三阶常系数齐次线性微分方程通解结构

合集下载

1 3 二阶常系数线性齐次微分方程

1 3 二阶常系数线性齐次微分方程
因此原方程的通解为,
y C1 e x C2 e3x
微分方程
例2. 求方程 y " 2 y ' y 0 的通解.
解: 特征方程 r2 2 r 1 0
有重根:
r1 r2 1
因此原方程的通解为,
y (C1 C2 x ) e x
微分方程
例3. 求方程 y " 2 y ' 5y 0 的通解.
y x2 1
微分方程
例2:自由落体运动
根据Newton第二定律:
F

mg

m
d2x dt 2
所以,
g

d2x dt 2

两次积分得到:x


1 2
gt 2

c1t

c2
微分方程
例3:简谐振动
胡克定律:F kx
由牛顿第二定律:
kx

m
d2x dt 2
d2x k
dt 2
x0 m
如何求解?
微分方程
微分方程的基本概念
含未知函数及其导数的方程叫做微分方程 方程中所含未知函数导数的最高阶数叫做微分方程的阶
通解—解中所含独立的任意常数的个数与方程的阶数相同
.
特解—不含任意常数的解
微分方程
二阶微分方程
y P(x) y Q(x) y f (x), 二阶线性微分方程
酒也。节奏划分思考“山行/六七里”为什么不能划分为“山/行六七里”?
会员免费下载 明确:“山行”意指“沿着山路走”,“山行”是个状中短语,不能将其割裂。“望之/蔚然而深秀者”为什么不能划分为“望之蔚然/而深秀者”?明确:“蔚然而深秀”是两个并列的词,不宜割裂,“望之”是总起词语,故应从其后断句。【教学提示】引导学生在反复朗读的过程中划分朗读节奏,在划分节奏的过程中感知文意。对于部分结构复杂的句子,教师可做适

