灰色关联分析

合集下载

灰色关联度分析

灰色关联度分析
灰色关联度评价法
1.灰色关联理论

1982年,华中理工大学邓聚龙教 授首先提出灰色系统的概念,并建立了 灰色系统理论。 灰色系统理论认为,人们对客观 事物的认识具有广泛的灰色性,就是信 息的不完全性和不确定性,因而有客观 事物所形成的是一种灰色系统,即部分 信息已知、部分信息未知的系统。例如: 社会系统、经济系统、生态系统等都可 以看作是灰色系统。

\\
(min) (max) 0i (k ) 0i (k ) (max)

最后分别对各产业与GDP的关联系数求 平均可得: r01= (0.4191+0.3796+0.5808+0.7055+0.3696 +0.2881)/6 =0.4571 同样求出: r02=0.5760, r03=0.7209 r0i称为序列x0和xi(i=1,2,3)的灰 色关联。由于r03˃r02˃ r01,因而第三 产业产值与GDP的关联度最大,其次是 第二产业,第一次去农业。
5.用GRA进行综合评价

灰色关联分析的目的是揭示因素间 关系的强弱,其操作对象是因素的时间 序列,最终的结果表现为通过关联度对 各比较序列做出排列。综合评价的对象 也可以看作是时间序列(每个被评价事 物对应的各项指标值),并且往往需要 对这些时间序列做出排序,因而也可以 借助灰色关联分心来进行。
01 (1) 02 (1) ... 0 n (1) (2) (2) ... (2) 01 02 0n ... ... ... 01 ( N ) 02 ( N ) ... 0 n ( N ) N n 其中 0i (k ) x0 (k ) xi (k ) (05式) i 1,2,...n; k 1,2,..., N 绝对差矩阵中最大数和 最小数就是最大差和最 小差: max 0i (k ) (max)( 式) 06

灰色关联分析法

灰色关联分析法

灰色关联分析法灰色关联分析法是一种用于研究多个指标之间相关性的统计方法。

它通过计算不同指标之间的关联度来确定它们之间的关系强度。

本文将介绍灰色关联分析法的原理、应用领域以及优点和局限性。

灰色关联分析法最早由中国科学家陈进才于1981年提出,并广泛应用于工程和管理学科领域。

它的核心思想是通过将不同的指标序列转化为灰色级数形式,然后计算各指标之间的关联系数,以揭示它们之间的关系。

灰色关联分析法的基本步骤包括:首先,将各指标序列归一化,使得数据位于相同的量纲范围内;其次,构建灰色级数模型,将指标序列转化为灰色级数;然后,计算各指标之间的关联系数,确定关联度;最后,利用关联度进行综合评价,得出最终的结论。

