高二数学天天练(06)
高二下期 数学天天练(一)

高二下期 数学专项提升训练(一)(共十题)作业要求:可以不抄题,但要写好时间和步骤1、某教辅研发机构为了解A 类试卷在学校的使用效果,拟采用分层抽样的方法,从语文.数学及英语三个学科的教师中抽取30人到学校进行调查.已知该教辅研发机构语文,数学及英语三个学科教师的人数之比为1:3:2,则应从数学学科中抽取的人数为( )A .5B .10C .15D .202、若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A .8πB .6π C .4π D .2π 3、命题“2,220x x x ∃∈++≤R ”的否定是 ( )A .2,220x x x ∀∈++≤RB .2,220x x x ∀∈++>RC .2,220x x x ∃∈++>RD .2,220x x x ∃∈++≥R 4、方程√(x −2)2+y 2+√(x +2)2+y 2=10化简的结果是 ( )A. x 225+y 216=1B. x 225+y 221=1C. x 225+y 24=1D. y 225+x 216=15、乒乓球是我国的国球,是一种流行的球类体育项目,为了解某市民众对乒乓球这项运动的关注程度,某记者随机对该市60名群众进行了测试,将他们进行编号,分别为1,2,…,60,采用系统抽样的方法从这60人中抽取6人,若从第一组中抽到了4号,则从第五组中抽到的号码是______.6、在一次机器人比赛中,有供选择的A 型机器人和B 型机器人若干,从中选择一个机器人参加比赛,B型机器人被选中的概率为310,若A 型机器人比B 型机器人多4个,则A 型机器人的个数为______. 7、已知命题p :“若a b <,则22a b <”,则命题p 的否命题为______________,命题p 的否定为______________.8、过点(−3,2)且与x 29+y 24=1有相同焦点的椭圆方程是_________.9、某校从参加某次知识竞赛测试得学生中随机抽取60名学生,将其成绩(百分制均为整数)分成6段[)40,50,[)50,60,…,[)90,100后得到如下部分频率直方分布图,观察图形得信息,回答下列问题(1)求分数在[)70,80内的频率;(2)若用样本估计总体,已知该校参加知识竞赛一共有300人,请估计本次考试成绩不低于80分的人数; (3)统计方法中,同一组数据常用该组区间中点值作为代表,据此估计本次考试的平均分.10、已知0107:2<+-x x p ,034:22<+-m mx x q ,其中0>m .(1)若4=m ,且p q ∧为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数m 的取值范围.。
高二数学天天练

高二数学天天练(101) 姓 名 得 分1、若i xyi y x 152)(+-=-+,则y x ,分别为2、若i m m m m z )242()43(22--+-+=是纯虚数,则m =3、=+++)3)(2)(1(i i i4、若1)43(=-+i z ,则=z5、若,1i z +=且2)2(2z a z b az +=+,则b a ,分别为月 日高二数学天天练(101) 姓 名 得 分1、若i xyi y x 152)(+-=-+,则y x ,分别为2、若i m m m m z )242()43(22--+-+=是纯虚数,则m =3、=+++)3)(2)(1(i i i4、若1)43(=-+i z ,则=z5、若,1i z +=且2)2(2z a z b az +=+,则b a ,分别为月 日高二数学天天练(102) 姓 名 得 分1、=+10)1(i2、ii i i 34)2(43)21(22-++++=3、若yi x ii +=++-32111,则y x ,分别为 4、若i z 2472--=,则=z 5、若,11i z +=且113z z z z +=⋅,则=z月 日高二数学天天练(102) 姓 名 得 分1、=+10)1(i2、ii i i 34)2(43)21(22-++++=3、若yi x ii +=++-32111,则y x ,分别为 4、若i z 2472--=,则=z 5、若,11i z +=且113z z z z +=⋅,则=z月 日高二数学天天练(103) 姓 名 得 分1、=-|1|ii2、若i z -=1,则=||3z3、若复数)2)(1(i bi ++是纯虚数,则=b4、若i m z i z -=+=21,32且21z z 是实数,则=m 5、若,5)1|(|i z z +-=则=z月 日高二数学天天练(103) 姓 名 得 分1、=-|1|ii2、若i z -=1,则=||3z3、若复数)2)(1(i bi ++是纯虚数,则=b4、若i m z i z -=+=21,32且21z z 是实数,则=m 5、若,5)1|(|i z z +-=则=z月 日高二数学天天练(104) 姓 名 得 分1、三点)2,4(),1,5(),2,(m m -共线,则m =2、0=a 是)()(2R x ax x x f ∈+=为偶函数的 条件3、15,1==c b 焦点在y 轴上的椭圆标准方程为4、x ⊥-=-=),,2,4(),3,1,2(,则=x5、已知抛物线y =ax 2+bx -5在点(2,1)处的切线为y =-3x +7,则a = ,b = .月 日高二数学天天练(104) 姓 名 得 分1、三点)2,4(),1,5(),2,(m m -共线,则m =2、0=a 是)()(2R x ax x x f ∈+=为偶函数的 条件3、15,1==c b 焦点在y 轴上的椭圆标准方程为4、x ⊥-=-=),,2,4(),3,1,2(,则=x5、已知抛物线y =ax 2+bx -5在点(2,1)处的切线为y =-3x +7,则a = ,b = .月 日高二数学天天练(105) 姓 名 得 分1、直线02)32()2(2=---++m y m m x m 在x 轴上截距为3,则m 为2、N M >是N M 22log log >的 条件3、椭圆11271622=+y x 的焦点坐标为4、若4),2,2,1(),10,5,0(2=⋅--=-=+c a c b a ,则=⋅5、已知直线y =kx +1与曲线y =x 3+ax +b 切于点(1,3),则b 的值为月 日高二数学天天练(105) 姓 名 得 分1、直线02)32()2(2=---++m y m m x m 在x 轴上截距为3,则m 为2、N M >是N M 22log log >的 条件3、椭圆11271622=+y x 的焦点坐标为4、若4),2,2,1(),10,5,0(2=⋅--=-=+c a c b a ,则=⋅5、已知直线y =kx +1与曲线y =x 3+ax +b 切于点(1,3),则b 的值为月 日高二数学天天练(106) 姓 名 得 分1、过点)3,4(-在x ,y 轴上截距相等的直线方程的一般式为2、1,->∈∀+x x R x 的否定为3、椭圆13610022=+y x 上点P 到左焦点距离为7,则到右焦点距离为 4、若︒>=<==60,,1||||,则=+|3| 5、函数y =12x 2-ln x 的单调减区间为月 日高二数学天天练(106) 姓 名 得 分1、过点)3,4(-在x ,y 轴上截距相等的直线方程的一般式为2、1,->∈∀+x x R x 的否定为3、椭圆13610022=+y x 上点P 到左焦点距离为7,则到右焦点距离为 4、若︒>=<==60,,1||||b a b a ,则=+|3|b a5、函数y =12x 2-ln x 的单调减区间为月 日高二数学天天练(107) 姓 名 得 分1、两直线012,01)13(=-+=---my x my x m 垂直,则m 为2、1,->∈∀+x x R x 的否定为3、与椭圆1222=+y x 有相同焦点且过点)23,1(的椭圆标准方程为4、点),3,3(),2,4,1(),1,5,2(n m C B A -+-----共线,则=+n m5、已知f (x )=(x 2+x )(x -1),则=)2('f月 日高二数学天天练(107) 姓 名 得 分1、两直线012,01)13(=-+=---my x my x m 垂直,则m 为2、1,->∈∀+x x R x 的否定为3、与椭圆1222=+y x 有相同焦点且过点)23,1(的椭圆标准方程为4、点),3,3(),2,4,1(),1,5,2(n m C B A -+-----共线,则=+n m5、已知f (x )=(x 2+x )(x -1),则=)2('f月 日高二数学天天练(108) 姓 名 得 分1、过点)2,3(与直线024=-+y x 平行的直线方程为2、“菱形的对角线相互垂直”的否定为3、方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的范围为 4、设n m n m //),23,12,4(),2,32,2(-+=+-=,则n m ,分别为 5、若函数y =-x 3+6x 2+m 的极大值等于13,则实数m 等于月 日高二数学天天练(108) 姓 名 得 分1、过点)2,3(与直线024=-+y x 平行的直线方程为2、“菱形的对角线相互垂直”的否定为3、方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的范围为4、设n m n m //),23,12,4(),2,32,2(-+=+-=,则n m ,分别为5、若函数y =-x 3+6x 2+m 的极大值等于13,则实数m 等于月 日高二数学天天练(109) 姓 名 得 分1.