常系数齐次线性微分方程解法

常系数齐次线性微分方程解法

第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程y ′′+py ′+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ′′+py ′+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ′′+py ′+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r −±+−= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数、是方程的两个线性无关的解.x r e y 11=x r e y 22= 这是因为,函数、是方程的解, 又x r e y 11=x r e y 22=x r r x r x r e ee y y )(212121−==不是常数. 因此方程的通解为.x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1=r 2时, 函数、是二阶常系数齐次线性微分x r e y 11=x r xe y 12=方程的两个线性无关的解.这是因为, 是方程的解, 又x r e y 11=x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+′+′′ ,0)()2(121111=++++=q pr r xe p r e x r x r 所以也是方程的解, 且xr xe y 12=x e xe y y x r x r ==1112不是常数. 因此方程的通解为.x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α−i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α−i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α−i β)x =e αx (cos βx −i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1−y 2=2ie αx sin βx , )(21sin 21y y ix e x −=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ′′+py ′+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ′′−2y ′−3y =0的通解.解 所给微分方程的特征方程为r 2−2r −3=0, 即(r +1)(r −3)=0.其根r 1=−1, r 2=3是两个不相等的实根, 因此所求通解为y =C 1e −x +C 2e 3x .例2 求方程y ′′+2y ′+y =0满足初始条件y |x =0=4、y ′| x =0=−2的特解.解所给方程的特征方程为r2+2r+1=0,即(r+1)2=0.其根r1=r2=−1是两个相等的实根,因此所给微分方程的通解为y=(C1+C2x)e−x.将条件y|x=0=4代入通解,得C1=4,从而y=(4+C2x)e−x.将上式对x求导,得y′=(C2−4−C2x)e−x.再把条件y′|x=0=−2代入上式,得C2=2.于是所求特解为x=(4+2x)e−x.例 3 求微分方程y′′−2y′+5y= 0的通解.解所给方程的特征方程为r2−2r+5=0.特征方程的根为r1=1+2i,r2=1−2i,是一对共轭复根,因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程:方程y(n) +p1y(n−1)+p2 y(n−2) +⋅⋅⋅+p n−1y′+p n y=0,称为n阶常系数齐次线性微分方程,其中p1,p2 ,⋅⋅⋅,p n−1,p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.引入微分算子D,及微分算子的n次多项式:L(D)=D n+p1D n−1+p2 D n−2 +⋅⋅⋅+p n−1D+p n,则n阶常系数齐次线性微分方程可记作(D n+p1D n−1+p2 D n−2 +⋅⋅⋅+p n−1D+p n)y=0或L(D)y=0.注: D叫做微分算子D0y=y, D y=y′, D2y=y′′, D3y=y′′′,⋅⋅⋅,D n y=y(n).分析:令y=e rx,则L(D)y=L(D)e rx=(r n+p1r n−1+p2 r n−2 +⋅⋅⋅+p n−1r+p n)e rx=L(r)e rx.因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.n阶常系数齐次线性微分方程的特征方程:L(r)=r n+p1r n−1+p2 r n−2 +⋅⋅⋅+p n−1r+p n=0称为微分方程L(D)y=0的特征方程.特征方程的根与通解中项的对应:单实根r对应于一项:Ce rx;一对单复根r 1, 2=α ±i β 对应于两项: e αx (C 1cos βx +C 2sin βx );k 重实根r 对应于k 项: e rx (C 1+C 2x + ⋅ ⋅ ⋅ +C k x k −1);一对k 重复根r 1, 2=α ±i β 对应于2k 项:e αx [(C 1+C 2x + ⋅ ⋅ ⋅ +C k x k −1)cos βx +( D 1+D 2x + ⋅ ⋅ ⋅ +D k x k −1)sin βx ].例4 求方程y (4)−2y ′′′+5y ′′=0 的通解.解 这里的特征方程为r 4−2r 3+5r 2=0, 即r 2(r 2−2r +5)=0,它的根是r 1=r 2=0和r 3, 4=1±2i .因此所给微分方程的通解为y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ).例5 求方程y (4)+β 4y =0的通解, 其中β>0.解 这里的特征方程为r 4+β 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±−=β. 因此所给微分方程的通解为)2sin 2cos (212x C x C e y x βββ+=)2sin 2cos (432 x C x C e x βββ++−.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y ′′+py ′+qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数.二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法:一、 f (x )=P m (x )e λx 型当f (x )=P m (x )e λx 时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e λx , 将其代入方程, 得等式Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).(1)如果λ不是特征方程r 2+pr +q =0 的根, 则λ2+p λ+q ≠0. 要使上式成立, Q (x )应设为m 次多项式:Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=Q m (x )e λx .(2)如果λ是特征方程 r 2+pr +q =0 的单根, 则λ2+p λ+q =0, 但2λ+p ≠0, 要使等式 Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +1 次多项式:Q (x )=xQ m (x ),Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解 y *=xQ m (x )e λx .(3)如果λ是特征方程 r 2+pr +q =0的二重根, 则λ2+p λ+q =0, 2λ+p =0, 要使等式 Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +2次多项式:Q (x )=x 2Q m (x ),Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=x 2Q m (x )e λx .综上所述, 我们有如下结论: 如果f (x )=P m (x )e λx , 则二阶常系数非齐次线性微分方程y ′′+py ′+qy =f (x )有形如y *=x k Q m (x )e λx的特解, 其中Q m (x )是与P m (x )同次的多项式, 而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y ′′−2y ′−3y =3x +1的一个特解.解 这是二阶常系数非齐次线性微分方程, 且函数f (x )是P m (x )e λx 型(其中P m (x )=3x +1, λ=0). 与所给方程对应的齐次方程为y ′′−2y ′−3y =0,它的特征方程为r 2−2r −3=0.由于这里λ=0不是特征方程的根, 所以应设特解为y *=b 0x +b 1.把它代入所给方程, 得−3b 0x −2b 0−3b 1=3x +1,比较两端x 同次幂的系数, 得, −3b ⎩⎨⎧=−−=−13233100b b b 0=3, −2b 0−3b 1=1.由此求得b 0=−1, 311=b . 于是求得所给方程的一个特解为 31*+−=x y .例2 求微分方程y ′′−5y ′+6y =xe 2x 的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx 型(其中P m (x )=x , λ=2). 与所给方程对应的齐次方程为y ′′−5y ′+6y =0,它的特征方程为r 2−5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为 Y =C 1e 2x +C 2e 3x .由于λ=2是特征方程的单根, 所以应设方程的特解为 y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得−2b 0x +2b 0−b 1=x .比较两端x 同次幂的系数, 得, −2b ⎩⎨⎧=−=−0212100b b b 0=1, 2b 0−b 1=0. 由此求得210−=b , b 1=−1. 于是求得所给方程的一个特解为 x e x x y 2)121(*−−=. 从而所给方程的通解为 x x x e x x e C e C y 223221)2(21+−+=.提示:y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,[(b 0x 2+b 1x )e 2x ]′=[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x ,[(b 0x 2+b 1x )e 2x ]′′=[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x .y *′′−5y *′+6y *=[(b 0x 2+b 1x )e 2x ]′′−5[(b 0x 2+b 1x )e 2x ]′+6[(b 0x 2+b 1x )e 2x ] =[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x −5[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x +6(b 0x 2+b 1x )e 2x =[2b 0+4(2b 0x +b 1)−5(2b 0x +b 1)]e 2x =[−2b 0x +2b 0−b 1]e 2x .方程y ′′+py ′+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解形式应用欧拉公式可得e λx [P l (x )cos ωx +P n (x )sin ωx ]]2)(2)([ ie e x P e e x P e x i x i n x i x i l x ωωωωλ−−−++= x i n lx i n l e x iP x P e x iP x P )()()]()(21)]()([21ωλωλ−+++−= x i x i e x P e x P )()()()(ωλωλ−++=, 其中)(21)(i P P x P n l −=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y ′′+py ′+qy =P (x )e (λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x , 则)(1)(*ωλi m k e x Q x y −=必是方程)()(ωλi e x P qy y p y −=+′+′′的特解, 其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1. 于是方程y ′′+py ′+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解为 x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ−++= )sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ−++= =x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ].综上所述, 我们有如下结论:如果f (x )=e λx [P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非齐次线性微分方程 y ′′+py ′+qy =f (x )的特解可设为y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],其中R (1)m (x )、R (2)m (x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω (或λ−i ω)不是特征方程的根或是特征方程的单根依次取0或1.例3 求微分方程y ′′+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )属于e λx [P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y ′′+y =0,它的特征方程为r 2+1=0.由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为 y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(−3ax −3b +4c )cos2x −(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31−=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+−=. 提示:y *=(ax +b )cos2x +(cx +d )sin2x .y *′=a cos2x −2(ax +b )sin2x +c sin2x +2(cx +d )cos2x ,=(2cx +a +2d )cos2x +(−2ax −2b +c )sin2x ,y *′′=2c cos2x −2(2cx +a +2d )sin2x −2a sin2x +2(−2ax −2b +c )cos2x =(−4ax −4b +4c )cos2x +(−4cx −4a −4d )sin2x .y *′′+ y *=(−3ax −3b +4c )cos2x +(−3cx −4a −3d )sin2x .由, 得⎪⎩⎪⎨⎧=−−=−=+−=−0340304313d a c c b a 31−=a , b =0, c =0, 94=d .。

