行测中数学问题之年龄排列组合问题

合集下载

2023山西省考行测数量关系必考题型排列组合问题

2023山西省考行测数量关系必考题型排列组合问题

2023山西省考行测数量关系必考题型排列组合问题排列组合是在数量关系里面比较特殊的题型,说它特殊是因为他的研究对象独特,研究问题的方法和我们以前学习的不同,知识系统也相对独立。

同时也是我们学习概率问题的一个基础。

从最近几年的公务员考试形势来看,这部分考题的难度有逐年上升的趋势,而且题型也越来越灵活。

一.排列1、概念:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n 个不同元素中取出m(m≤n)个元素的一个排列。

2、排列数:从n个不同元素中,任取m(m≤n)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号表示。

3、排列数的计算:=n(n-1)(n-2)??(n-m+1)二、组合1、概念:从n个不同元素中取出m(m≤n)个元素组成一组,称为从n 个不同元素中取出m(m≤n)个元素的一个组合。

2、组合数:从n个不同元素中,任取m(m≤n)个元素的所有组合的个数叫做从n个元素中取出m元素的组合数,用符号表示。

3、组合数的计算:=n(n-1)(n-2)??(n-m+1)/m!三、常用方法1、优先法:对于有限制条件的元素(或位置)的排列组合问题,在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。

【例题】由数字1、2、3、4、5、6、7组成无重复数字的七位数,求数字1必须在首位或末尾的七位数的个数。

A.720B.1440C.4801600【中公解析】B。

使用优先法,先排1,有2种排法,再将剩下的数字全排列,有=720种排法,因此共有2×720=1440种排法,所以共有1440个满足条件的七位数。

2、捆绑法:在解决对于几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略。

【例题】学校举行六一儿童节联欢活动,整个活动由2个舞蹈、2个演唱和3个小品组成。

要求同类型的节目连续演出,有多少种不同的出场顺序?A.24B.72C.144D.288【中公解析】C。

行测技巧:学会举一反三,搞定年龄问题

行测技巧:学会举一反三,搞定年龄问题

行测技巧:学会举一反三,搞定年龄问题近年来省考行测数量关系题目不断推陈出新,出现了很多变相的年龄问题,多数考生仅仅掌握了基本的方程法来解决年龄问题,但是对于题干具体的条件梳理缺乏逻辑性,导致很多特殊的题型难以应对。

其实解决年龄问题可以采用一种新的方法——列表法,通过列表梳理条件,建立等量关系,从而解决实际问题。

和大家一起来学习列表法在题目中的应用。

一、基本方法设两个对象的年龄差为a,年龄较大的对象现在年龄为X,年龄较小的对象现在年龄为Y,则有:二、常见题型例1. 父子二人,已知10年前父亲的年龄是儿子年龄的4倍,10年后父亲的年龄是儿子年龄的2倍,那么儿子出生时,父亲的年龄是( )岁。

A.20B.25C.30D.33【答案】C。

解析:设十年前儿子的年龄为x岁。

根据题意,有4x+20=2(x+20),x=10,所以十年前儿子年龄为10岁,父亲年龄为40,所以儿子出生时,父亲年龄为30岁。

故答案为C。

例2. 今年甲乙丙三人年龄之和为83,甲今年25岁,当乙像甲现在这么大时,甲乙两人年龄之和比丙当时的年龄还大2岁。

问乙今年的年龄为多少岁?A.10B.12C.14D.15【答案】A。

解析:设今年乙的年龄为x岁,丙的年龄为y岁。

根据题干信息有:x+y+25=83,25+(25-x)+25=y+(25-x)+2,解得x=10,y=48,故答案为A。

例3. 现在父母年龄和是他们几个子女年龄和的6倍,两年前父母年龄和是他们几个子女年龄和的10倍,六年后父母年龄和是他们几个子女年龄和的3倍,那么他们有几个子女?A.2B.3C.4D.5【答案】B。

解析:设现在n个子女的年龄和为x,则现在父母的年龄和为6x。

根据题意有:6x-4=10(x-2n),6x+12=3(x+6n),解得x=14,n=3,故答案为B。

例4. 有80颗珠子,5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完。

国家公务员考试行测数学运算之年龄问题

国家公务员考试行测数学运算之年龄问题

国家公务员考试行测数学运算之年龄问题2012-11-07 14:25 作者:广东华图来源:点击:259 次【导读】数学运算主要考查应试者解决算术问题的能力。

在这种题型中,每道试题中呈现一道算术式子,或者是表述数字关系的一段文字,要求考生迅速、准确地计算出答案。

在解答此类试题时,关键在于找捷径和简便方法。

数学运算的简便解题方法有很多,如数学公式运算法、凑整计算法、基准数法、提取公因式法等等,根据常考的试题,还总结出一些专题,比如年龄问题、植树问题、行程问题等等,每一类题也有各自不一样的解法,我们会一一给大家讲解,今天,我们主要来讲一讲年龄问题的解题方法。

