中点多边形有个极条件和个圆周条件。

8. 列立测边网的条件式时,需要确定与边长改正数的关系式。

9. 秩亏水准网的秩亏数为个。

三、 问答题1. 写出协方差传播律的应用步骤。

2. 由最小二乘原理估计的参数具有哪些性质?3. 条件平差在列立条件式时应注意什么?什么情况下会变为附有参数的条件平差?4. 如何利用误差椭圆求待定点与已知点之间的边长中误差?5. 为什么在方向观测值的误差方程式里面有测站定向角参数?6. 秩亏测角网的秩亏数是多少?为什么?7. 什么是测量的双观测值?举2个例子说明。

8. 方向观测值的误差方程式有何特点?四、 综合题1. 下列各式中的Li (i=1,2,3)均为等精度独立观测值,其中误差为σ,试求X 的中误差:(1) 321)(21L L L X ++= ,(2)321L L L X =。

2. 如图1示,水准网中A,B,C 为已知高程点,P1,P2,P3为待定点,h1~h6为高差观测值,按条件平差方法,试求: (1) 全部条件式; (2) 平差后P2点高程的权函数式。

3. 如图2示,测边网中A,B,C 为已知点,P 为未知点,观测边长为L1~L3,设P 点坐标P X 、P Y 为参数,按间接平差方法,试求: (1) 列出误差方程式; (2) 按矩阵符号写出法方程及求解参数平差值的公式; (3) 平差后AP 边长的权函数式。

4. 在条件平差中,0=+∆WA ,试证明估计量^L 为其真值~L 的无偏估计。

(提示:~)(L L E =,须证明0)(=V E )5. 在某测边网中,设待定点P 的坐标为未知参数,即[]TX X X 21^=,平差后得到^X 的协因数阵为⎥⎦⎤⎢⎣⎡=yy xyxy xx XX Q Q Q Q Q ^^,且单位权中误差为0^σ,求:(1)P 点的纵横坐标中误差和点位中误差; (2)P 点误差椭圆三要素 E ϕ、E 、F 。

误差理论与测量平差基础习题

误差理论与测量平差基础习题

《误差理论与测量平差基础》课程试卷《误差理论与测量平差基础》课程试卷答案武 汉 大 学2007年攻读硕士学位研究生入学考试试题考试科目:测量平差 科目代码: 844注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。

可使用计算器。

一、填空题(本题共40分,共8个空格,每个空格5分)1.在图1所示水准路线中,A 、B 为已知点,为求C 点高程,观测了高差1h 、2h ,其观测中误差分别为1σ、2σ。

已知1212σσ=,取单位权中误差02σσ=。

要求平差后P 点高程中误差2C mm σ≤, 则应要求1σ≤ ① 、2σ≤ ② 。

2.已知观测值向量1,13,12,1X Z Y ⎡⎤⎢⎥=⎢⎥⎣⎦的协方差阵310121013ZZD -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,12,12Y Y Y ⎡⎤=⎢⎥⎣⎦,若设权11Y P =,则权阵XX P = ③ ,YY P = ④ ,协因数阵12Y Y Q = ⑤ ,1Y X Q = ⑥ 。

3.已知平差后某待定点P 的坐标的协因数和互协因数为PX Q ˆ、PY Q ˆ和PP Y X Q ˆˆ,则当PPY X Q Q ˆˆ=,0ˆˆ<PP Y X Q 时,P 点位差的极大方向值=E ϕ ⑦ ,极小方向值=F ϕ ⑧ 。

二、问答题(本题共45分,共3小题,每小题15分)1.在图2所示三角形中,A 、B 为已知点,C 为待定点,同精度观测了1234,,,L L L L测量平差 共3页 第1页共4个方位角,1S 和2S 为边长观测值,若按条件平差法平差:(1)应列多少个条件方程;(2)试列出全部条件方程(不必线性化)。

2.在上题中,若设BAC ∠、ABC ∠和ACB ∠为 参数1X 、2X 、3X ,(1)应采用何种函数模型平差;(2)列出平差所需的全部方程(不必线性化)。

3. 对某控制网进行了两期观测。

由第一期观测值得到的法方程为111111ˆT T B PB X B PL =,由第二期观测值得到的法方程为222222ˆT T B P B X B P L =。

误差理论试卷及答案-(1)

误差理论试卷及答案-(1)