灰色关联分析法在许多领域具有广泛的应用。

在经济管理领域,它可以用于评估企业绩效、判断市场趋势、研究产业发展等。

在工程领域,它可以用于分析工艺参数对产品质量的影响、评估设备可靠性等。

在环境科学领域,它可以用于评估生态环境质量、分析污染物传输和扩散等。

灰色关联分析法具有一些优点。

首先,它可以对多指标间的关联进行定量分析,较为客观地反映指标之间的关系。

其次,它适用于小样本数据的分析,不依赖于大样本假设。

此外,它对序列变化的敏感性较高,能够较好地发现序列间的规律性或趋势。

然而,灰色关联分析法也存在一些局限性。

首先,它对数据的要求较高,需要有较为完整的时间序列数据。

其次,它假设指标之间的关系是线性的,对非线性关系的分析有一定局限性。

此外,灰色关联分析法对指标权重的确定也有一定的主观性,可能引入一定的误差。

综上所述,灰色关联分析法作为一种多指标关联分析方法,在多个领域得到了广泛应用。

它通过计算不同指标之间的关联程度,为决策提供了科学的依据。

然而,使用灰色关联分析法时需要充分考虑相关因素,避免误导决策。

未来,随着数据技术的不断发展,灰色关联分析方法也将继续完善和应用于更多的领域中。

灰色关联分析详解+结果解读

灰色关联分析详解+结果解读

灰色关联分析1、作用对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。

在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。

因此,灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。

2、输入输出描述输入:特征序列为至少两项或以上的定量变量,母序列(关联对象)为 1 项定量变量。

输出:反应考核指标与母序列的关联程度。

3、案例示例案例:分析 09-18 年内,影院数量,观影人数,票价、电影上线数量这些因素对全年电影票房的影响。

其中电影票房是母序列,影院数量,观影人数,票价、电影上线数量是特征序列。

4、案例数据灰色关联分析案例数据5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;step4:选择【灰色关联分析】;step5:查看对应的数据数据格式,【灰色关联分析】要求特征序列为定量变量,且至少有一项;要求母序列为定量变量,且只有一项。

