4G选用OFDM不用CDMA的原因?
OFDM技术在4G移动通信中的应用

OFDM技术在4G移动通信中的应用1、OFDM技术概述OFDM技术又被称为正交频分复用技术,是多载波调制技术的一类分支技术。
它是一种能够显著提高载波频谱利用率并使每个载波能相互正交,稳定、高效地在无线环境下进行高速通信传输的技术。
OFDM技术的核心是将频域中的信道变为各个正交子的信道,通过子载波对各子信道调制。
同时,由于每个子载波是采用的并行传输,所以移动通信系统中的上、下行链路都将同时接收多种调制,极大地提高了载波频谱的利用率并能使各个载波之间具有正交性,保证移动通信过程中无失真。
目前,针对4G移动通信系统的开发,使用了OFDM技术,并在信道估计、同步及同步误差、与多址技术的结合、编码技术等技术层面做出了重大的突破。
OFDM技术在无线移动通信系统中得到了广泛的应用。
其结构如下图所示。
▲OFDM系统框图2、OFDM技术的优势OFDM之所被广泛地应用于移动通信系统中,是其拥有众多的技术优点。
特别是在4G移动通信系统中的应用,作为重要的技术它具有下面这些优势:(1)受宽带带宽影响较小,OFDM技术具有高效的数据通信能力,在带宽较窄的情况下依然能够进行大规模数据的通信。
正式其高效、大规模通信的特点,使其在欧洲、亚洲的通信运营商中受到广泛的青睐;(2)OFDM技术能显著提升通信过程中的信道利用率,使得有限的载波频谱资源得到了充分的利用,各个载波之间具有正交性;(3)OFDM技术能够适应变化的移动通信环境,抵抗移动通信环境的变化冲击。
OFDM技术能够动态适应信道数据传输能力的改变。
特别是在高层建筑、人口集中地区等复杂环境下,OFDM技术能够保证数据通信过程的稳定抵消影响。
3、OFDM技术在4G中应用的关键技术现如今,移动通信系统中4G移动通信是个人通信的主要形式,并随着人类社会的信息需求日趋发展。
其日趋成熟的发展是离不开OFDM这一关键技术在4G移动通信中应用的。
(1)信道估计OFDM技术的核心技术之一就是信道估计。
4g的工作原理

4g的工作原理
4G的工作原理源自于LTE(Long Term Evolution),它采用
了OFDMA(Orthogonal Frequency Division Multiple Access)
技术和MIMO(Multiple-Input Multiple-Output)技术。
OFDMA技术是一种多用户访问技术,它将无线频谱分成多个
小的子载波,并将多个用户的数据同时发送在不同的子载波上。
这样,不同用户之间就可以同时进行通信,提高了系统的容量和频谱效率。
MIMO技术则是利用多个天线进行数据传输和接收,从而提
高数据传输速率和系统的可靠性。
MIMO可以同时发送多个
数据流,通过空间复用的方式将数据流分配到不同的天线上,然后在接收端通过信道估计和去除干扰等技术,将多个数据流恢复为原始数据。
除了OFDMA和MIMO技术,4G还采用了其他技术来优化系
统性能。
其中,包括多天线接收技术、自适应调制和编码技术、IP分组传输等。
多天线接收技术可以最大限度地利用信号的
多样性,提高信号的抗干扰能力。
自适应调制和编码技术可以根据信道质量的变化自动调整调制方式和编码方式,以保证传输的可靠性和高效性。
IP分组传输则将数据切分成小的数据
包进行传输,提高了传输的灵活性和可靠性。
综上所述,4G的工作原理主要包括OFDMA技术、MIMO技
术以及多天线接收技术、自适应调制和编码技术、IP分组传
输等。
这些技术的结合使得4G网络能够提供更快的数据传输速率、更高的频谱效率和更好的用户体验。
第四代移动通信的核心技术

