二阶常系数齐次线性微分方程(精选)
二阶常系数齐次线性微分方程

求ypyqy0的通解的步骤
•第一步 写出微分方程的特征方程
r2prq0;
•第二步 求出特征方程的两个根r1、r2; •第三步 根据特征方程的两个根的不同情况 写出微分方程的
通解
Jlin Institute of Chemical Technology
上页 下页 返回 退出
•特征方程的根与通解的关系
而
ex
cos
x
1 2
(
y1
y2)
ex
sin
x
1 2i
(
y1
y2)
>>>
故excosx和exsinx也是方程的解;
函数excosx与exsinx的比值为cotx 不是常数
故excosx和exsinx是方程的线性无关解
Jlin Institute of Chemical Technology
§12.8 二阶常系数齐次线性微分方程
方 程 ypyqy0 称 为 二 阶 常 系 数 齐 次线性微分方程 其中p、q均为常数
如果y1、y2是二阶常系数齐次线性微分 方程的两个线性无关解 那么yC1y1C2y2 就是它的通解
Jlin Institute of Chemical Technology
•特征方程的根与通解中项的对应
•单实根r对应于一项 Cerx ;
•一对单复根r1 2i 对应于两项 ex(C1cosxC2sinx);
•k重实根r对应于k项 erx(C1C2x Ckxk1);
•一对k重复根r1 2i 对应于2k项 ex[(C1C2x Ck xk1)cosx(D1D2x Dkxk1)sinx]
高等数学-十九 二阶线性常系数齐次微分方程-精选文档

(常数)
定理3
若
y 是二阶线性非齐次方程(2)的特解,
y 是方程(2)所对应的齐次方程的通解,则
Y y y 就是方程(2)的通解。
定理4 若 y 1 , y 2 分别是方程
a y b y c y f () x 1
与 a y b y c y f () x 的特解, 那么 y y 1 y 2 2
x 2
3
x
e 2x
x
x
根据例1知道该方程所对应的齐次方程的通解 ,所以该方程的通解为 yce cx 1 2 e x x 1 3 x Y ce cx 1 2 e xe 3
x
二、二阶线性常系数齐次微分方程求通解的方法
a y b y c y 0
由定理知,要求齐次线性方程的通解,只要 求出它的两个线性无关的特解即可.
ye
x
y e
代入齐次方程得
y e ( 为常数) 2 x x x a e b e c e 0
2 x
x
e( a b c ) 0
x
2
e( a b c ) 0 e
x
2
x
0
a b c 0
二阶线性常系数微分方程
一. 二阶线性常系数微分方程解的性质
二. 二阶线性常系数齐次微分方程求解的方法
形如
a y b y c y fx () (其中 a , b , c 为常数)
即
叫做二阶线性常系数微分方程 当
f ( x) 0
a y b y c y 0 (1 )
bcy acy ( 1 1 cy ccy ( 1 1 cy ( 1 1 cy ) 2 2) 2 2) 2 2
10.6二阶常系数齐次线性微分方程

微积分
二阶常系数齐次微分方程
―、特征方程法
二阶常系数齐次线性方程解法
特征方程法
y" + py' + qy = 0
设y = /x,将其代入上方程,
(r2 + pr + q )erx = 0
得
故有 r °+ pr + q = 0
主 ・.・e’x 特征0方, 程
特征根 % =~P2 -4q, 2
微积分
例2求微分方程y" -2y -8y=0
解特征方程为
r2 一 2r 一 8 = (r 一 4)(r + 2) = 0
解得 “=4g=_2
故所求通解为
一 y = c1 e4 x + c 2 e
2x
经济数学
微积分
例 , 3求方程y" + 2y + 5y = 0的通
解. 解 特征方程为r2 + 2r + 5 = 0 ,
3)有一对共轭复根(A< 0)
伊 特征根为 r = a + ip, r2 = a- ,
( 伊 ) y1 = e a+ )% y2 = e(a-ip x,
1
重新组合yi = 2顷1 + y 2) =e" * p,
_i
y2 =
(yi - y2) =e"sin p,
2i
(注:利用欧拉公式eliC = cosx + isinx.)
二阶常系数齐次线性微分 方
第6节二阶常系数齐次线性微分方程 第十章微分方程与差分方程
主讲 韩华
二阶常系数齐次线性微分方程的解法

欢迎阅读matlab和simulink控制系统教程本教程可以帮助您学习如何使用matlab和simulink对自动控制系统进行分析和设计教程包含matlab和simulink基础同时还介绍了一些最常见的经典现代控制系统设计技术
二阶常系数齐次线性微分方程的解法
1、二阶常系数齐次线性微分方程的解法 y''+py'+qy = 0(其中p,q为常数)的方程称为二阶常系数齐次线性微分方程,求解步骤: (1)特征方程:λ2+pλ+q = 0; (2)根据特征方程的根分为以下三种情形:
2、二阶常系数非齐次线性微分方程的特解 y''+py'+qy = f(x)(其中p,q为常数)的方程称为二阶常系数非齐次线性微分方程,根据f(x)的不同形式可将求特解方程分为如下两 种情况: (1)f(x)=Pn(x)ekx
(2)f(x]
【2019年整理】二阶线性常系数齐次微分方程的解