线性微分方程解的结构

线性微分方程解的结构
c1 y1 ( x) + c2 y2 ( x) ≡ 0 x∈I ,
上线性无关。 则 y1 ( x) 与 y2 ( x) 在区间 I 上线性无关。


证明: cos 线性无关的。 证明: x 与 sin x 在任何一个区间上均为 线性无关的。
上线性相关, 若 cos x 与 sin x 在某区间 I 上线性相关,则存在不 全为零
π
2
) 上线性无关。 上线性无关。
(3) 二阶齐线性微分方程解的结构 定理 1 若 y1 ( x)、y2 ( x) 是二阶齐线性方程
y′′ + p ( x) y′ + q( x) y = 0
的两个线性无关的解, 的两个线性无关的解,则
(2)
y ( x) = c1 y1 ( x) + c2 y2 ( x)
x ex W [ x, e x ] = = e x ( x − 1) , 1 ex
从而, 线性无关。 由题意 x ≠ 1,故 W [ x, e x ] ≠ 0,从而,x 与 e x 线性无关。
由叠加原理, 由叠加原理,原方程的通解为
y = C1 x + C2 e x 。
问题: 问题:
的一个解, 如果已知 y1 ( x) 是方程 y′′ + p( x) y′ + q ( x) y = 0 的一个解, 如何求出方程的一个与 y1 ( x) 线性无关的解 y2 ( x) ?
怎么做?
′ y1 z ′ + (2 y1 + p ( x) y1 ) z = 0。
即 故有
z′ +
′ 2 y1 + p ( x) y1 z = 0。 y1

关于 z 的一阶线性方程

线性微分方程解的结构

线性微分方程解的结构

成正比, 方向相反. 建立位移满足的微分方程.
解 取平衡时物体的位置为坐标原点,
如图建立坐标系. 设时刻 t 物体位移为x = x(t).
物体所受的力有: 1. 弹性恢复力
o x
2. 阻力
x
据牛顿第二定律得
c 令 2 n , k , 则得有阻尼自由振动方程: m m d2 x dx 2n k 2 x 0. dt d t2
Y C1 cos x C2 sin x ,
因此该方程的通解为
例1 已知 e x , e x 为二阶线性齐次方程y y 0 的两个解 , 又 y x 为 y y x 的一个特解, 求 y y x 的通解.
y x C1e C2e
三、已知 y1 ( x ) e x 是齐次线性方程 ( 2 x 1) y ( 2 x 1) y 2 y 0 的一个解,求此方程 的通解 . 四、已知齐次线性方程 x 2 y xy y 0 的通解为 Y ( x ) c1 x c 2 x ln x ,求非齐次线性方程 x 2 y xy y x 的通解 .
2