求解年龄问题的关键是“年龄差不变”。

几年前的年龄差和几年后的年龄差是相等的,即变化前的年龄差=变化后的年龄差。

解题时将年龄的其他关系代入上述等式即可求解。

已知两个人或若干个人的年龄,求他们年龄之间的某种数量关系等等。

年龄问题又往往是和倍、差倍、和差等问题的综合。

它有一定的难度,因此解题时需抓住其特点。

年龄问题的主要特点是:大小年龄差是个不变的量,而年龄的倍数却年年不同。

我们可以抓住差不变这个特点,再根据大小年龄之间的倍数关系与年龄之和等条件,解答这类应用题。

解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄,几年前年龄=小年龄-大小年龄差÷倍数差。

介绍几道例题,帮助大家掌握年龄问题的解题方法:【例题1】今年哥弟两人的岁数加起来是55岁,曾经有一年,哥哥的岁数是今年弟弟的岁数,那时哥哥的素数恰好是弟弟的两倍,问哥哥今年年龄是多大?( )A.33B.22C.11D.44【答案及解析】A设今年哥哥X岁,则今年弟弟是55-X岁,过去某年哥哥岁数是55-X 岁,那是在X-(55-X)即2X-55年前,当时弟弟岁数是(55-X)-(2X-55)即110-3X。

列方程为55-X=2(110-3X)55-X=220-6X 6X-X=220-55 5X=165 X=33【例题2】爸爸、哥哥、妹妹现在的年龄和是64岁。

行测数量关系技巧:年龄问题的巧解方法

行测数量关系技巧:年龄问题的巧解方法

行测数量关系技巧:年龄问题的巧解方法公务员行测考试主要是考量大家的数学推理能力和逻辑分析能力,下面由小编为你精心准备了“行测数量关系技巧:年龄问题的巧解方法”,持续关注本站将可以持续获取更多的考试资讯!行测数量关系技巧:年龄问题的巧解方法在行测考试中,年龄问题都我们考查的一个重点考题型,但此类题型难度并不大,总共涉及三个知识点和两种解题方法,理应是每位考生必须“拿下”的考题。

小编专家在此进行全面讲解:一、年龄问题的主要的题型特点①任何两人年龄差不变;②任何两人年龄之间的倍数关系是变化的;③每过一年,所有的人都长了一岁。

具体分类如下:1.随时间推移,年龄差不变;2.随时间推理,年龄倍数在减少;3.过N年,长N岁。

二、如何巧解年龄问题解决年龄问题的关键在于“年龄差不变”。

一般说来,解决年龄问题需要从表示年龄间关系的条件入手理解数量关系例1:今年小宁8岁,妈妈32岁,那么再过多少年妈妈的岁数是小宁的2倍?下面就为考生讲解如何巧妙解答年龄问题。

由差倍问题公式可得,小宁年龄为24÷(2-1)=24岁,即小宁24岁时,妈妈的年龄等于小宁的2倍,因此再过24-8=16年。

三、多人之间的年龄问题多人之间的年龄问题在行测考试中出现的频率略有增加,它主要考查多个人之间的年龄关系变化。

解决此类题目的重点为规律③:每过一年,所有的人都长了一岁。

例题2:父亲与两个儿子的年龄和为84岁,12年后父亲的年龄等于两个儿子的年龄之和,请问父亲现在多少岁?A.24B.36C.48D.60解析:此题答案为C。

12年后,父亲与两个儿子的年龄和应该是84+12×3=120岁,将父亲12年后的年龄看做1倍,那么12年后父亲的年龄为120÷2=60岁,现在的年龄为60-12=48岁。

四、年龄推理题年龄推理题在行测考试中出现较少,它需要考生通过寻求年龄间的特殊情况来得到突破口,从而最终得出答案。

常见的特殊情况为:经过了N年,所有人增长的岁数和不是N的倍数,这说明N年前有人没有出生,从而可直接求出该人的年龄。

公务员考试行政能力测试数学运算解题方法之排列组合问题

公务员考试行政能力测试数学运算解题方法之排列组合问题

公务员考试行政能力测试数学运算解题方法之排列组合问题排列组合问题是公务员考试当中必考题型,题量一般在一到两道,近年国考这部分题型的难度逐渐在加大,解题方法也越来越多样化,所以在掌握了基本方法原理的基础上,还要求我们熟悉主要解题思想。

那首先什么排列、组合呢?排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。

解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。

下面介绍几种常用的解题方法和策略。

解决排列组合问题有几种相对比较特殊的方法。

下面通过例题逐个掌握:一、相邻问题---捆绑法不邻问题---插空法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。