通解形式
首页
上页
返回
下页
结束
铃
解 微分方程的特征方程为
r22r10 即(r1)20 特征方程有两个相等的实根r1r21 因此微分方程的通解为yC1ex C2xex 即y(C1C2x)ex
首页
上页
返回下页结束铃源自•特征方程的根与通解的关系
方程r2prq0的根的情况 方程ypyqy0的通解
有两个不相等的实根 r1、r2 有两个相等的实根 r1r2
中p、q均为常数 •特征方程及其根
方程r2prq0叫做微分方程ypyqy0的特征方程 特征方程的求根公式为
r1, 2
p
p2 4q 2
首页
上页
返回
下页
结束
铃
•特征方程的根与通解的关系
方程r2prq0的根的情况 有两个不相等的实根 r1、r2 有两个相等的实根 r1r2
有一对共轭复根 r1, 2i
方程ypyqy0的通解
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
•第一步 写出微分方程的特征方程
r2prq0 •第二步 求出特征方程的两个根r1、r2 •第三步 根据特征方程的两个根的不同情况 写出微分方程的 通解
首页
上页
返回
下页
结束
铃
•特征方程的根与通解的关系
首页
上页
返回
下页
结束
铃
•特征方程的根与通解的关系
方程r2prq0的根的情况 方程ypyqy0的通解
有两个不相等的实根 r1、r2 有两个相等的实根 r1r2
有一对共轭复根 r1, 2i
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
二阶常系数齐次线性微分方程

微积分Calculus二阶常系数齐次线性微分方程()(1)11()()()()n n n n y P x y P x y P x y f x −−'++++=当均为常数时,称为阶常系数线性微分方程,否则,称为变系数微分方程。
n ()i p x 一n 阶常系数线性微分方程n 阶线性微分方程本节只研究二阶常系数线性微分方程:时,二阶常系数线性齐次微分方程()0f x =时,二阶常系数线性非齐次微分方程()0f x ≠形如的微分方程称为二阶常系数齐次线性微分方程,其中为常数.'''09-24y py qy ++=()p q 、1二阶常系数齐次线性微分方程定理一如果函数都是齐次方程(9-24)的解,则也是方程(9-24)的解,其中为任意常数。
)((2211x x y c y c +)c c 21、y 1(x)和y 2(x)定义一设两个函数在区间内有定义1)若常数,即与不成比例,则称函数在内线性无关.(2)若(常数),即与成比例,则称函数在内线性相关。
定理二若函数是齐次方程(9-24)的两个线性无关的解,则其通解为其中为任意常数。
特征方程法假设方程有形如的解,则代入方程后得特征根因为,故有特征方程2二阶常系数齐次线性微分方程解法二阶常系数齐次线性方程特征方程为1)特征方程有两个不等的实根,则是方程的两个线性无关的解,故齐次方程的通解为2)特征方程有两相等的实根,则一特解为,设另一特解为得齐次方程的通解为3)特征方程有一对共轭复根,y1=e(α+iβ)x,y2=e(α−iβ)x重新组合y1=12(y1+y2)=eαx cosβxy 2=12i(y1−y2)=eαx sinβx得齐次方程的通解为二阶常系数齐次线性方程的特征方程,特征根特征根通解形式实根实重根共轭复根特征方程为求方程的通解。
解解得特征根故所求通解为二相关练习例一特征方程为求方程的通解。
解解得故所求通解为例二特征方程为求解初值问题解特征根为通解为将条件代入得故所求特解为例三。
二阶线性常系数齐次微分方程的解

y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
例 3 求微分方程y2y5y 0的通解
解 微分方程的特征方பைடு நூலகம்为
r22r50
特征方程的根为r112i r212i 是一对共轭复根 因此微分方程的通解为yex(C1cos2xC2sin2x)
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
•第一步 写出微分方程的特征方程
r2prq0 •第二步 求出特征方程的两个根r1、r2 •第三步 根据特征方程的两个根的不同情况 写出微分方程的 通解
首页
上页
返回
下页
结束
铃
❖特征方程的根与通解的关系
首页
上页
返回
下页
结束
铃
❖特征方程的根与通解的关系
方程r2prq0的根的情况 方程ypyqy0的通解
有两个不相等的实根 r1、r2 有两个相等的实根 r1r2
有一对共轭复根 r1, 2i
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
例2 求方程y2yy0的通解
中p、q均为常数 ❖特征方程及其根
方程r2prq0叫做微分方程ypyqy0的特征方程 特征方程的求根公式为
r1, 2
p
p2 4q 2
首页
上页
返回
下页
结束
铃
❖特征方程的根与通解的关系
方程r2prq0的根的情况 有两个不相等的实根 r1、r2 有两个相等的实根 r1r2
有一对共轭复根 r1, 2i
二阶常系数齐次线性微分方程