step6:设置量纲处理方式(包括初值化、均值化、无处理)、分辨系数(ρ越小,分辨力越大,一般ρ的取值区间为 ( 0 ,1 ),具体取值可视情况而定。

当ρ≤ 0.5463 时,分辨力最好,通常取ρ = 0.5 )step7:点击【开始分析】,完成全部操作。

6、输出结果分析输出结果 1:灰色关联系数图表说明:关联系数代表着该子序列与母序列对应维度上的关联程度值(数字越大,代表关联性越强)。

输出结果 2:关联系数图分析:输出结果 1 和输出结果 2 是一样的,输出结果 1 用了表格形式来呈现关联系数,输出结果 2 用了图表形式来呈现关联系数。

图表很直观地展现了,大多数年份的银幕数量和电影上线数量对票房影响更大。

灰色关联分析

灰色关联分析

灰色关联分析灰色关联分析是一种常用于研究和预测多个影响因素之间关联程度的方法。

该分析方法可以通过对各个因素的数值进行比较,得出它们之间的关联强度,从而为决策提供依据。

下面将详细介绍灰色关联分析的原理、应用以及优势。

灰色关联分析的原理基于灰色系统理论,该理论是中国科学家陈纳德于1982年提出的一种对部分已知和部分未知信息进行分析的数学方法。

灰色关联分析将各个影响因素的数据进行标准化处理,然后计算各个因素之间的关联度。

通过对关联度进行排序,即可得出影响因素之间的关联程度大小。

灰色关联分析在各个领域都有广泛的应用,比如经济学、管理学、环境科学等。

在经济学领域,可以使用灰色关联分析来研究不同经济指标之间的关联程度,从而预测未来的经济趋势。

在管理学中,可以利用灰色关联分析来研究不同管理指标之间的关联程度,进而指导管理决策。

在环境科学领域,可以运用灰色关联分析来分析各个环境因素对生态系统的影响程度,以及控制污染等。

灰色关联分析相对于其他分析方法有一些独特的优势。

首先,它不要求数据分布满足正态分布等数学假设,可以对数据进行较好的处理。

其次,灰色关联分析可以处理样本量较小的情况,对于样本量不足的数据分析也有较好的适用性。

此外,由于灰色关联分析能够捕捉到数据之间的内在联系,因此对于某些非线性关系的分析,其结果可能更加准确。

然而,灰色关联分析也存在一些限制和不足之处。

首先,该分析方法依赖于数据的稳定性,对于非稳态的数据可能会导致分析结果不准确。

其次,灰色关联分析无法处理存在时间滞后效应的数据。

此外,该方法对数据的标准化要求较高,如果数据质量较差或者存在异常值,也会影响分析结果。

综上所述,灰色关联分析是一种研究和预测多个影响因素之间关联程度的有效方法。

它的原理基于灰色系统理论,可以在各个领域中广泛应用。

灰色关联分析相对于其他分析方法有一些独特的优势,但也存在一定限制。

在实际应用中,我们应该结合具体情况,合理选择分析方法,并充分考虑其适用性和局限性,以提高分析和决策的准确性。

灰色关联分析

灰色关联分析

灰色关联分析简介灰色关联分析是一种用于评估多个因素之间相关性的统计分析方法。

它可以帮助我们理解一组因素对于某个指标的影响程度,并且可以用来预测未来的趋势。

原理灰色关联分析基于灰色理论,其核心思想是将样本数据转化为灰色数列,然后通过计算灰色相关度来评估因素之间的关联性。

在灰色关联分析中,我们首先需要确定一个参考数列和一个比较数列,然后根据数列的发展趋势和规律性对它们进行排序。

最后,通过计算两个数列之间的关联度来评估它们之间的关联程度。

灰色关联度的计算方法灰色关联度可以通过以下公式计算:$$ \\rho(i,j) = \\frac{{\\min(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}}{{\\max(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}} $$其中,$\\Delta^*$表示相邻数据的差值绝对值的最大值,$\\delta^*$表示数列中数据的最大值与最小值之差。

灰色关联分析步骤1.数据预处理:将原始数据进行标准化处理,使其具有可比性。

2.建立关联矩阵:根据参考数列和比较数列计算灰色关联度,并构建关联矩阵。

3.确定权重:根据关联矩阵的行列和大小确定各因素的权重,权重越大表示因素对目标的影响越大。

4.计算综合关联度:将灰色关联度与权重相乘并求和,得到各个因素的综合关联度。

5.分析结果:根据综合关联度的大小对因素进行排序和评估,得出各因素对目标的贡献程度。

适用领域灰色关联分析在许多领域都有广泛的应用,包括经济、环境、工程等。

它可以用于评估多个因素对某个现象的影响程度,帮助决策者制定合理的决策和策略。

优势与局限灰色关联分析具有以下优势:•可以在样本数据不完整或不完全的情况下进行分析。

灰色关联分析

灰色关联分析

灰⾊关联分析
灰⾊关联分析法
对于有m个评价对象,n个评价指标的问题,⽤灰⾊关联分析来选择,可以针对⼤量的不确定因素以及相互关系,⽤定性和定量有机结合的⽅式,使原本复杂的决策问题变得更加清晰简单,⽽且计算⽅便,主要是排除了决策者的主观任意性,得出的结论很客观,有⼀定的参考价值。

主要步骤
1. 确定评价对象和评价标准。

(以⼀个评价对象为例)
评价对象为x={x(k)|k=1,2,3,...,n},评价标准为x0={x(k)|k=1,2,3,...,n}
k是指该评价对象的第k个评价指标
2. 确定各个评价指标的权重
主要是为了最后对求出的各个指标的灰⾊关联系数进⾏总和,若⽆权重也可以直接求平均值
3. 计算灰⾊关联系数
将每⼀个评价对象的评价指标都与评价标准相减并求绝对值,即
令c=|x(k)−x0(k)|
那么我们可以得到⼀个新的矩阵C
取C中的每⼀列中的最⼩值在每⼀⾏中的最⼩值,即两级最⼩差
a=min i min j c ij
再取每⼀列中的最⼤值在每⼀⾏中的最⼤指,即两级最⼤差
b=max i max j c ij
灰⾊关联系数为
ξi(j)=a+ρb c ij+ρb
式中,ρ⼀般取0.5,ρ属于0到1.
4. 计算灰⾊加权关联度
就是计算每⼀个评价对象的灰⾊关联度的加权和
r i=
n