* y1* y 2 就是原方程的特解. 的特解, 那么
(非齐次方程之解的叠加原理)
n 阶线性微分方程
y ( n ) P1 ( x ) y ( n1) Pn1 ( x ) y Pn ( x ) y f ( x ).
二阶非齐次线性方程的解的结构可以推广:
定理 设 y 是 n 阶非齐次线性方程
y3 y2 e x , y2 y1 x 2 是对应齐次方程的解,
y3 y2 e 2 常数 y2 y1 x
x

常系数齐次线性微分方程组

常系数齐次线性微分方程组

是特征根, 对应的特征向量也与 对应的特征
向量共轭,因此方程组(2)出现一对共轭
的复值解.
常系数线性方程组
例 求解方程组
dx dt
1
2
5 1 x
解 系数矩阵A的特征方程为
1 5 2 9 0 2 1
故有特征根 1 3i, 2 3i 且是共轭的. 1 3i 对应的特征向量 r (r1, r2 )T 满足方程
2
x1
(t
)
3
et
.
2
常系数线性方程组
对2 1 2i, 有特征向量 r2 (0,1, i)T . 因此
0
0 0
x(t)
1
e(1
2i
)t
et (cos 2t
i
sin
2t
)
1
i
0
i
1 1
0 0
et
cos
2t
iet
sin 2t
.
sin 2t cos 2t
常系数线性方程组
(1 3i)r1 5r2 0
取 r1 5 得 r2 1 3i,则 r (5,1 3i)T是 1
对应的特征向量,因此原微分方程组有解
x(t)
1
5 3i
e3it
5e3it
(1
3i)e3it
cos
3t
5cos 3t 5i sin 3t 3sin 3t i(sin 3t
x(t)
X
(t)
1
1
X (t)
t 0
X
(s)
es
0
ds
cos 2s
常系数线性方程组
0
0
et

4.2.1常微分方程-线性齐次常系数方程解读

4.2.1常微分方程-线性齐次常系数方程解读

1 , 2 ,L, n
均为实根
方程 ( ) 的通解可表示为
x c1e 1t c2 e 2t cn e nt
②若特征方程有复根 因方程的系数是实常数。复根将成对共轭出现 设
1 a ib 是方程的一个特征根
2 a ib 也是一个特征根 则方程 ( ) 有两个复值解
e e
(a i b ) t (a i b ) t
e (cos bt i sin bt )
ea t (cos bt i sin bt )
at
对应两个实值解
e cos bt , e sin bt
at
at
例1 解
求方程 x 2 x 3x 0
第一步:求特征根
的通解。
性质1
e e
t
t
性质2
性质3 性质4
det et dt
e
( 1 2 ) t
e e
1t 2t
d n et n t e n dt
3、复值解 定义 如果定义在 [a, b] 上的实变量的复值函数
x z (t ) 满足方程
dnx d n 1 x a1 (t ) n 1 n dt dt dx an 1 (t ) an (t ) x f (t ) dt ()
三、变系数齐次线性方程
欧拉(Euler) 方程
n n 1 d x d x dx n n 1 t a1t an1t an x f (t ) n n 1 dt dt dt
其中 a1 , a2 ,..., an 为常数。
引入自变量代换
t eu , u ln t
类似方法进行下去,可得