第七章常微分方程7.10 二阶常系数齐次线性微分方程数学与统计学院赵小艳1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法1 二阶常系数齐次线性微分方程的形式 )(1)1(1)(t F x a x a x a x n n n n =++++-- n 阶常系数线性微分方程的标准形式21=++x a x a x 二阶常系数齐次线性方程的标准形式.,,,,121均为实常数其中n n a a a a - )1()()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- ,2211x C x C x +=则其通解为,,21解是其线性无关的两个特若x x .,21为任意常数其中C C 解的结构1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法,t e x λ=设则 ()0212=++t e a a λλλ得 0212=++a a λλ特征方程 ,2422111a a a -+-=λ,11t e x λ=,22t e x λ=且它们线性无关,通解为 .,)(212121为任意常数其中C C e C e C t x tt ,λλ+=特征根为: ,2422112a a a ---=λ情形1 有两个不相等的实根 )0(>∆,021=++x a x a x 对于对应特解 ,,21解是其线性无关的两个特若x x ,2211x C x C x +=则其通解为.,21为任意常数其中C C 待定系数法2 二阶常系数齐次线性微分方程的解法,11t e x λ=,2121a -==λλ情形2 有两个相等的实根 )0(=∆故一特解为 ,,,222代入原方程并化简得将x x x ()(),022112111=+++'++''u a a u a u λλλ,)(12t e t u x λ=设另一特解为特征根为 2121,)()('1112t t e t u e t u x λλλ+= ,)()('2)("1112112tt t e t u e t u e t u x λλλλλ++=,11t e x λ=情形2 有两个相等的实根 )0(=∆故一特解为 通解为 (),te t C C t x 121)(λ+=,,,222代入原方程并化简得将x x x ()(),022112111=+++'++''u a a u a u λλλ,0=''u 得(),t t u =取,12t te x λ=则特征根为 2121(),21C t C t u +=,)(12t e t u x λ=设另一特解为0=0=.,21为任意常数其中C C ,2121a -==λλ,1βαλi +=,2βαλi -=,)(1t i e x βα+=t i e x )(2βα-=情形3 有一对共轭复根 )0(<∆由解的性质 ()21121x x x +=,cos t e t βα=()21221x x ix -=.sin t e t βα=通解为 (),sin cos 21t βC t βC e x t α+=特征根为 2121对应特解为 t e i t e t t ββααsin cos -=.,21为任意常数其中C C .,21线性无关且x x.044的通解求方程=++x x x解 特征方程为 ,0442=++λλ,221-==⇒λλ故所求通解为 ().221te t C C x -+=例1 解 特征方程为 ,0522=++λλ,2121i ±-=⇒,λ故所求通解为 ().2sin 2cos 21x C x C e y x +=-.052的通解求方程=+'+''y y y 例2 021=++x a x a x 0212=++a a λλ特征方程为,)1(21时λλ≠;)(2121t t e C e C t x λλ+=通解为,)2(21时λλλ==;)()(21te t C C t x λ+=通解为,)3(2,1时βαλi ±=().sin cos )(21t βC t βC e t x t α+=通解为()().00,2004422的解满足初始条件求='==++y y y x y x y d d d d 解 特征方程为 ,01442=++λλ.212,1-=⇒λ故所求通解为 x e x C C y 2121)(-+=例3 ()()得由00,20='=y y ,21=C .12=C 为方程满足初始条件的解.22121x x xe e y --+=021=++x a x a x 0212=++a a λλ特征方程为,)1(21时λλ≠;)(2121t t e C e C t x λλ+=通解为,)2(21时λλλ==;)()(21te t C C t x λ+=通解为,)3(2,1时βαλi ±=().sin cos )(21t βC t βC e t x t α+=通解为1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法01)1(1)(=+'+++--x a x a xa x n n n n 特征方程为 0111=++++--n n n n a a a λλλ 特征方程的根 相对应的线性无关的特解 重根是若k λt k t t et te e λλλ1,,,- 重是若共轭复根k i βα±.sin ,,sin ,sin ,cos ,,cos ,cos 11t βe t t βte t βe t βe tt βte t βe t αk t αt αt αk t αt α-- 注意: n次代数方程有n 个根, 而特征方程的每个根都对应着一个特解. 3 高阶常系数齐次线性微分方程的解法.2211n n x C x C x C x +++= 通解为特征根为.2,1321-===λλλ故所求通解为 ()t e t C C x 21+=解 ,0233=+-λλ特征方程为 ()(),0212=+-λλ().0233的通解求方程=+-x x x 例4 特征根为 .,,154321i i -====-=λλλλλ故所求通解为 ()()t.t C C t t C C sin cos 5432++++解 ,01222345=+++++λλλλλ特征方程为 ()(),01122=++λλ()()().022345的通解求方程=+++++x x x x x x 例5 .e C t 23-+t e C x -=1。