第四代移动通信的核心技术摘要:正交频分复用(ofdm)是一种新型调制技术,特别适合在多径传播的无线移动信道中高速传输数据。
本文简要介绍了ofdm 的发展背景以及ofdm的基本原理,最后概述了 ofdm系统的优点以及不足之处。
关键词:正交频分复用基本原理优点缺点1、引言第四代移动通信系统计划以ofdm(正交频分复用)为核心技术提供增值服务,它在宽带领域的应用具有很大的潜力。
较之第三代移动通信系统,采用多种新技术的ofdm具有更高的频谱利用率和良好的抗多径干扰能力,它不仅仅可以增加系统容量,更重要的是它能更好地满足多媒体通信的要求,将包括语音、数据、影像等大量信息的多媒体业务通过宽频信道高品质地传送出去。
下一代(4g)移动通信系统预计系统速率可达到20mbps,甚至更高,国际电信联盟正在着手有关标准的组织工作。
为了实现这一目标,必须从通信网络的交换、传输和接入等各个环节进行研究和突破,尤其是在移动环境和有限频谱资源条件下,如何稳定可靠高效地支持高速率的数据传输值得研究[1]。
正交频分复用(ofdm)技术因其网络结构高度可扩展,且有良好的抗噪声性能和抗多径信道干扰的能力以及频谱利用率高而被普遍认为是下一代移动通信系统必不可少的技术。
2、ofdm技术基本原理2.1 ofdm的基本原理ofdm (正交频分复用)技术实际上是mcm(multi-carrier modulation,多载波调制)的一种。
其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到每个子信道上进行传输。
正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰(ici)。
每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上信号的可以看成平坦性衰落,从而可以消除符号间干扰。
而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易[3]。
图1显示了ofdm信道的整个频谱。
南邮专业面试

2022年南邮考研复试专业课面试题1.计算一个组合数学,概率论的题目2.通信常用调制方式3.同步原理的四种形式(载波同步,位同步,网同步,群同步)4.纠错编码的常用格式前向纠错,反向重发的过程(前向纠错:发端发送能够纠正错误的码,接收端收到解码之后,不仅可以发现错误,而且能够判断错误码元所在的位置,并自动纠正。
机、手机等)。
)反向重发:5.信道编码的两种形式分组码和卷积码分组码包括线性分组码循环码卷积码是非线性分组码6.光纤通信的原理光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
7.QPSK和OFDM的效率以及优缺点QPSK 优点有调制效率高,传输的频带利用率高,要求传送途径的信噪比低缺点其存在相位突变。
在频带受限的系统中会引起包络得很大起伏OFDM 优点( 1 ) 具有非常高的频谱利用率( 2 ) 实现比较简单( 3 ) 抗多径干扰能力强,抗衰落能力强( 4 ) 带宽扩展性强( 5 ) 频谱资源灵便分配( 6 ) 实现 MIMO 技术较简单缺点( 1 )对频偏和相位噪声比较敏感( 2 )存在较高的峰均功率比( PAPR )8.人脸识别过程中的检测算法9.如何提高频谱利用率进行信源编码,使用多载波技术, ofdm 技术就是提高频谱利用率的, tdma 也可以提高频谱利用率,等等技术10.串口通信的几种形式最被人们熟悉的串行通信技术标准是 EIA- 232、EIA-422 和 EIA- 485,也就是以前所称的RS-232 、RS-422 和RS-485 。
由于 EIA 提出的建议标准都是以“RS”作为前缀,所以在工业通信领域,仍然习惯将上述标准以 RS 作前缀称谓。
11.WLAN的意思WLAN 是 Wireless Local Area Network 的缩写,即无线局域网,其特点是再也不使用通信电缆将计算机与网络连接起来,而是通过无线的方式连接,普通用在同一座建造内,如果加装天线,覆盖范围可以达到 5 公里。
OFDM—第四代移动通信核心技术分析

OFDM—第四代移动通信核心技术分析随着社会的飞速发展,不仅科学技术水平得以提高,通信技术的发展也是空前的。
目前使用的第三代移动通信(3G),3G是在上一代移动通信的基础上加上了不同种类的宽带业务,较之第二代移动通信,在宽带上业务上有明显的先进性,但是智能化程度还不够。
所以在3G时代还未结束之时,全球通信行业就已经开始了第四代移动通信技术--4G的研究。
标签:4G移动通信核心技术OFDM技术一、引言迄今为止,移动通信已经经历了三代的发展,第四代移动通信的基本标准也基本上确立了。
第一代移动通信(1G)主要采用FDMA(模拟技术和频分多址技术)技术,这种技术只能提供区域性语音业务,而且通话效果差、保密性能也不好,用户的接听范围也是很有限。
第二代移动通信(2G)采用GSM(数字语音传输技术)技术,相较于第一代模拟移动通信具有较高的通信质量。
第三代移动通信(3G)采用了TD-SCDMA技术、智能天线技术、WAP技术、快速无限IP技术、软件无线电技术、多载波技术和多用户检测技术。
3G服务能够同时传送声音(通话)及数据信息(电子邮件、即时通信等),代表特征是提供高速数据业务。
虽然第三代移动通信技术较前两代有了很大进步,但是其自身还是存在诸多缺陷。
如采用电路交换,而不是纯IP方式;所能提供的最高速率不能满足对移动通信系统的速率要求;不能充分满足移动流媒体通信(视频)的完全需求;没有达成全球统一的标准等。
基于3G以上缺陷,4G的研发工作已经开始进行了。
二、第四代移动通信技术概述4G(第四代移动通信技术)的概念可称为宽带接入和分布网络,具有非对称的超过2Mb/s的数据传输能力。
它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。
第四代移动通信标准比第三代标准具有更多的功能。
第四代移动通信可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时、数据采集、远程控制等综合功能。
OFDM仿真