给出命题:“若x 2+y 2=0,则x =y =0”,在它的逆命题、否命题、逆否命题中,真命题的个数是______________________________________________________. 2.命题p :有的三角形是等边三角形.命题非p :______________________________.3.“x >2”是“1x <12”的____________条件.4.设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的________条件.5.已知α,β的终边在第一象限,则“α>β”是“sin α>sin β”的________________条件.月 日高二数学天天练(109) 姓 名 得 分1.给出命题:“若x 2+y 2=0,则x =y =0”,在它的逆命题、否命题、逆否命题中,真命题的个数是______________________________________________________. 2.命题p :有的三角形是等边三角形.命题非p :______________________________.3.“x >2”是“1x <12”的____________条件.4.设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的________条件.5.已知α,β的终边在第一象限,则“α>β”是“sin α>sin β”的________________条件.月 日高二数学天天练(110) 姓 名 得 分1.若命题“∃x ∈R ,有x 2-mx -m <0”是假命题,则实数m 的取值范围是________.2.“a >0且b >0”是“b a +ab ≥2”成立的____________条件.3.命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题为____________________. 4.已知命题p :∃n ∈N,2n >1 000,则非p 为________________.5.函数f (x )=e x -x 在区间(-∞,0)内是单调__________(填“增函数”或“减函数”)月 日高二数学天天练(110) 姓 名 得 分1.若命题“∃x ∈R ,有x 2-mx -m <0”是假命题,则实数m 的取值范围是________.2.“a >0且b >0”是“b a +ab≥2”成立的____________条件.3.命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题为____________________. 4.已知命题p :∃n ∈N,2n >1 000,则非p 为________________.5.函数f (x )=e x -x 在区间(-∞,0)内是单调__________(填“增函数”或“减函数”)月 日高二数学天天练(111) 姓 名 得 分1. f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为________.2.函数f (x )=x 3+ax -2在(1,+∞)上是增函数,则实数a 的取值范围是________. 3.已知f (x )=x 2+3xf ′(2),则f ′(2)=________.4.已知点P 在曲线f (x )=x 4-x 上,曲线在点P 处的切线平行于3x -y =0,则点P 的坐标为________.5.已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为________.月 日高二数学天天练(111) 姓 名 得 分1. f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为________.2.函数f (x )=x 3+ax -2在(1,+∞)上是增函数,则实数a 的取值范围是________.3.已知f (x )=x 2+3xf ′(2),则f ′(2)=________.4.已知点P 在曲线f (x )=x 4-x 上,曲线在点P 处的切线平行于3x -y =0,则点P 的坐标为________.5.已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为________.月 日高二数学天天练(112) 姓 名 得 分1. f (x )=3x -x 3的单调减区间为__________.2.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围是__________. 3.函数f (x )=ax 3+x 恰有三个单调区间,则a 的取值范围是__________. 4.若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________.5.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为________万件.月 日高二数学天天练(112) 姓 名 得 分1. f (x )=3x -x 3的单调减区间为__________.2.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围是__________.3.函数f (x )=ax 3+x 恰有三个单调区间,则a 的取值范围是__________. 4.若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________.5.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为________万件.月 日高二数学天天练(113) 姓 名 得 分1.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(轴截面中两母线的夹角)是______.2.所有棱长为1的正三棱锥的全面积为________.3.给出三个命题,其中不正确命题的序号是________.①若两条直线和第三条直线所成的角相等,则这两条直线平行; ②若两条直线与第三条直线垂直,则这两条直线互相平行; ③若两条直线与第三条直线平行,这两条直线互相平行; ④若两条直线均与一个平面平行,则这两条直线互相平行.4.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.5.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是______月 日高二数学天天练(113) 姓 名 得 分1.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(轴截面中两母线的夹角)是______.2.所有棱长为1的正三棱锥的全面积为________.3.给出三个命题,其中不正确命题的序号是________.①若两条直线和第三条直线所成的角相等,则这两条直线平行;②若两条直线与第三条直线垂直,则这两条直线互相平行;③若两条直线与第三条直线平行,这两条直线互相平行;④若两条直线均与一个平面平行,则这两条直线互相平行.4.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.5.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是______月日高二数学天天练(114)姓名得分1.正方体各面所在平面将空间分成________部分.2.平行六面体ABCD—A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为___.3.已知不重合的直线a,b和平面α,下面命题中正确的是________(填序号).①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α.4.已知平面α∥平面β,直线a⊂α,有下列说法,其中真命题的序号是________.①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.5.已知l、m是空间两条不同直线,α、β是空间两个不同平面,给出下列四个条件:①平面α、β都垂直于平面γ;②平面α内存在不共线的三点到平面β的距离相等;③l、m是平面α内两条直线,且l∥β,m∥β;④l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β.其中可判断平面α与平面β平行的条件是________.(写出所有正确条件的序号)月日高二数学天天练(114)姓名得分1.正方体各面所在平面将空间分成________部分.2.平行六面体ABCD—A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为___.3.已知不重合的直线a,b和平面α,下面命题中正确的是________(填序号).①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α.4.已知平面α∥平面β,直线a⊂α,有下列说法,其中真命题的序号是________.