(完整word)高等数学:常微分方程的基础知识和典型例题

(完整word)高等数学:常微分方程的基础知识和典型例题

常微分方程1 .( 05,4 分)微分方程xy 2yxln x 满足y(1)22x y)= x ln x.2 .( 06,4 分) 微分方程 y= y(1 x)的通解为 ———— x分析:这是可变量分离的一阶方程,分离变量得dy( 11)dx.积分得 ln y ln x x C 1,即 y e C1xe x yxy Cxe x, 其中C 为任意常数 .(二)奇次方程与伯努利方程1 .( 97,2,5 分) 求微分方程 (3x2 2xy y 2)dx (x 22xy)dy 0的通解解:所给方程是奇次方程 . 令 y=xu, 则 dy=xdu+udx. 代入原方程得 3 ( 1+u- u 2) dx+x(1-2 u) du=0. 分离变量得1-2u2 du 3dx, 1uu x积分得 ln 1 u u 2 3ln x C 1,即 1 u u 2=Cx 3. 以 u y代入得通解 x 2xy y 2.xx( y x 2y 2)dx xdy 0(x 0),2 .(99,2,7 分 ) 求初值问题 的解 .y x1 0分析:这是一阶线性微分方程原方程变形为 . dy +2y dx x 2 dx lnx, 两边乘 e x=x 得积分得y(1)x 2y=C+ x 2 ln xdx C 1 ln xdx 3 3 1 11 得 C 0 y xln x x.9 39 C 1 x 3 ln x 3 13 x. 9 1 的解解:所给方程是齐次方程 (因 dx, dy 的系数 (y+ x 2 y 2)与 (-x)都是一次齐次函数)令 dy xdu udx,带入得x(u 1 u 2dx x( xdu udx) 0, 化简得 12u 2dx xdu 0.分离变量得dx- du=0. x 1 u 2积分得 ln x ln(u 1 u 2) C 1,即 u 1 u 2Cx. 以 u y代入原方程通解为y+ x 2 y 2 Cx 2.x 再代入初始条件 y x 1 0,得 C=1.故所求解为 y+x 2y2x 2,或写成y 12 (x 2 1).(三)全微分方程 练习题(94,1,9 分)设 f ( x)具有二阶连续导数, f (0) 0, f (0) 1,且 [xy(x+y)- f(x)y]dx+[ f (x)+x 2y]dy=0为一全微分方程,求 f(x)以及全微分方程的通解先用凑微分法求左端微分式的原函数:122 122( y dx x dy ) 2( ydx xdy ) yd (2sin x cos x) (2sin x cos x)dy 0, 22 122d [ x y 2xy y (cos x 2sin x)] 0. 2其通解为 1x 2y 2 2xy y (cos x 2sin x) C.4.( 98,3分) 已知函数y y(x)在任意点x 处的增量 y= y2 x ,当 x0时 ,1x是 x 的高阶无穷小,y(0)= ,则 y(1)等于 ( )解:由全微分方程的条件,有 即 x22xy f (x) f (x)y因而 f (x)是初值问题y x 2[xy(x y) f(x)y] y 2xy, 亦即 f (x) f (x) x 2.2yx的解,从而解得0, y x 0 12.22[ f (x) xy], x 2sin x cosx)dy 0.(A)2 .(B) .(C)e 4 .(D) e 4 .分析:由可微定义,得微分方程 y y. 分离变量得21x1y dx2,两边同时积分得 ln y arctan x C ,即 y Ce arctanx.y1x代入初始条件y(0) ,得 C= ,于是 y(x) earctanx,由此, y(1) e 4.应选 ( D)二、二阶微分方程的可降阶类型5( . 00,3分) 微分方程 x y 3y 0的通解为分析:这是二阶微分方程的一个可降阶类型,令 y =P( x),则 y =P ,方程可化为一阶线性方程xP 3P 0,标准形式为 P+3P=0,两边乘 x 3得 (Px 3) =0. 通解为 y P C 30 .xx再积分得所求通解为 y C 22C 1.x216 .( 02,3分)微分方程 yy y 2=0满足初始条件y x 01, y x 0 2的特解是分析:这是二阶的可降阶微分方程 .令 y P(y)(以 y 为自变量 ),则 y dy dP P dP.dx dx dy代入方程得 yP dP +P 2=0,即 y dP+P=0(或 P=0, ,但其不满足初始条件y x 0 1)dy dy2分离变量得 dP dy 0,PyC积分得 ln P +ln y =C ,即 P= 1(P=0对应 C 1=0); y11由 x 0时 y 1, P=y , 得 C 1 ,于是221 y P ,2 ydy dx, 积分得 y x C 2 2y .又由 y x 0 1 得 C 2. 1,所求特解为 y 1 x.三、二阶线性微分方程(一)二阶线性微分方程解的性质与通解结构7 .( 01,3分)设 y e x(C 1sin xC 2cosx)(C 1,C 2为任意常数 )为某二阶常系数线性齐次微分方程的通解,则该方程为 ___ .r1,r2 1 i,从而得知特征方程为分析一:由通解的形式可得特征方程的两个根是22(r r1 )(r r2) r (r1 r2 )r r1r2 r 2r 2 0.由此,所求微分方程为y 2y 2y 0.分析二:根本不去管它所求的微分方程是什么类型(只要是二阶),由通解y e x(C1sinx C2 cosx)求得y e x[( C1 C2 )sin x (C1 C2)cos x], y e x( 2C2 sin x 2C1 cos x),从这三个式子消去C1与C2,得y 2y 2y 0.(二)求解二阶线性常系数非齐次方程9.( 07,4分) 二阶常系数非齐次线性微分方程y 4y 3y 2e2x的通解为y=分析:特征方程24 3 ( 1)( 3) 0的根为1, 3.非齐次项 e x, 2不是特征根,非齐次方程有特解y Ae2x.代入方程得(4A 8A 3A)e2x2e2x A 2.因此,通解为y C1e x C2e3x2e2x..10.(10,10分 )求微分方程y 3y 2y 2xe x的通解.分析:这是求二阶线性常系数非齐次方程的通解.1由相应的特征方程2 3 2 0, 得特征根 1 1, 2 2 相应的齐次方程的通解为y C1e x C2e2x.2非齐次项 f ( x) 2xe x , 1是单特征根,故设原方程的特解xy x(ax b)e .代入原方程得ax2 (4a b)x 2a 2b 3[ax2 (2a b)x b] 2(ax2 bx) 2x,即 2ax 2a b 2x, a 1,b 2.3原方程的通解为y C1e x C2e2x x(x 2)e x,其中 C1,C2为两个任意常数.04, 2, 4分)微分方程y y x2 1 sin x的特解形式可设为( )22(A)y ax bx c x(Asin x B cosx).(B)y x(ax bx c Asin x B cos x).22(C)y ax bx c Asin x.(D )y ax bx c Acosx.分析:相应的二阶线性齐次方程的特征方程是2 1 0,特征根为i .y y x2 1L()与 1 y y sin xL( 2)方程 (1) 有特解 y ax2 bx c,方程(2)的非齐次项 f (x) e x sin x sin x( 0, 1,i 是特征根), 它有特解y x(Asin x B cosx).y ax2 bx c x(Asin x Bbcosx).