OFDM技术优势OFDM技术之所以代替CDMA,成为新一代无线通信核心技术的趋势,是因为它具有如下的优点:频谱效率高由于FFT处理使各子载波可以部分重叠,理论上可以接近Nyquist极限。
以OFDM为基础的多址技术OFDMA(正交频分多址)可以实现小区内各用户之间的正交性,从而有效地避免了用户间干扰。
这使OFDM系统可以实现很高的小区容量。
带宽扩展性强由于OFDM系统的信号带宽取决于使用的子载波的数量,因此OFDM系统具有很好的带宽扩展性。
小到几百kHz,大到几百MHz,都很容易实现。
尤其是随着移动通信宽带化(将由£5MHz增加到最大20MHz),OFDM系统对大带宽的有效支持,成为其相对于单载波技术(如CDMA)的“决定性优势”。
抗多径衰落由于OFDM将宽带传输转化为很多子载波上的窄带传输,每个子载波上的信道可以看作水平衰落信道,从而大大降低了接收机均衡器的复杂度。
相反,单载波信号的多径均衡的复杂度随着带宽的增大而急剧增加,很难支持较大的带宽(如20MHz)。
频谱资源灵活分配OFDM系统可以通过灵活的选择适合的子载波进行传输,来实现动态的频域资源分配,从而充分利用频率分集和多用户分集,以获得最佳的系统性能。
实现MIMO技术较简单由于每个OFDM子载波内的信道可看作水平衰落信道,多天线(MIMO)系统带来的额外复杂度可以控制在较低的水平(随天线数量呈线性增加)。
相反,单载波MIMO系统的复杂度与天线数量和多径数量的乘积的幂成正比,很不利于MIMO技术的应用。
OFDM技术实现中的问题虽然基于上述优点,OFDM已成为新一代无线通信最有竞争力的技术,但这种技术也存在一些内在的局限和设计中必须注意的问题:子载波的排列和分配OFDM子载波可以按两种方式排列:集中式(Locolized)和分布式(Distributed)。
集中式即将若干连续子载波分配给一个用户,这种方式下系统可以通过频域调度(scheduling)选择较优的子载波组(用户)进行传输,从而获得多用户分集增益。
现代移动通信习题解答_9

第九章思考题与习题1.简述LTE的主要设计目标。
答:LTE的主要设计目标是:(1)频谱灵活使用。
支持的系统带宽包括:1.4 MHz、3 MHz、5 MHz、10 MHz、15 MHz、20 MHz带宽。
(2)峰值速率。
在20 MHz带宽下,下行峰值速率可达100 Mb/s,上行峰值速率可达50 Mb/s。
(3)天线配置。
下行支持42221211、、、天线配置,上行支持1211⨯⨯⨯⨯、天线配置。
⨯⨯(4)更高的频谱效率。
下行3~4倍于HSDPA R6(HSDPA:1发2收,LTE:2发2收),上行2~3倍于HSUPA R6(HSUPA:1发2收,LTE:1发2收)。
(5)低延迟。
控制平面的时延应小于50ms,建立用户平面的时延要小于100ms,从UE到服务器的用户平面时延应小于10ms。
(6)移动性。
对低于15km/h的移动条件进行优化设计,对低于120km/h的移动条件应该保持高性能,对达到350km/h的移动条件应该能够保持连接。
(7)覆盖性能。
针对覆盖半径<5km的场景优化设计;针对覆盖半径在5~30km之间的场景,允许性能略有下降;针对覆盖半径达到30~100km之间的场景,仍应该能够工作。
2.简述LTE的扁平化架构及特点。
答:LTE舍弃了UTRAN的无线网络控制器-基站(RNC-Node B)结构,精简为核心网加基站(evolved Node B,eNodeB)模式,整个LTE网络由演进分组核心网(EPC, Evolved P acket Core)和演进无线接入网(Evolved Universial Terrestrial Radio Access Network,E-UTRAN)组成。
核心网由许多网元节点组成,而接入网只有一个节点,即与用户终端(User Equiment,UE)相连的eNodeB。
所有网元都通过接口相互连接,通过对接口的标准化,可以满足众多供应商产品间的互操作性。
4G移动通信传输关键技术及应用优势