①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.5.已知l 、m 是空间两条不同直线,α、β是空间两个不同平面,给出下列四个条件: ①平面α、β都垂直于平面γ;②平面α内存在不共线的三点到平面β的距离相等; ③l 、m 是平面α内两条直线,且l ∥β,m ∥β;④l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β.其中可判断平面α与平面β平行的条件是________.(写出所有正确条件的序号)月 日高二数学天天练(115) 姓 名 得 分1.若直线a 与平面α不垂直,那么在平面α内与直线a 垂直的直线有________条.2.m 、n 是空间中两条不同直线,α、β是两个不同平面,下面有四个命题: ①m ⊥α,n ∥β,α∥β⇒m ⊥n ;②m ⊥n ,α∥β,m ⊥α⇒n ∥β; ③m ⊥n ,α∥β,m ∥α⇒n ⊥β;④m ⊥α,m ∥n ,α∥β⇒n ⊥β. 其中,所有真命题的编号是________.3.已知平面α⊥β,α∩β=l ,P 是空间一点,且P 到平面α、β的距离分别是1、2, 则点P 到l 的距离为________.4.设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列四个命题,真命题的是________ ①若α∥β,m ⊂α,则m ∥β;②若m ∥α,n ⊂α,则m ∥n ; ③若α⊥β,m ∥α,则m ⊥β;④若m ⊥α,m ∥β,则α⊥β.5.在四面体O —ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点, 则OE →=______________.(用a ,b ,c 表示)月 日高二数学天天练(115) 姓 名 得 分1.若直线a 与平面α不垂直,那么在平面α内与直线a 垂直的直线有________条.2.m 、n 是空间中两条不同直线,α、β是两个不同平面,下面有四个命题: ①m ⊥α,n ∥β,α∥β⇒m ⊥n ;②m ⊥n ,α∥β,m ⊥α⇒n ∥β; ③m ⊥n ,α∥β,m ∥α⇒n ⊥β;④m ⊥α,m ∥n ,α∥β⇒n ⊥β. 其中,所有真命题的编号是________.3.已知平面α⊥β,α∩β=l ,P 是空间一点,且P 到平面α、β的距离分别是1、2, 则点P 到l 的距离为________.4.设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列四个命题,真命题的是________ ①若α∥β,m ⊂α,则m ∥β;②若m ∥α,n ⊂α,则m ∥n ; ③若α⊥β,m ∥α,则m ⊥β;④若m ⊥α,m ∥β,则α⊥β.5.在四面体O —ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点, 则OE →=______________.(用a ,b ,c 表示)月 日高二数学天天练(116) 姓 名 得 分1.已知a =(-3,2,5),b =(1,5,-1),则a +b =____________.2.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x =________.3.两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的 位置关系是__________.4.设l 1的方向向量为a =(1,2,-2),l 2的方向向量为b =(-2,3,m ),若l 1⊥l 2,则m =__.5.已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量为____________.月 日高二数学天天练(116) 姓 名 得 分1.已知a =(-3,2,5),b =(1,5,-1),则a +b =____________.2.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x =________.3.两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的 位置关系是__________.4.设l 1的方向向量为a =(1,2,-2),l 2的方向向量为b =(-2,3,m ),若l 1⊥l 2,则m =__.5.已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量为____________.月 日高二数学天天练(117) 姓 名 得 分1.若平面α、β的法向量分别为n 1=(2,-3,5),n 2=(-3,1,-4),则α、β的位置关系___.2.如果平面的一条斜线与它在这个平面上的射影的方向向量分别是a =(1,0,1),b =(0,1,1),那么,这条斜线与平面所成的角是________.3.若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为________.4.在长方体ABCD —A 1B 1C 1D 1中,AA 1=5,AB =12,那么直线B 1C 1和平面A 1BCD 1的距离是________.5.正四棱锥S —ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 的夹角的大小为________.月 日高二数学天天练(117) 姓 名 得 分1.若平面α、β的法向量分别为n 1=(2,-3,5),n 2=(-3,1,-4),则α、β的位置关系___.2.如果平面的一条斜线与它在这个平面上的射影的方向向量分别是a =(1,0,1),b =(0,1,1),那么,这条斜线与平面所成的角是________.3.若平面α的一个法向量为n=(4,1,1),直线l的一个方向向量为a=(-2,-3,3),则l与α所成角的正弦值为________.4.在长方体ABCD—A1B1C1D1中,AA1=5,AB=12,那么直线B1C1和平面A1BCD1的距离是________.5.正四棱锥S—ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面P AC的夹角的大小为________.月日高二数学天天练(118)姓名得分1.若直线斜率的绝对值等于1,则直线的倾斜角为____________.2.过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为________.3.若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为______.4.过点M(3,-4),且在两坐标轴上的截距相等的直线的方程为__________________.5.已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是____.月日高二数学天天练(118)姓名得分1.若直线斜率的绝对值等于1,则直线的倾斜角为____________.2.过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为________.3.若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为______.4.过点M(3,-4),且在两坐标轴上的截距相等的直线的方程为__________________.5.已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是____.月日高二数学天天练(119)姓名得分1.圆心在C(8,-3),且经过点M(5,1)的圆的方程为______________.2.若方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是______________.3.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为______________.4.圆x2-2x+y2-3=0的圆心到直线x+3y-3=0的距离为________.5.过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是__________________.月日高二数学天天练(119)姓名得分1.圆心在C(8,-3),且经过点M(5,1)的圆的方程为______________.2.若方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是______________.3.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为______________.4.圆x2-2x+y2-3=0的圆心到直线x+3y-3=0的距离为________.5.过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是__________________.月日高二数学天天练(120)姓名得分1.已知圆C经过M(2,-1)和直线x+y=1相切,且圆心在直线y=-2x上,则圆C的方程为__________________________2.直线y=ax+1与圆x2+y2-2x-3=0的位置关系是________.3.