《误差理论与数据处理》试卷一一.某待测量约为 80m,要求测量误差不超过 3%,现有级 0-300m 和级 0-100m 的两种测微仪,问选择哪一种测微仪符合测量要求(本题 10 分)二.有三台不同的测角仪,其单次测量标准差分别为:=′,=′,=′。

若每一台测角仪分别对某一被测角度各重复测量 4 次,并根据上述测得值求得被测角度的测量结果,问该测量结果的标准差为多少(本题 10 分)三.测某一温度值 15 次,测得值如下:(单位:℃), , , , , , , , ,, , , , ,已知温度计的系统误差为℃,除此以外不再含有其它的系统误差,试判断该测量列是否含有粗大误差。

要求置信概率 P=%,求温度的测量结果。

(本题 18 分)四.已知三个量块的尺寸及标准差分别为:l mm;l mm;l mm求由这三个量块研合后的量块组的尺寸及其标准差( 0 )。

(本题 10 分)五.某位移传感器的位移 x与输出电压 y的一组观测值如下:(单位略)1510152025xy设 x无误差,求 y对 x的线性关系式,并进行方差分析与显著性检验。

(附:F(1,4)=,F(1,4)=,F(1,4)=)(本题 15 分)六.已知某高精度标准电池检定仪的主要不确定度分量有:①仪器示值误差不超过v,按均匀分布,其相对标准差为 25%;②电流测量的重复性,经 9 次测量,其平均值的标准差为 v;③仪器分辨率为v,按均匀分布,其相对标准差为 15% 。

求该检定仪的不确定度分量,并估计其合成标准不确定度及其自由度。

(本题 10 分)七.由下列误差方程,求 x、 y的最佳估计值及其精度(单位略)。

(本题 12 分)v 2x yv x yv4 x yv x 4 y八.简答题(3 小题共 15 分)1.在实际测量中如何减小三大类误差对测量结果的影响2.简述系统误差合成与随机误差合成的方法。

3.平稳随机过程的必要条件与各态历经随机过程的充分条件是什么其特征量的估计方法有何不同分别写出它们的特征量均值与方差的估计公式。

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同的观测条件系作一系列的观测,如果误差在大小和符号上都表现出偶然性。

即从单个误差看,该误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律。

这种误差称为偶然误差。

2、函数模型线性化——在各种平差模型中,所列出的条件方程或观测方程,有的是线性形式,有的是非线性形式。

在进行平差计算时,必须首先把非线性形式的函数方程按台劳公式展开,取至一次项,转换成线性方程。

这一转换过程,称之为函数模型的线性化。

3、点位误差椭圆——以点位差的极大值方向为横轴轴方向,以位差的极值分别为椭圆的长、短半轴,这样形成的一条椭圆曲线,即为点位误差椭圆。

4、协方差传播律——用来阐述观测值的函数的中误差与观测值的中误差之间的运算规律的数学公式。

如,若观测向量的协方差阵为,则按协方差传播律,应有。

5、权——表示各观测值方差之间比例关系的数字特征,。

二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1. 6个2. 13个3.1/n4. 0.45. ,其中五、问答题(每题4分,共12分)1. 几何模型的必要元素与什么有关?必要元素数就是必要观测数吗?为什么?答:⑴几何模型的必要元素与决定该模型的内在几何规律有关;(1分) ⑵必要元素数就是必要观测数;(1分)⑶几何模型的内在规律决定了要确定该模型,所必须具备的几何要素,称为必要元素,必要元素的个数,称为必要元素数。

实际工程中为了确定该几何模型,所必须观测的要素个数,称为必要观测数,X F E 、0K KL Z +=LL D T LL ZZ K KD D =220ii P σσ=0)()()()(4320020=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρABAC AC X X Y Y W αββ-++--=''4300arctan其类型是由必要元素所决定的,其数量,必须等于必要元素的个数。

误差理论与测量平差基础习题1

误差理论与测量平差基础习题1

为边长观测值,若按条件图27BC α654321D CBA 武汉大学 测绘学院误差理论与测量平差基础 课程试卷(A 卷)出题者:黄加纳 审核人:邱卫宁一.已知观测值向量的协方差阵为,又知协因数,试求观测值的权阵及观测值的权和。

(10分)二.在相同观测条件下观测A 、B 两个角度,设对观测4测回的权为1,则对观测9个测回的权为多少?(10分)三.在图一所示测角网中,A 、B 为已知点,为已知方位角,C 、D 为待定点,为同精度独立观测值。