4G移动通信传输关键技术及应用优势4G是第四代移动通信技术,其传输速度和质量比3G高出许多,具有较高的带宽、更低的延迟和更好的网络可靠性。
在4G的技术中,涉及到多种关键技术和应用优势,下面将进行介绍。
一、关键技术1. OFDM技术OFDM技术是4G移动通信的核心技术之一。
OFDM技术能够将一个频带分成许多个子载波信号,不同子载波之间的间隔是非常小的,它们可以并行地传输数据。
每个子载波的调制方式和调制深度都是不同的,具有多重接入和抗多径衰落的特点。
OFDM技术能够有效地提高系统的频谱利用率和网络容量。
MIMO技术是一种利用多条天线来传输和接收数据的技术。
MIMO技术可以在同一频段上同时传输多条信号,从而提高了网络的吞吐量和数据传输的可靠性。
通过使用多个天线来发送和接收数据,MIMO技术可以提高系统的频谱效率和降低误码率。
MIMO技术需要支持多输入多输出的天线系统,并且需要在发送端和接收端实现一定的信号处理技术。
二、应用优势1.高速数据传输4G网络可以提供比3G网络更高的数据传输速率,使手机和其他设备可以更快地下载和上传大量数据。
4G网络的下载速度通常比3G网络快数倍,这使得视频、音乐和游戏等大型文件可以更快捷地下载,提高了用户的体验和便利性。
2.多媒体应用由于4G的高带宽和高速率,它能够实现高清视频和多媒体应用,如视频通话、高清流媒体、即时视频等。
这为用户提供了更多的选择和体验,也为企业提供了更好的商业机会。
3.智能手机和物联网发展4G网络为智能手机和物联网的发展提供了更多的机会。
智能手机可以使用更快的数据连接来支持更多的应用,而物联网设备也可以利用4G网络进行连接和数据传输。
这为企业创新和发展提供了新的机遇。
总之,4G网络通过多种技术和应用,实现了更快速、更稳定和更高效的数据传输,这不仅能够提高用户体验,还为商业创新和发展创造了更多的机遇。
随着5G网络发展的不断推进,4G网络仍然是我们日常生活和工作不可缺少的重要基础设施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于信道传输特性不理想,各类无线和移动通信中普遍存在着符号间干扰(ISI)。
通常采用自适应均衡器来加以克服,但是,在高速数字通信系统中,为了保证克服ISI,往往要求均衡器的抽头数很大,尤其是城市环境可能使得均衡器的抽头数达上百。
这样,必然大大增加了均衡器的复杂程度,使设备造价和成本大大提高。
为了能在下一代移动通信中有效解决这一问题,OFDM技术因其频谱利用率高和抗多径衰落性能好而被普遍看好,以取代复杂而昂贵的自适应均衡器。
近年来,由于DSP技术的飞速发展,OFDM作为一种可以有效对抗ISI的高速传输技术,引起了广泛关注。
OFDM能在与CDMA的PK中胜利的原因:
1. OFDM具有更好的频谱扩展性,可以有效地支持宽带传输。
目前的CDMA带宽只有5M,要支持LTE的20M,就必须同时采用多个CDMA载波,最多4个,所造成的额外设计还是可以忍受的,但是考虑到IMT-ADvance系统(4G),100M 带宽上将多个5M的wcdma载波绑定太过于复杂,必须采用基于OFDM的技术。
2. OFDM是一种正交传输技术,用户之间无干扰,而CDMA系统中不可避免地存在多用户干扰。
但是建议采用CDMA技术的公司主张采用先进接收机技术抑制或消除MUI,解决用户间干扰不一定非得OFDM技术。
相关仿真结果表明,不带有RXD和子带调度的OFDM系统的吞吐量只比采用LMMSE均衡器+DFE接收机性能的HSDPA系统大8%;但在用户公平性方面有微弱的损失。
采用子带调度的OFDM系统可以获得8%的额外性能增益;
如果采用RXD,OFDM系统和MC-HSPA系统几乎有相同的性能。
3. 就LTE来说,对CDMA的取舍本来还是在两可之间,最终选择OFDMA作为下行多址技术归根结底还是因为这是大多数公司的选择。