若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是________.4.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则a=________.5.圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+1=0的公切线有且仅有___条.月日高二数学天天练(120)姓名得分1.已知圆C经过M(2,-1)和直线x+y=1相切,且圆心在直线y=-2x上,则圆C的方程为__________________________2.直线y=ax+1与圆x2+y2-2x-3=0的位置关系是________.3.若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是________.4.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则a=________.5.圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+1=0的公切线有且仅有___条.月日高二数学天天练(121)姓名得分1.已知实数x,y满足x2+y2=1,则x-y的取值范围是____________.2.若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y-2=0的距离等于1,则半径r的取值范围为________.3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b满足关系式______________.4.已知曲线C:(x-1)2+y2=1,点A(-2,0)及点B(3,a),从点A观察点B,要使视线不被曲线C挡住,则a的取值范围是______________.5.如果椭圆x2100+y236=1上一点P到焦点F1的距离等于6,那么点P到另一个焦点F2的距离是________.月日高二数学天天练(121)姓名得分1.已知实数x,y满足x2+y2=1,则x-y的取值范围是____________.2.若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y-2=0的距离等于1,则半径r的取值范围为________.3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b满足关系式______________.4.已知曲线C:(x-1)2+y2=1,点A(-2,0)及点B(3,a),从点A观察点B,要使视线不被曲线C挡住,则a的取值范围是______________.5.如果椭圆x2100+y236=1上一点P到焦点F1的距离等于6,那么点P到另一个焦点F2的距离是________.月日高二数学天天练(122)姓名得分1.已知点F1(-4,0)和F2(4,0),一曲线上的动点P到F1,F2距离之差为6,该曲线方程是____ _2.若中心在坐标原点,对称轴为坐标轴的椭圆经过两点(4,0)和(0,2),则该椭圆的离心率等于________.3.已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足PF1=2PF2,∠PF1F2=30°,则椭圆的离心率为__________.4.已知F1,F2是椭圆x216+y29=1的两焦点,过点F2的直线交椭圆于A,B两点.在△AF1B中,若有两边之和是10,则第三边的长度为________.5.“-3<m<5”是“方程x25-m+y2m+3=1表示椭圆”的____________条件.月日高二数学天天练(122)姓名得分2.已知点F1(-4,0)和F2(4,0),一曲线上的动点P到F1,F2距离之差为6,该曲线方程是____ _2.若中心在坐标原点,对称轴为坐标轴的椭圆经过两点(4,0)和(0,2),则该椭圆的离心率等于________.3.已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足PF1=2PF2,∠PF1F2=30°,则椭圆的离心率为__________.4.已知F1,F2是椭圆x216+y29=1的两焦点,过点F2的直线交椭圆于A,B两点.在△AF1B中,若有两边之和是10,则第三边的长度为________.5.“-3<m<5”是“方程x25-m+y2m+3=1表示椭圆”的____________条件.月日高二数学天天练(123)姓名得分1.抛物线y2=8x上到焦点的距离等于6的点的坐标是______________.2.双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=_____________________.3.已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C的离心率为________.4.已知双曲线x2a2-y2b2=1 (a>0,b>0)和椭圆x216+y29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为______________.5.若双曲线x2a2-y2b2=1 (a>0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为________.月日高二数学天天练(123)姓名得分1.抛物线y2=8x上到焦点的距离等于6的点的坐标是______________.2.双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=_____________________.3.已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°, 则双曲线C 的离心率为________.4.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为______________.5.若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为________.月 日高二数学天天练(124) 姓 名 得 分1.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为__________.2.若双曲线x 2+ky 2=1的离心率是2,则实数k 的值是________________.3.椭圆9x 2+25y 2=225上一点M 到左焦点F 1的距离为2,N 是MF 1的中点,O 是坐标原 点,则ON =________.4.已知椭圆x 2a 2+y 2b 2=1 (a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP →=2PB →,则椭圆的离心率是________.5.设双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率为________.月 日高二数学天天练(124) 姓 名 得 分1.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为__________.2.若双曲线x 2+ky 2=1的离心率是2,则实数k 的值是________________.3.椭圆9x 2+25y 2=225上一点M 到左焦点F 1的距离为2,N 是MF 1的中点,O 是坐标原 点,则ON =________.4.已知椭圆x 2a 2+y 2b 2=1 (a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP →=2PB →,则椭圆的离心率是________.5.设双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率为________.月 日高二数学天天练(125) 姓 名 得 分1.与两条坐标轴的距离的积是常数k (k >0)的点的轨迹方程是______________.2.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________.3.动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.5.已知点A (-2,0)、B (3,0),动点P (x ,y )满足PA →·PB →=x 2-6,则点P 的轨迹方程_______.月 日高二数学天天练(125) 姓 名 得 分1.与两条坐标轴的距离的积是常数k (k >0)的点的轨迹方程是______________.2.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________.3.动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.5.已知点A (-2,0)、B (3,0),动点P (x ,y )满足PA →·PB →=x 2-6,则点P 的轨迹方程_______.月 日高二数学天天练(126) 姓 名 得 分1.已知l 1的倾斜角为45°,l 2经过点P (-2,-1),Q (3,m ),若l 1⊥l 2,则实数m =________.2.