若按条件平差法对该网进行平差:(1).共有多少个条件方程?各类条件方程各有多少个?(2).试列出全部条件方程(非线性条件方程要求线性化)。

(15分)图一四.某平差问题有以下函数模型21L ⎥⎦⎤⎢⎣⎡--=3112LL D 5112-=Q LL P 1L P 2L P A ∠B ∠BC α721,,,L L L )(I Q =⎪⎪⎩⎪⎪⎨⎧=-=--=+-+=--0ˆ03060515443121x v v v v v v v v57624312P 2(1.732,3.000P 1(1.732,1.000A(0,0)B(0,2)Ah 5h 4h 1h 3h 2C DB 试问:(1).以上函数模型为何种平差方法的模型?(2).本题中, , , , , , 。

(10分)五.在图二所示测角网中,已知A 、B 两点的坐标和P 1、P 2两待定点的近似坐标值(见图二,以“km ”为单位),以及,,,,为同精度观测值,其中。

若按坐标平差法对该网进行平差,试列出观测角的误差方程(设,、图二 以dm 为单位)。

(10分)六.有水准网如图三所示,网中A 、B 为已知点,C 、D 为待定点,为高差观测值,设各线路等长。

已知平差后算得,试求平差后C 、D两点间高差的权及中误差。

(10分)=n =t =r =c =u =s 0000330001'''=BP α000030002'''=BP αkm S BP 0.201=km S BP 0.202=721,,,L L L 65955906'''=L 6L 5102⨯=ρxˆyˆ51~h h )(482mm V V T =5ˆhABP 2h 5h 4h 1h 3h 2P 17654321PCBA图三七.在间接平差中,参数与平差值是否相关?试证明之。

误差理论和测量平差试卷及答案6套 试题+答案

误差理论和测量平差试卷及答案6套  试题+答案

《误差理论与测量平差》课程自测题(1)一、正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

三、选择填空。

只选择一个正确答案(25分)。

1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国计量学院200 ~~~200 学年第 学期 《 误差理论与数据处理 》课程试卷 第 1 页 共 4页
中国计量学院200 ~ 200 学年第 学期 《 误差理论与数据处理 》课程考试试卷(E )
开课二级学院: _____ ,考试时间: 年____月____日 时 考试形式:闭卷□、开卷□,允许带 ___ 入场
考生姓名: 学号: 专业: 班级:
一、 填空题(每空0.5分,共10分)
1、服从正态分布的随机误差具有四个特征: 、 、 、 。

2、保留四位有效数字时4.51050应为 ,6.378501应为 。

3、用二等标准活塞压力计测量某压力,测得值为9000.5N/cm 2
,若该压力用高一等级的精确方法测得值为9000.2N/cm 2
,则二等标准活塞压力计的测量误差为 N/cm 2。

4、量块的公称尺寸为10mm ,实际尺寸为10.001mm ,若按公称尺寸使用,始终会存在 mm 的系统误差,可用 方法发现。

采用修正方法消除,则修正值为 mm ,当用此量块作为标准件测得圆柱体直径为10.002mm ,则此圆柱体的最可信赖值 为 mm 。

5、使用σ3准则(莱以特准则)判别粗差,观测次数必须大于 次。

6、按公式h D V 4
2
π=
求圆柱体体积,已给定体积测量的允许极限误差为v δ,按等作用原则
确定直径D 和高h 的测量极限误差分别为D δ= ,h δ= 。

7、设校准证书给出名义值10Ω的标准电阻器的电阻Ω±Ωμ129000742
.10,测量结果服从正态分布,置信水平为99%,则其标准不确定度u 为 。

这属于 类评定。

如评定u 的相对不确定度为0.25,则u 的自由度为 。

8、对某量重复测量49次,已知每次测量的标准差为0.7mH ,则算术平均值的或然误差为 mH 。

中国计量学院200 ~~~200 学年第 学期 《 误差理论与数据处理 》课程试卷 第 2 页 共 4页
9、对于相同的被测量,采用 误差评定不同测量方法的精度高低;而对于不同的被测量,采用 误差评定不同测量方法的精度高低。