【例题1】一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?A.20B.12C.6D.4【答案】A。

【解析】首先,从题中之3个节目固定,固有四个空。

所以一、两个新节目相邻的的时候:把它们捆在一起,看成一个节目,此时注意:捆在一起的这两个节目本身也有顺序,所以有:C(4,1)×2=4×2=8种方法。

二、两个节目不相邻的时候:此时将两个节目直接插空有:A(4,2)=12种方法。

综上所述,共有12+8=20种。

二、插板法一般解决相同元素分配问题,而且对被分成的元素限制很弱(一般只要求不等于零),只对分成的份数有要求。

【例题2】把20台电脑分给18个村,要求每村至少分一台,共有多少种分配方法?A.190B.171C.153D.19【答案】B。

2020国考行测数量关系:教你学会求解行测年龄问题

2020国考行测数量关系:教你学会求解行测年龄问题

2020国考行测数量关系:教你学会求解行测年龄问题年龄问题在近几年的考试中频频出现在大家的视线里,而这一部分的知识对于大部分的考生来说也是可望而不可即,难度不小。

我们所讲,难者不会,会者不难,这一类题目在做题的过程中,是有一定的规律的。

因此呢,我们只需要掌握这一考点的解题原则和一些常见的考察形式就能够在考场中将这一类型题目的分数拿到手。

那么,接下来,中公教育就带大家来看看年龄问题中涉及到的一些知识点和解题思路。

一、基础知识年龄问题是指研究两人或者多人之间的年龄变化和关系的问题。

行测考试中常常涉及两人或者多人年龄之间的倍数关系。

二、解题原则1.任何两人年龄差不变;2.任何两人年龄之间的倍数关系是变化的,而且递减;3.每过一年,所有的人都长了一岁。

三、常见考点年龄问题的常见考察形式有以下几种:1.不同时刻年龄对比例1.小鲸鱼说:“妈妈,我到您这么大的时候,您就31岁了”,大鲸鱼说:“我像你这么大时候,你才1岁”。

问:小鲸鱼现在多少岁?【答案】11。

中公解析:根据解题原则,我们知道年龄差不变,假设大鲸鱼和小鲸鱼的年龄差为图中线段的长度,根据大小鲸鱼的描述,可以画出如上图所示的年龄轴,根据已知条件起点处年龄为1岁,终点处年龄为31岁,共差30岁,由3个年龄差组成,所以一个年龄差为10岁,现在小鲸鱼的年龄为11岁。

2.多人年龄问题例2.父亲与两个儿子的年龄和为84岁,12年后父亲的年龄等于两个儿子的年龄之和,请问父亲现在多少岁?A.24B.36C.48D.60【答案】C。

中公解析: 12年后,父亲与两个儿子的年龄和应该是84+12×3=120岁,将父亲12年后的年龄看做1倍,那么12年后父亲的年龄为120÷2=60岁,现在的年龄为60-12=48岁。

四、题目巩固例.2007年父亲年龄30岁,儿子3岁,到()年父亲年龄是儿子的3倍。

A.2012B.2013C.2014D. 2015【答案】B。

行测考试中排列组合题的解题好方法

行测考试中排列组合题的解题好方法

行测考试中排列组合题的解题好方法在公职考试的行测试卷中,排列组合类问题是考查得较为频繁的一类题型。

对于解决行测排列组合问题,常用的方法包括优限法、捆绑法、插空法等等,而插板法常被考生遗忘,其实这也是一种需要大家掌握的便捷方法。

在此,教育专家就同大家一起来研究下这种方法。

对于插板法,它的实质就是解决相同元素的不同分堆问题,题目中往往会出现“……至少……,……个相同的……分给……”这样的字眼,因此,大家要注意插板法的适用环境相当严格,必须同时满足以下三个条件:要分堆的元素必须完全相同;要分的元素必须分完,决不允许有剩余;每个对象至少分1个,决不允许出现分不到元素的对象。

核心公式:把n个相同元素分给m个不同的对象,每个对象至少1个元素,总的分法数为种。

在考试过程中,往往会遇到题干难以满足插板模型的第3个条件,但我们可以通过转换使之满足。

先来看下题干满足插板模型所有条件情况下的简单应用:【例1】有10个相同的篮球,分给7个班,每班至少一个,有多少种分配方案?A. 36B.64C.84D.210【答案】C【解析】此题满足插板模型的所有条件,直接套用公式,共有种分配方案。

但是考试题中往往会出现题干并不满足插板模型的第3个条件的情况,接下来我们看下插板模型的两种变形:【例2】某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。