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.3.已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为_____.4.(2010·安徽)过点(1,0)且与直线x -2y -2=0平行的直线方程是______________.5.若经过点(3,a )、(-2,0)的直线与经过点(3,-4)且斜率为12的直线垂直,则a 的值为___.月 日高二数学天天练(126) 姓 名 得 分1.已知l 1的倾斜角为45°,l 2经过点P (-2,-1),Q (3,m ),若l 1⊥l 2,则实数m =________.2.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.3.已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为_____.4.(2010·安徽)过点(1,0)且与直线x -2y -2=0平行的直线方程是______________.5.若经过点(3,a )、(-2,0)的直线与经过点(3,-4)且斜率为12的直线垂直,则a 的值为___.月 日高二数学天天练(127) 姓 名 得 分1.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为___.2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方 法共有________种.3.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数是________.4.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛, 每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,则大师赛共有________场比赛.5.有A 、B 两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A 种车床,现在要从三名工人中选2名分别去操作以上车床,则不同的选派方法有________种.月 日高二数学天天练(127) 姓 名 得 分1.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为___.2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方 法共有________种.3.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数是________.4.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,则大师赛共有________场比赛.5.有A、B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,现在要从三名工人中选2名分别去操作以上车床,则不同的选派方法有________种.月日高二数学天天练(128)姓名得分1.有4种不同的蔬菜,从中选出3种,分别种植在不同土质的3块土地上进行试验,有_____种不同的种植方法.2.从5人中选派3人去参加某个会议,不同的方法共有________种.3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.4. 5个人站成一排,其中甲、乙两人不相邻的排法有________种.5.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且2个奥运宣传广告不能连续播放,则不同的播放方式有________种.月日高二数学天天练(128)姓名得分2.有4种不同的蔬菜,从中选出3种,分别种植在不同土质的3块土地上进行试验,有_____种不同的种植方法.2.从5人中选派3人去参加某个会议,不同的方法共有________种.3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.4. 5个人站成一排,其中甲、乙两人不相邻的排法有________种.5.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且2个奥运宣传广告不能连续播放,则不同的播放方式有________种.月 日高二数学天天练(129) 姓 名 得 分1. (x -2y )7的展开式中第3项的二项式系数是________.2. x ⎝⎛⎭⎫x -2x 7的展开式中,x 4的系数是______.(用数字作答) 3.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为________.4.(若(x -ax 2)6展开式的常数项为60,则常数a 的值为________.5.若⎝ ⎛⎭⎪⎫3x -1x n 展开式中各项系数之和为32,则该展开式中含x 3的项的系数为_______.月 日高二数学天天练(129) 姓 名 得 分1. (x -2y )7的展开式中第3项的二项式系数是________.2. x ⎝⎛⎭⎫x -2x 7的展开式中,x 4的系数是______.(用数字作答) 3.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为________.4.(若(x -ax 2)6展开式的常数项为60,则常数a 的值为________.5.若⎝ ⎛⎭⎪⎫3x -1x n 展开式中各项系数之和为32,则该展开式中含x 3的项的系数为_______.月 日高二数学天天练(130) 姓 名 得 分1.用反证法证明命题:“a ,b ∈N ,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为__________________.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33=________.3.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为__________.4.要证明“3+7<25”可选择的方法有以下几种,其中最合理的是________.(填序号) ①反证法,②分析法,③综合法.5.观察下列等式1=1,2+3+4=9,3+4+5+6+7=25,4+5+6+7+8+9+10=49 照此规律,第五个等式应为_______________________.月 日高二数学天天练(130) 姓 名 得 分1.用反证法证明命题:“a ,b ∈N ,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为__________________.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33=________.3.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为__________.4.要证明“3+7<25”可选择的方法有以下几种,其中最合理的是________.(填序号) ①反证法,②分析法,③综合法.5.观察下列等式1=1,2+3+4=9,3+4+5+6+7=25,4+5+6+7+8+9+10=49 照此规律,第五个等式应为_______________________.月 日高二数学天天练(131) 姓 名 得 分1.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验第一个值n 0=___.2.用数学归纳法证明:“1+a +a 2+…+a n +1=1-a n +21-a (a ≠1)”,在验证n =1时,左端计算所得的项为________.3.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是________.4.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+________.5.设a 、b ∈R ,若a -|b |>0,则下列不等式中正确的是________.(填序号) ①b -a >0; ②a 3+b 3<0; ③a 2-b 2<0; ④b +a >0.月 日高二数学天天练(131) 姓 名 得 分。
抓分题高中同步天天练数学答案

•
A.1:3 B.2:3 C.1:2 D.1:4
•
A.长方形 B.正方形 C.无法确定 •
5、某教学大楼实际投资85万
•
2、甲数的17 等于乙数的18 ,
甲数、乙数不为0,那么甲数( )乙
元,超过计划3万元,求超过计划 百分之几列式正确的是( )。
数。
•
A.3÷85×100% B.3÷(85-
•
A.大于 B.小于 C.等于 D.无法
• •
9、一根绳子长8米,对折再对 折,每段绳长是( ),每段绳长是这
•
根绳子的( )。 10、一个长方体棱长总和是
•
120厘米,长、宽、高的比是5:3: 2。这个长方体的体积是( )立方厘
•
米。
3、一千克糖用去25 千克后, 还剩下它的60%。 ( )
4、一件商品先涨价10%,再 降价10%,现价与原价相同 ( )
•
1)120的20%比某数的45 少24,求这
个数?