应选 (A).(四)二阶线性变系数方程与欧拉方程12.(04, 4分 )欧拉方程x2 d2y 4x dy 2y 0(x 0)的通解为dx dx分析:建立 y 对 t 的导数与y 对 x 的导数之间的关系 .222dy dy dx dyd y d y 2 dy 2 d y dy( sin x), 2 2 sin t cost (1 x ) 2 x .dt dx dt dx dt dx dx dx dxd 2y于是原方程化为 2 y 0,其通解为 y C 1 cost C 2sint.dt 2 回到 x 为自变量得 y C 1x C 2 1 x 2.x由 y (0) C 2 1 C 2 1.y(0) C 1x 02 C 1 2.1 x 2因此 特解为 y 2x 1 x 2 .四、高于二阶的线性常系数齐次方程13.( 08, 4分)在下列微分方程中,以 y C 1e xC 2cos2x C 3 sin 2x(C 1, C 2, C 3为任意常数)为通 解的是()(A)y y 4y 4y 0.(B)y y 4y 4y 0. (C)y y 4y 4y 0.(D ) y y 4y 4y 0.分析:从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是: 1, 2i(i 1),对 应的特征方程是 ( 1)( 2i)( 2i) ( 1)( 24) 3244 0,因此所求的微分方程是 y y 4y 4y 0,选(D).(00,2,3分 ) 具有特解 y 1 e x , y 2 2xe x ,y 3 3e x的三阶常系数齐次线性微分方程是( )(A)y y y y 0.(B)y y y y 0. (C)y 6y 11y 6y 0.(D)y2y y 2y 0.分析:首先,由已知的三个特解可知特征方程的三个根为 r 1 r 21,r 3 1,从而特征方程为(1)求导数 f (x); (2)证明:当 x 0时 ,成立不等式 e分析:求解欧拉方程的方法是:作自变量22d y dy d y dy 2 (4 1) 2y 0,即 2 3 2y xe t(t l n x),将它化成常系数的情形: 0.1, 2 2, 通解为 yC 1e t C 2e 2t. y C 1 x C 22,其中C 1,C 2为任意常数(05,2,12分 )用变量代换 xcost (0 t)化简微分方程 (1 x 2)y xy y 0,并求其(r 1)2(r 1) 0,即r3r 2r 1 0,由此,微分方程为y y y y 0.应选(D).五、求解含变限积分的方程00, 2,8分) 函数y=f(x)在0, 上可导,f (0) 1,且满足等式1xf (x) f (x) 1 f (t)dt 0,x10f(x) 1.求解与证明()首先对恒等式变形后两边求导以便消去积分: 1x(x 1)f (x) (x 1)f(x) 0f (t)dt 0,(x 1)f (x)(x 2)f (x)0.在原方程中令变限 x 0得 f (0) f (0) 0,由 f (0) 1,得 f (0) 1.现降阶:令 u f (x),则有 u x 2u 0,解此一阶线性方程得x1x e f (x) u C eu 0x1 x e 由 f (0) 1,得 C 1,于是 f (x) e. x1xe (2)方法 1 用单调性 . 由f (x) e0(x 0), f (x)单调减 , f(x) f(0) 1(x );x1x 又设 (x) f (x) e x ,则 (x) f (x) e x x e x0(x 0), (x)单调增,因此 (x)x1 (0) 0(x 0),即 f(x) e x(x 0) . 综上所述,当 x 0时 ,e x f (x) 1.方法 2 用积分比较定理 . 由 牛顿 -莱布尼茨公式,有六、应用问题 (一)按导数的几何应用列方程 练习题 1 .( 96,1,7分)设对任意 x 0,曲线 y f(x)上点 (x, f(x))处的切线在 y 轴上的截距等于1 xf (t)dt,求 f ( x)的一般表达式 . x 0解:曲线 y f (x)上点 (x, f ( x))处的切线方程为 Y f ( x) f ( x)( X x).令 X 0得 y 轴上的截距 Y f(x) xf (x).由题意 1x1f(t)dt f(x) xf (x) x 0x, 得x 2f(t)dt xf (x) x 2f (x)( ) 恒等式两边求导,得 f (x) f (x) xf (x) 2xf (x) x 2f ( x),即 xf (x) f (x) 0 在 ( )式中令 x 0得 0 0,自然成立 . 故不必再加附加条件. 就是说f (x)是微分方程 xy y 0的通解 . 令 y P(x),则 y P ,解 xP P 0,得 y P C 1.xf ( x) f (0) x0 f (t)dt, f(x) t 由于 0 e t1从而有 e x e t (t 0),有 0 f (x) 1. 0t e t d t 1 dt . 1 x t e t dt x e (x再积分得 y f ( x) C1 ln x C2.12( . 98,2,8分) 设 y y(x)是一向上凸的连续曲线 ,其上任意一点 (x, y)处的曲率为 1,1 y 2y P tan( x).(二 )按定积分几何应用列方程3.(97,2,8分 )设曲线 L 的极坐标方程为 r r( ), M (r, )为 L 上任一点 ,M 0(2,0)为 L 上一定点 ,若极径 OM 0,OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M 0、 M 两点间弧长值的一半, 求曲线L 的方程 .且此曲线上点 (0,1)处的切线方程为 y x 1, 求该曲线的方程,并求函数 y y( x)的极值 .解:由题设和曲率公式有y( x)向上凸 , y 0, y令 y P(x),则 y P ,方程化为 y) ,化简得 y 12. yP1 P 21, dP 分离变量得 2 dx,积分得C 1.y (0) 1即 P(0) 1,代入可得 C 1,故再积分得 y ln cos( x) C 2 又由题设可知y(0)1,代入确定 C 2 11ln 2,1y ln cos( x) 1 ln 2x , 即当 4 2,3时 ,cos( x) 0, 而3 或 时, 44cos( x)y ln cos( 40,ln cos( x)1 x) 12 ln2( 4 x34 )显然,当 x 时 ,ln cos( x) 4410, y 取最大值 1 1ln 2,显然 y 在 (3),没有极小值解:由已知条件得r 2d r 2 r 2d , 2020 两边对 求导 ,,得 r 2 r 2 r (隐式微分方程)2 ,解出 r r r 2 1,从而, L 的直角坐标方程为 x m 3y 2.1 arccos r 分离变量,得 dr r r 2 dr r r 2 1 d 1 1 d( )1 r (r 1)2 arccos 1 , 或 r dr r r 2 1d tarccos 1(r sect ) 两边积分,得 代入初始条件 r(0) 2,得 1arccos 2 1arccos r3L 的极坐标方程为 1 r cos( ) 31 co s 3si。