j=1w i∗ξi(j)
灰⾊关联度越⼤则效果越好Processing math: 100%。

《灰色关联分析法》课件

《灰色关联分析法》课件
3
计算关联度
4
确定各个因素对评估对象的贡献程度。
5
确定因素集合和影响因素
精确定义评估的因素及其关联程度。
计算关联系数
衡量因素之间的关联程度。
排序、评价和综合比较
综合评价并排序所得的关联度。
灰色关联分析法 实例分析
案例1 :消费者购买行为分析
研究消费者购买决策中的因素关联性,指导 市场策略制定。
案例2 :市场竞争态势分析
灰色关联分析法 PPT课件
灰色关联分析法是一种综合多因素、多层次、多角度的综合评判方法,用于 处理数据量小、不完备、不确定的问题。
灰色关联分析法 简介
1 灰色关联分析法
2 基本原理
综合评判方法,处理不完备、不确定的问题。
灰色系统理论,关联度的测度。
灰色关联分析法 步骤
1
数据标准化处理
2
使不同类型的数据具备可比性。
分析市场上不同竞争因素之间的关联程度。
灰色关联分析法 应用领域
经济管理
用于分析经济发展中的关联因素。
生态环境
评估环境因素对生态系统的和优化。
市场分析
研究市场竞争态势和市场需求。
灰色关联分析法 优缺点
优点
• 有效分析多层次、多因素的问题 • 适用于小样本、不完备数据的分析
缺点
• 无法对因果关系进行分析 • 灰色关联度的确定较为主观
灰色关联分析法 总结
灰色关联分析法是一种有效的综合评判方法,应用广泛,但也存在一些局限性。在具体应用中需要根据 问题特点和数据情况进行调整和优化。

什么是灰色关联分析

什么是灰色关联分析

什么是灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2][编辑]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)Xi={X i(k) | k = 1,2,Λ,n},i= 1,2,Λ,m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灰色关联分析灰色关联分析(Grey Relational Analysis, GRA)什么是灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k = 1,2,Λ,n};比较数列(又称子序列)X i={X i(k)| k = 1,2,Λ,n},i = 1,2,Λ,m。

第二步,变量的无量纲化由于系统中各因素列中的数据可能因量纲不同,不便于比较或在比较时难以得到正确的结论。

因此在进行灰色关联度分析时,一般都要进行数据的无量纲化处理。

第三步,计算关联系数x0(k)与x i(k)的关联系数记,则,称为分辨系数。

ρ越小,分辨力越大,一般ρ的取值区间为(0,1),具体取值可视情况而定。

当时,分辨力最好,通常取ρ = 0.5。

第四步,计算关联度因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。

因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度r i公式如下:第五步,关联度排序关联度按大小排序,如果r1 < r2,则参考数列y与比较数列x2更相似。

在算出X i(k)序列与Y(k)序列的关联系数后,计算各类关联系数的平均值,平均值r i就称为Y(k)与X i(k)的关联度。

参考文献1↑徐凤银,朱兴珊,颜其彬,李士伦.储层含油气性定量评价中指标权重的确定方法(J).西南石油学院学报,1994年04期2↑2.02.12.2晋宗义,李璐,童金萍.粮食安全问题研究——以安徽省为例层次分析法层次分析法(The analytic hierarchy process,简称AHP),也称层级分析法1、什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。

它是一种定性和定量相结合的、系统化、层次化的分析方法。

由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。

它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。

不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。

其次,你会就每一个准则将3个地点进行对比,譬如A景色最好,B次之;B费用最低,C次之;C居住等条件较好等等。

最后,你要将这两个层次的比较判断进行综合,在A、B、C中确定哪个作为最佳地点。

2、层次分析法的基本步骤1、建立层次结构模型。

在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。

最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。

当准则过多时(譬如多于9个)应进一步分解出子准则层。

2、构造成对比较阵。

从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。

3、计算权向量并做一致性检验。

对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。

若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。

4、计算组合权向量并做组合一致性检验。

计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。

3、层次分析法的优点运用层次分析法有很多优点,其中最重要的一点就是简单明了。

层次分析法不仅适用于存在不确定性和主观信息的情况,还允许以合乎逻辑的方式运用经验、洞察力和直觉。

也许层次分析法最大的优点是提出了层次本身,它使得买方能够认真地考虑和衡量指标的相对重要性。

4、建立层次结构模型将问题包含的因素分层:最高层(解决问题的目的);中间层(实现总目标而采取的各种措施、必须考虑的准则等。

也可称策略层、约束层、准则层等);最低层(用于解决问题的各种措施、方案等)。

把各种所要考虑的因素放在适当的层次内。

用层次结构图清晰地表达这些因素的关系。

〔例1〕购物模型某一个顾客选购电视机时,对市场正在出售的四种电视机考虑了八项准则作为评估依据,建立层次分析模型如下:〔例2〕选拔干部模型对三个干部候选人y1、y2、y3,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型:假设有三个干部候选人y1、y2、y3,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型5、构造成对比较矩阵比较第i 个元素与第j 个元素相对上一层某个因素的重要性时,使用数量化的相对权重a ij来描述。