•
2)12和13 的积与商相差多少?
•
3)75比某数的3倍多12,求这个数?
• 五、操作题。(共5分)
•
1、在下面的方格图中,画一个长方
形,使长方形长与宽的比是3∶2,再画一
个三角形,使三角形的面积与长方形的面
积的比是1∶2。
•
2、在下面图中,先用斜线表示 × 。
平方米。
• 7、冰化成水后,体积减少了112 , • 二、判断。(共5分)
水结成冰后,体积增加( )。
•
1、两个长方体体积相等,表
•
8、一种电扇300元,先后两次
面积就一定相等。 ( )
降价,第一次按八折售出,第二次 降价10%。这种电扇最后售价( )元。
2018《试吧》高中全程训练计划·数学(理)天天练6 指数函数、对数函数、幂函数含解析

天天练6指数函数、对数函数、幂函数一、选择题1.2log a(M-2N)=log a M+log a N,则错误!的值为()A。
错误!B.4 C.1 D.4或12.定义运算a⊗b=错误!,则函数f(x)=1⊗2x的图象大致为()(x2-6x+17)的值域是()3.函数y=log12A.R B.错误!C.错误!D。
错误!4.函数y=lg错误!的图像关于( )A.x轴对称B.y轴对称C.原点对称D.直线y=x对称5.设函数f(x)=错误!,f(-2)+f(log212)=( )A.3 B.6 C.9 D.126.设f(x)=ln x,0<a<b,若p=f(错误!),q=f错误!,r=错误!(f(a)+f(b)),则下列关系式中正确的是( )A.q=r<p B.q=r〉pC.p=r<q D.p=r>q7.已知函数f(x)=x2,g(x)=lg x,若有f(a)=g(b),则b的取值范围是()A.[0,+∞) B.(0,+∞)C.[1,+∞)D.(1,+∞)8.函数y=错误!的图象大致为()二、填空题9.lg 错误!+2lg2-错误!-1=________.10.2-3,312,log 25三个数中最大的数是__________.11.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =__________。
三、解答题12.已知函数f (x )=log 3错误!的定义域为R ,值域为错误!,求m ,n 的值.天天练6 指数函数、对数函数、幂函数1.B 由对数的运算性质可得:(M -2N )2=MN ,M 2-4MN +4N 2=MN ,(M N)2-5(错误!)+4=0,错误!=4或错误!=1,又M >2N ,故错误!=4。
2.A 由a ⊗b =错误!得f (x )=1⊗2x =错误!3.C 因为x 2-6x +17=(x -3)2+8≥8,所以由复合函数的单调性可知:函数的值域为(-∞,-3].4.C y =lg 错误!,由奇函数的定义可知该函数为奇函数,故选C 。
高二数学天天练3236

高二数学天天练(32) 姓 名 得 分1、过点)2,1(-P 倾斜角正弦值为54的直线方程为 2、直线)1(:+=x k y l 与)4,4(),2,2(Q P 为端点的线段没有公共点,则k 的范围为 3、过点)3,2(-P 在两坐标轴上截距相等的直线方程为 4、过点)2,1(-P 与两点)4,4(),2,2(-B A 距离相等的直线方程为 5、直线)(01)2()12(R a y a x a ∈=--+-不过第一象限,则a 的取值范围是月 日高二数学天天练(32) 姓 名 得 分1、过点)2,1(-P 倾斜角正弦值为54的直线方程为 2、直线)1(:+=x k y l 与)4,4(),2,2(Q P 为端点的线段没有公共点,则k 的范围为 3、过点)3,2(-P 在两坐标轴上截距相等的直线方程为 4、过点)2,1(-P 与两点)4,4(),2,2(-B A 距离相等的直线方程为 5、直线)(01)2()12(R a y a x a ∈=--+-不过第一象限,则a 的取值范围是高二数学天天练(33)姓名得分1、三条直线0+y--xxx能围成三角形,则m范围my+y=,0=2,01123=++2、两直线4+yy的交点在第一象限,则k的范围为kxk=x2,2+-=+3、过点)2P且原点到该直线距离等于2的直线方程为,2(-4、点)2,2(A关于直线0x对称的点的坐标为+y+1=5、过点)mBm++的直线的倾斜角的范围是mA∈)(,31312),3(0,2(2R月日高二数学天天练(33)姓名得分1、三条直线0+y--xxx能围成三角形,则m范围my+y=,0=2,01123=++2、两直线4+yy的交点在第一象限,则k的范围为kxk=x2,2+-=+3、过点)2P且原点到该直线距离等于2的直线方程为,2(-4、点)2,2(A关于直线0x对称的点的坐标为+y+1=5、过点)mBm++的直线的倾斜角的范围是mA∈)(,31312),3(0,2(2R高二数学天天练(34) 姓 名 得 分1、圆2220x y y +-=关于直线40x y +-=对称的圆的方程是_________2、圆322=+y x 上的点到直线02543=++y x 的距离的最小值为_______3、直线3440x y -=与圆2225x y +=的位置关系__ ____.4、以点(3,4)-为圆心,且与x 轴相切的圆的方程__________________.5、以(4,3)M -为圆心的圆与直线25x y +-0=相离,那么圆M 的半径r 的取值 范围是_____________.月 日高二数学天天练(34) 姓 名 得 分1、圆2220x y y +-=关于直线40x y +-=对称的圆的方程是_________2、圆322=+y x 上的点到直线02543=++y x 的距离的最小值为_______3、直线3440x y -=与圆2225x y +=的位置关系__ ____.4、以点(3,4)-为圆心,且与x 轴相切的圆的方程__________________.5、以(4,3)M -为圆心的圆与直线25x y +-0=相离,那么圆M 的半径r 的取值 范围是_____________.