微分方程要点概要

微分方程要点概要

4、 全微分方程(恰当方程 )
M N M x, y dx N x, y dy 0, 其中 y x
必存在 F x, y 满足 dF x, y M x, y dx N x, y dy 可得解: F x, y c
或选折线 x0 , y0 x, y0 x, y 积分,得
x M x, y0 dx y N x, y dy c
0 0
x
y
若存在 x, y 使 (M )dx (N )dy 0 为全微分方程, 则称 ( x, y) 为积分因子。
由 M N , 得 y M M y x N N x y x
a1 x b1 y c1 dy 2、 f dx a2 x b2 y c2 a1 b1 若 , 令 u a2 x b2 y c2 a2 b2 a1x b1 y c1 0 a1 b1 若 , 先解 得唯一解 x0 , y0 a2 b2 a2 x b2 y c2 0 x X x0 dY Y 再令 , 原方程化为 g dX X y Y y0
(1) ( 2) y x k ex [ Rm ( x) cosx Rm ( x) sin x]
0 , 若 i 不是特征根; 其中k 1 , 若 i 是特征根.
R ( x) , R ( x) 为两m次多项式, m maxl , n
(1) m ( 2) m
6、特殊代换
二、可降阶的高阶微分方程
一般 F x, y, y, y 0, 其中可求解形式为 y f x, y, y
1、 yn f x : 积分 n 次.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三阶常系数齐次线性微分方程通解结构三阶常系数齐次线性微分方程是指形如$ay+by+cy+dy=0$的三阶常系数齐次线性微分方程,其中a,b,c,d均为常数。