二、 单项选择题(每题2分,共20分)
1、进行两次测量过程时,数据凑整的误差服从( )。

A .均匀分布
B .三角误差
C .反正弦分布
D .正态分布 2、用算术平均值作为被测量的量值估计值是为了减小( )的影响。

A. 随机误差
B. 系统误差
C. 粗大误差 3、线性变化的系统误差可用( )发现。

A. 马利科夫准则
B. 阿卑-赫梅特准则
C.秩和检验法 4、( )是消除线性系统误差的有效方法。

A. 代替法
B. 抵消法
C.对称法 D .半周期法 5、2.5级电压表是指其( )为2.5%。

A .绝对误差
B .相对误差
C .引用误差
D .误差绝对值 6、极差法计算实验标准差的公式为n
n
d ωσ=
,其式中ωn 表示( )。

A. 极差系数
B. 极差
C. 自由度
D. 方差 7、自由度γ是表明了标准不确定度的可靠程度的一个量,所以( )。

A .γ越大越可靠
B .γ越小越可靠
C .γ越稳定越可靠
D .以上说法均不成立
8、对于随机误差和未定系统误差,微小误差舍去准则是被舍去的误差必须小于或等于测量结果总标准差的( )。

A .1/3~1/4
B .1/3~1/8
C .1/3~1/10
D .1/4~1/10 9、误差和不确定度都可作为评定测量结果精度的参数,则下列结论正确的是( )。

A .误差小,则不确定度就小
B .误差小,则不确定度就大
C .误差小,则不确定度可能小也可能大。

10、单位权化的实质是:使任何一个量值乘以( ),得到新的量值的权数为1。

A .P B .21/σ C .1/σ D .
中国计量学院200 ~~~200 学年第 学期 《 误差理论与数据处理 》课程试卷 第 3 页 共 4页
三、 判断题(每题1分,共10分)(正确填√,错误填⨯)
1、accuracy of measurement 反映了测量结果中系统误差和随机误差综合的影响程度。

( )
2、在使用微安表等各种电表时,总希望指针在各量程的2/3范围内使用。

( )
3、在等精度直接测量中,由于各次测得值不相同,所以各次测量的标准差不一样。

( )
4、秩和检验法可发现测量列组内的系统误差。

( )
5、根据两个变量x 和y 的一组数据(i i x y ,),n i .....
2,1=,由最小二乘法得到回归直线,
由此可以推断x 和y 线性关系密切。

( )
6、直接测量列的测量次数较少时,应按t 分布来计算测量列算术平均值的极限误差。

( )
7、测量仪器的最大允许误差不是测量不确定度,但可以作为测量不确定度评定的依据。

( )
8、测量不确定度表明测量结果偏离真值的大小。

( )
9、近似数加减运算时,应以小数位数最少的数据位数为准。

( )
10、标准不确定度的评定方法有A类评定和B类评定,其中A类评定精度比B类评定精度高。

( )
四、计算题(共60分)
1、对某物理量进行6次不等精度测量,数据如下。

求加权算术平均值及其标准差。

(10分)
2、测量某电路电阻R 和两端的电压U ,各重复测量4次,求得电压的平均值为16.50V ,利用贝塞尔公式计算得到每次测量的标准差是0.1V ;求得电阻的平均值为4.26Ω,利用贝塞尔公式计算得到每次测量的标准差是0.04V ;相关系数36.0-=UR ρ, 求1)电流I 的最可信赖值及其标准不确定度c u 。

2)有效自由度eff v
3)电流I 在置信概率P=99%时的展伸不确定度。

(20分)
中国计量学院200 ~~~200 学年第 学期 《 误差理论与数据处理 》课程试卷 第 4 页 共 4页
(t 0.01(10)=3.17 t 0.01(11)=3.11 t 0.01(12)=3.05 )
3、等精度测量方程:2
132122115.022.05X X Y X X Y X X Y -=-=-=;观测值为:3
.02.08.0321-===l l l
试求X 1、X 2的最小二乘估计及其精度估计. (15分)
4、用X 光机检查镁合金铸件内部缺陷时,为了获得最佳的灵敏度,透视电压y 应随被透视件的厚度x 而改变,经实验获得下列一组数据:
设被透视件的厚度x 的数据无误差,利用最小二乘法求出经验公式,并进行方差分析和显著性检验。

(15分)
(F0.01 (1,8)=11.26 F0.01 (1,9)=10.56 F0.01 (1,10)=10.04 F0.01 (2,8)=8.65 F0.01 (2,9)=8.02 F0.01 (2,10)=7.56 )
211212
)(1)(∑∑∑===-=-=n i i n
i i
n
i i xx x n x x x l 211
2
12)(1)(∑∑∑===-=-=n i i n
i i n i i yy y n y y y l
))((1)((1
111∑∑∑∑====-=--=n
i i n
i i n
i i i n
i i i xy y x n y x y y x x l。

相关文档
最新文档