高二数学天天练(35) 姓 名 得 分1、过点(5,12)且与圆22169x y +=相切的直线的方程__________________.2、圆心在直线23x y -=上,且与两坐标轴相切的圆的方程__________________.3、斜率为3,且与圆2210x y +=相切的直线方程 .4、直线0l y +-被圆22:4C x y +=截得的弦长为_________5、直线1y kx =+与圆22x y m +=恒有公共点,则m 的取值范围为____ __月 日高二数学天天练(35) 姓 名 得 分1、过点(5,12)且与圆22169x y +=相切的直线的方程__________________.2、圆心在直线23x y -=上,且与两坐标轴相切的圆的方程__________________.3、斜率为3,且与圆2210x y +=相切的直线方程 .4、直线0l y +-被圆22:4C x y +=截得的弦长为_________5、直线1y kx =+与圆22x y m +=恒有公共点,则m 的取值范围为____ __高二数学天天练(36) 姓 名 得 分1、圆()()22344x y +++=关于原点对称的圆的方程为___________2、两圆2268110x y x y ++--=与22x y + a =内切,则a 的值为__________.3、过两圆2268110x y x y ++--=与22x y +4=交点的直线方程为__________.4、两圆222r y x =+与r r y x ()1()3(222=++->0)外切,则r 的值是5、两圆相交于两点(1,3),(,1)m -,两圆圆心都在直线0x y c -+=上,则m c +=月 日高二数学天天练(36) 姓 名 得 分1、圆()()22344x y +++=关于原点对称的圆的方程为___________2、两圆2268110x y x y ++--=与22x y + a =内切,则a 的值为__________.3、过两圆2268110x y x y ++--=与22x y +4=交点的直线方程为__________.4、两圆222r y x =+与r r y x ()1()3(222=++->0)外切,则r 的值是5、两圆相交于两点(1,3),(,1)m -,两圆圆心都在直线0x y c -+=上,则m c +=。
最新-高二数学期末复习天天练(5、6) 精品

高二数学期末复习天天练(5)姓名 成绩1.已知一个简单多面体的各个顶点都有3条棱.设F,E,V 分别表示多面体的面数,棱数,顶点数,则2F-V 等于 ( )(A)2 (B)4 (C)8 (D)122.如图正方体ABCD -A 1B 1C 1D 1,在它的12条棱及12条面对角线所在直线中,选取若干条直线确定平面。
在所有这些平面中: (1) 过B 1C 且与BD 平行的平面有且只有一个; (2) 过B 1C 且与BD 垂直的平面有且只有一个; (3) BD 与过B 1C 的平面所成的角等于30º.上述命题中是真命题的个数为 ( )(A) 0个 (B)1个 (C)2个 (D)3个3.在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;②若平面α//平面β,则平面α内任意一条直线m//平面β;③若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,则直线n ⊥平面β; ④若点P 到三角形三条边的距离相等,则点P 在该三角形内部的射影是该三角形的内心. 其中正确命题的个数为 ( )A .1个B .2个C .3个D .4个4.有6根细木棒,其中较长的两根分别为 3 a , 2 a,其余4根均为a ,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为 .5.(本小题满分14分)已知四棱锥P —ABCD (如图),底面是边长为2的正方形. 侧棱PA ⊥底面ABCD ,M 、N 分别为AD 、BC 的中点. MQ ⊥PD 于Q ,直线PC 与平面PBA 所成角的正弦值为.33 (Ⅰ)求证:平面PMN ⊥平面PAD ;(Ⅱ)求PA 的长;(Ⅲ)求二面角P —MN —Q 的余弦值.1 A17.本小题满分14分解法一:(I )∵PA ⊥底面ABCD ,MN ⊂底面ABCD ,∴MN ⊥PA.又MN ⊥AD ,PA ∩AD=A , ∴MN ⊥平面PAD.………………………………3分∵MN ⊂平面PMN ,∴平面PMN ⊥平面PAD.…………………………………4分(Ⅱ)∵BC ⊥BA ,BC ⊥PA ,PA ∩BA=A ,∴BC ⊥平面PBA.∴∠BPC 为直线PC 与平面PBA 所成的角,即sin ∠BPC=33.……………7分 在Rt △PBC 中,PC=32332sin ==∠BPC BC , .2)22()32(2222=-=-=∴AC PC PA …………………………10分(III )由(I ),MN ⊥平面PAD ,知PM ⊥MN ,MQ ⊥MN ,∴∠PMQ 即为二面角P —MN —Q 的平面角.………………………………12分 而.1010522cos ,2222,5===∴===PM MQ PMQ MD MQ PM ……14分高二数学期末复习天天练(6)姓名成绩1、一个凸多面体的顶点数为20,棱数为30。
高二数学天天练

PNCBA高二年级数学天天练(005)班级: 姓名: 成绩: 一、填空题 1.()2lg 25lg 2lg 50lg 2++=2. 等差数列{}n a 中,已知69121520,a a a a +++=则20S = 。
3. 圆锥的母线长为3cm ,底面半径为1cm ,底面圆周上有一点A ,由A 点出发绕圆锥侧面一周到点A 的最短距离为4. 若函数()25f x mx x =++在[)2,-+∞上是增函数,则m 的取值范围是5. 三棱锥四个面中,直角三角形最多有_______ __个.6. 一个简单多面体的面数为12,顶点数为20,则这个多面体的棱数是7. 已知一平面四边形ABCD 水平放置的直观图是一个边长为2的正方形,则四边形ABCD 的面积为8. 如图,在ABC ∆中,13AN N C =,P 是BN 上的一点,若211AP mAB AC =+,则实数m 的值为__________.二、解答题9. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2sin b C a=. (1)求11tan tan A C +的值;(2)若8tan 15B =,求tan tan AC 及的值.苏大附中高二年级数学天天练(006)班级: 姓名: 成绩: 一、填空题1. 在空间中,下列正确命题的序号是①.对边相等的四边形一定是平面图形 ②.四边相等的四边形一定是平面图形③.有一组对边平行且相等的四边形是平面图形④.有一组对角相等的四边形是平面图形2. 线段AB 在平面α内,则直线AB 与平面α的位置关系是3. 与(3,4)a =-平行的单位向量是_________;4. 空间三条直线,,a b c ,若//,//a b b c ,则由直线,,a b c 确定的平面的个数为 .5. 