设共有n 个元素参与比较,则称为成对比较矩阵。

成对比较矩阵中a ij的取值可参考Satty 的提议,按下述标度进行赋值。

a ij在1-9 及其倒数中间取值。

a ij = 1,元素i 与元素j 对上一层次因素的重要性相同;a ij = 3,元素i 比元素j 略重要;a ij = 5,元素i 比元素j 重要;a ij = 7,元素i 比元素j 重要得多;a ij = 9,元素i 比元素j 的极其重要;a ij = 2n,n=1,2,3,4,元素i 与j 的重要性介于a ij = 2n− 1与a ij = 2n + 1之间;,n=1,2,...,9,当且仅当a ji = n。

成对比较矩阵的特点:。

(备注:当i=j时候,a ij = 1)对例2,选拔干部考虑5个条件:品德x1,才能x2,资历x3,年龄x4,群众关系x5。

某决策人用成对比较法,得到成对比较阵如下:a14 = 5 表示品德与年龄重要性之比为5,即决策人认为品德比年龄重要。

6、作一致性检验从理论上分析得到:如果A是完全一致的成对比较矩阵,应该有但实际上在构造成对比较矩阵时要求满足上述众多等式是不可能的。

因此退而要求成对比较矩阵有一定的一致性,即可以允许成对比较矩阵存在一定程度的不一致性。

由分析可知,对完全一致的成对比较矩阵,其绝对值最大的特征值等于该矩阵的维数。

对成对比较矩阵的一致性要求,转化为要求:的绝对值最大的特征值和该矩阵的维数相差不大。

检验成对比较矩阵A一致性的步骤如下:计算衡量一个成对比较矩阵 A (n>1 阶方阵)不一致程度的指标CI:RI是这样得到的:对于固定的n,随机构造成对比较阵A, 其中a ij1,2,…,9,1/2,1/3,…,1/9中随机抽取的. 这样的A是不一致的, 取充分大的子样得到A的最大特征值的平均值n 1 2 3 4 5 6 7 8 9RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45注解:3从有关资料查出检验成对比较矩阵A 一致性的标准RI:RI称为平均随机一致性指标,它只与矩阵阶数n 有关。

4按下面公式计算成对比较阵A 的随机一致性比率CR:。

5判断方法如下:当CR<0.1时,判定成对比较阵A 具有满意的一致性,或其不一致程度是可以接受的;否则就调整成对比较矩阵A,直到达到满意的一致性为止。

例如对例2 的矩阵计算得到,查得RI=1.12,这说明A 不是一致阵,但A 具有满意的一致性,A 的不一致程度是可接受的。

此时A的最大特征值对应的特征向量为U=(-0.8409,-0.4658,-0.0951,-0.1733,-0.1920)。

这个向量也是问题所需要的。

通常要将该向量标准化:使得它的各分量都大于零,各分量之和等于1。

该特征向量标准化后变成U = (0.475,0.263,0.051,0.103,0.126)Z。

经过标准化后这个向量称为权向量。

这里它反映了决策者选拔干部时,视品德条件最重要,其次是才能,再次是群众关系,年龄因素,最后才是资历。

各因素的相对重要性由权向量U的各分量所确定。

求A的特征值的方法,可以用MATLAB 语句求A的特征值:〔Y,D〕=eig(A),D为成对比较阵的特征值,Y的列为相应特征向量。

在实践中,可采用下述方法计算对成对比较阵A = (a ij)的最大特征值λmax(A)和相应特征向量的近似值。

定义,可以近似地看作A的对应于最大特征值的特征向量。

计算可以近似看作A的最大特征值。

实践中可以由λ来判断矩阵A的一致性。

相关文档
最新文档