因此,三阶常系数齐次线性微分方程又称为三阶常系数线性普通微分方程,是初等微积分学中较为重要的一类微分方程。

二、定理
假设 y = y(x)为$ay+by+cy+dy=0$的通解,则满足下列条件:(1)若 $b^2-3ac>0$,则存在常数$C_1、C_2、C_3$,使得通解可以表示为
$$y=C_1e^{lambda_1x}+C_2e^{lambda_2x}+C_3e^{lambda_3x}$$ 其中$lambda_1、lambda_2、lambda_3$分别为
$$lambda_1= frac{-b-sqrt{b^2-3ac}}{3a},lambda_2=
frac{-b+frac{sqrt{3}}{2}isqrt{4ac-b^2}}{3a},lambda_3=
frac{-b-frac{sqrt{3}}{2}isqrt{4ac-b^2}}{3a}$$
(2)若$b^2-3ac=0$,则存在常数$C_1、C_2、C_3$,使得通解可以表示为
$$y=C_1x^3+C_2x^2+C_3x+C_4$$
(3)若$b^2-3ac<0$,则存在常数$C_1、C_2、C_3$,使得通解可以表示为
$$y=C_1cos(lambda_1x)+C_2sin(lambda_1x)+C_3cos(lambda_2x)+C
_4sin(lambda_2x)$$
其中$lambda_1、lambda_2$分别为
$$lambda_1=-frac{b}{3a}+frac{sqrt{3}}{3a}sqrt{3ac-b^2},lambda_2=-frac{b}{3a}-frac{sqrt{3}}{3a}sqrt{3ac-b^2}$$
三、公式
从上述定理中可以看出,三阶常系数齐次线性微分方程的通解可以分为三类:
(1)$b^2-3ac>0$的情况:
$$y=C_1e^{lambda_1x}+C_2e^{lambda_2x}+C_3e^{lambda_3x}$$ (2)$b^2-3ac=0$的情况:
$$y=C_1x^3+C_2x^2+C_3x+C_4$$
(3)$b^2-3ac<0$的情况:
$$y=C_1cos(lambda_1x)+C_2sin(lambda_1x)+C_3cos(lambda_2x)+C _4sin(lambda_2x)$$
四、推导
(1)$b^2-3ac>0$的情况:
两边同时乘以$e^{-lambda_1x},e^{-lambda_2x},
e^{-lambda_3x}$,得到
$$e^{-lambda_1x}(alambda_1^3y+blambda_1^2y+clambda_1y+dy)=e ^{-lambda_2x}(alambda_2^3y+blambda_2^2y+clambda_2y+dy)=e^{-lambda_3x}(alambda_3^3y+blambda_3^2y+clambda_3y+dy)=0$$ 即
$$(alambda_1^3+blambda_1^2+clambda_1+d)e^{-lambda_1x}y+(bla mbda_1^2+2clambda_1+d)e^{-lambda_1x}y+(clambda_1+d)e^{-lamb da_1x}y+(d)e^{-lambda_1x}y=0$$
令$e^{-lambda_1x}y=Y$,$e^{-lambda_1x}y=Y’$,
$e^{-lambda_1x}y=Y’’$,$e^{-lambda_1x}y=Y’’’$
得到一阶齐次线性微分方程的一般解为
$y=e^{lambda_1x}(C_1+C_2x+C_3x^2+C_4x^3)$
可知,设$C_1=C_2=C_3=0$,有特解$y_p=C_4e^{lambda_1x}x^3$ 所以,原方程的通解为
$$y=C_1e^{lambda_1x}+C_2e^{lambda_2x}+C_3e^{lambda_3x}+C_4e ^{lambda_1x}x^3$$
(2)$b^2-3ac=0$的情况:
类似上述推导,原方程的通解为
$$y=C_1x^3+C_2x^2+C_3x+C_4$$
(3)$b^2-3ac<0$的情况:
类似上述推导,原方程的通解为
$$y=C_1cos(lambda_1x)+C_2sin(lambda_1x)+C_3cos(lambda_2x)+C _4sin(lambda_2x)$$
五、例题
例 1:求解$y3y+3yy=0$的通解。

解:此方程可化为$y3y+3yy=0$
满足$b^2-3ac=0$,故此方程的通解为
$$y=C_1x^3+C_2x^2+C_3x+C_4$$
六、总结
本文完成了对三阶常系数齐次线性微分方程的通解结构的介绍,具体包括定义、定理、公式以及推导、例题以及总结等内容。

首先,介绍了定义,提出了此类方程的形式;接下来,介绍了定理,构成了此类方程的通解;随后,介绍了公式,根据不同情况建立通解的方程;接着,介绍了推导,分三种情况对原方程的通解进行推导;最后,介绍了例题,通过实际计算求得特解和通解;同时也总结了此文的内容。

本文所述内容给出了三阶常系数齐次线性微分方程的通解结构,为进一步研究类似问题提供了理论依据。

相关文档
最新文档