给出下列说法:① 梯形的四个顶点共面;② 三条平行直线共面;③ 有三个公共点的两个平面重合;④ 每两条都相交并且交点全部不同的四条直线共面. 其中说法正确的序号是 .6. 函数()234f x x x =-++的定义域为[],3m ,值域为254,4⎡⎤⎢⎥⎣⎦,则实数m 的取值范围是7. 已知扇形的周长为(0)c c >,当扇形中心角为________弧度时,扇形有最大面积 8. 等差数列{}n a 的前n 项和为n S ,n S 的最大值为6S ,且67||||a a <,则使0n S <的n 的最小值是 .二、解答题9. 设二次函数()2f x ax bx c =++在区间[]2,2-上的最大值、最小值分别是M 、m ,集合(){}|A x f x x ==.⑴若A ={1,2},且()02f =,求M 和m 的值;⑵若A ={2},且a ≥1,记()g a m M =+,求()g a 的最小值.A 1苏大附中高二年级数学天天练(007)班级: 姓名: 成绩: 一、填空题 1. 设()lg ,010,0xx x f x x >⎧=⎨≤⎩,则()()2ff -=2. 在ABC ∆中,1cos 2,2,4,4C a c =-==则b = . 3. 垂直于同一条直线的两条直线的位置关系是4. 两条直线a ,b 分别和异面直线c , d 都相交,则直线a ,b 的位置关系是.5. 如图,ABCD —A 1B 1C 1D 1是正方体,E ,F ,G ,H ,M ,N 分别是所在棱的中点, 则下列结论正确的有_________ __.A .GH 和MN 是平行直线;GH 和EF 是相交直线;B .GH 和MN 是平行直线;MN 和EF 是相交直线;C .GH 和MN 是相交直线;GH 和EF 是异面直线;D .GH 和EF 是异面直线;MN 和EF 也是异面直线.6. 若a 、b 是异面直线,b 、c 是异面直线,则直线a 、c 的位置关系可能是7. 已知P 是ABC ∆内任一点,且满足,()AP xAB yAC x y R =+∈、,则2x y +的取值范围是 .8. 数列{}n a 满足221,212,2n n n n k a n k-=-⎧⎪=⎨⎪=⎩,则它的前20项的和为 。
高二数学练习题及答案

高二数学练习题及答案在高二数学的学习过程中,练习题是巩固知识点和提高解题能力的重要手段。
以下是一些高二数学的练习题及答案,供同学们练习使用。
练习题1:函数与方程已知函数\( f(x) = 3x^2 - 5x + 2 \),求:1. 函数的顶点坐标;2. 函数的值域。
答案1:1. 函数\( f(x) = 3x^2 - 5x + 2 \)的顶点坐标可以通过顶点公式\( x = -\frac{b}{2a} \)求得,其中\( a = 3 \),\( b = -5 \)。
代入得\( x = \frac{5}{6} \)。
将\( x \)值代入原函数求得\( y \)值,\( y = 3\left(\frac{5}{6}\right)^2 -5\left(\frac{5}{6}\right) + 2 = -\frac{1}{12} \)。
所以顶点坐标为\( \left(\frac{5}{6}, -\frac{1}{12}\right) \)。
2. 由于\( a = 3 > 0 \),函数开口向上,最小值即为顶点的\( y \)坐标,即值域为\[ [-\frac{1}{12}, +\infty) \]。
练习题2:三角函数已知\( \sin\theta + \cos\theta = \frac{1}{5} \),求\( \sin\theta \cdot \cos\theta \)的值。
答案2:将已知等式两边平方,得到\( (\sin\theta + \cos\theta)^2 =\left(\frac{1}{5}\right)^2 \),即\( \sin^2\theta +2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{25} \)。
由于\( \sin^2\theta + \cos^2\theta = 1 \),可得\( 2\sin\theta\cos\theta = \frac{1}{25} - 1 = -\frac{24}{25} \)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学天天练(06) 姓名 课题:算术平均数与几何平均数(3)
一、选择题:
1、设a 和b 是不相等的正数,则( )
A 、2222b
a a
b b
a +<<+ B 、222
2b
a b
a a
b +<+<
C 、2222b a b a ab +<+<
D 、222
2b
a
ab b a +<<+
2、已知x>0,y>0且x+y ≤4,则下列不等式中成立的是( )
A 11
. 2. 11
1.. 41
1
.≥≥≥+≤+xy D xy C y x B y x
3、在下列函数中,最小值是2的是( )
)
20(s i n 1s i n . ).(33.).
101(lg 1
lg . )0,(5
5.π
<<+=∈+=<<+=≠∈+=-x x x y D R x y C x x x y B x R x x x
y A x x
4、下列不等式的证明过程正确的是( )
A.22,,=⋅≥+∈b a
a b
b a
a b
R b a 则 B.若2
cos 1
cos 2cos 1cos =⋅≥+∈+x x x x R x 则 C 、若44
24=⋅≤+∈-x x x x R x 则
D 、若2))((2)]()[(0,,-=---≤-+--=+<∈b a
a b
a b
b a
a b
b a
ab R b a 则且
5、下列不等式,对一切R x ∈恒成立的是( )
A 、x x D x x C x
B x x 44. .2lg )1lg(. .111
. .22sin sin 222
2≥+≥+<+≥+
6、当a>1,ab<1时a b b a log log +的取值范围是( )
A 、[2,++∞)
B 、(2,+∞)
C 、(-∞,-2)
D 、(-∞,-2]
二、填空题 7、若x,y ∈R +且x+y=1,当x= y= 时 xy 的最大值是 8、若x>6时函数y=x+61-x 当x= 时,函数有 值是8 9、设a>2,x 22)21(,21,-=-+=∈x N a a M R 则M 、N 的大小关系是 10设a,b ∈R,a+b=2则2a +2b 最小值为 三、解答题 11、求证:lg9lg11<1 12、设lgx+lgy=2求y x 11+的最小值 13、已知x>0,y>0,x+2y=1,求y x 11+的最小值。