问一共有多少种不同的发放方法?( )A.7B.9C.10D.12【答案】C【解析】从题干条件不难看出,这里的30份学习材料代表30个相同的元素,发放给3个部门,每个部门至少发放9份材料,那么我们可以把它转化成给3个部门至少发1份材料。

如何转化呢?可以先给这三个部门每个部门分发8份材料,这样就只需要再给这三个部门分发一份材料就能满足题目要求。

30份材料分发给3个部门各8份材料,还剩下6份材料,则问题转化为对剩下的6份材料分堆,利用插板法可得,【例3】有5个相同的篮球,分给3个班,总共有多少种分配方案?A. 10B. 28C. 56D.60【答案】B【解析】从题干不难看出,没有“至少一个”的要求,因此并不符合插板法的第三个要求,那么我们可以想办法凑第3个条件,我们可以从3个班中先各借一个篮球,就可以把问题转化为8个篮球分给3个班,且每个班至少发一个,再依据所给公式,总的分配方案为结合教育专家以上列举的两道题目不难发现,在考试过程中一般不会考查完全符合插板法三个条件的题目,往往不符合插板法第3个条件,因此考试时考生要灵活应对。

2020江西省考数量关系:“不一样”的行测年龄问题

2020江西省考数量关系:“不一样”的行测年龄问题

2020江西省考数量关系:“不一样”的行测年龄问题从近几年的公务员考试行测来看,关于年龄问题的考察比例有所增加,而年龄问题的考察整体来说难度较低,也是各位考生应该尝试掌握的一个考点。

那么,接下来中公教育就和大家一起来看一下关于年龄问题考察中的一种“不一样”的形式。

首先,我们先来看一道例题。

例1.在一个家庭中,现在所有成员的年龄加在一起是73岁。

家庭成员中有父亲、母亲、一个女儿和一个儿子,父亲比母亲大3岁,女儿比儿子大2岁。

四年前家庭所有人的年龄总和是58岁,现在儿子多少岁?A.3B.4C.5D.6【答案】A。

中公解析:这道题目告诉我们家庭成员一共有4人,而4人之间的年龄关系是父亲比母亲大3岁,女儿比儿子大2岁,即父亲>母亲>女儿>儿子。

而题目中还告诉我们现在所有成员的年龄加在一起是73岁,四年前家庭所有人的年龄总和是58岁,即年龄总和增加了73-58=15岁。

但是如果四个人都经过四年,这时候年龄和应该增加4×4=16岁。

那么为什么这两个增加的年龄不一致呢?原因一定是因为有人没有增加4岁,那么是谁过了四年但是没有增加4岁呢?可能有些同学会想是不是有人去世了呢?从数字的角度出发,这种情况下固然能够使我们的结果满足条件。

但是,既然这是一道公务员的考试题目,在题目的考察中出现某人死亡,是不是就不太切合实际了呢?那么造成这两个增加的年龄不一致的原因就只能是有人因为在4年前还没出生,而且一定是家庭中最小的儿子在4年前还没有出生。

结合我们之前计算的增加年龄和,我们发现少了16-15=1岁,即儿子没有增加4岁,他只增加了4-1=3岁,也就是说现在儿子应该是3岁,所以我们这道题目最终选择的就是A选项。

总结:在年龄问题的计算过程中,如果题干告诉两个不同时间点的全部年龄和,那么这种题目所考察的就是某个人因为晚出生所带来的年龄和的变化。

接下来我们再通过一道题目进行方法的巩固练习。

例2.小强的爸爸比小强的妈妈大3岁,全家三口的年龄总和是74岁,9年前这家人年龄总和是49岁,那么小强的妈妈今年多少岁?A.32B.33C.34D.35【答案】A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行测中数学问题之年龄、排列组合问题解年龄问题,一般要抓住以下三条规律:(1)不论在哪一年,两个人的年龄差总是确定不变的;(2)随着时间向前(过去)或向后(将来)推移,两个人或两个以上人的年龄一定减少或增加相等的数量;(3)随着时间的变化,两个人年龄之间的倍数关系一定会改变。

【例1】妈妈今年 43岁,女儿今年11岁,几年后妈妈的年龄是女儿的3倍?几年前妈妈的年龄是女儿的5倍?【分析】无论在哪一年,妈妈和女儿的年龄总是相差43-11=32(岁)当妈妈的年龄是女儿的3倍时,女儿的年龄为(43-11)÷(3-1)=16(岁)16-11=5(岁)说明那时是在5年后。

同样道理,由11-(43-11)÷(5-1)=3(年)可知,妈妈年龄是女儿的5倍是在3年前。

【例2】今年,父亲的年龄是女儿的4倍,3年前,父亲和女儿年龄的和是49岁。

父亲、女儿今年各是多少岁?【分析】从3年前到今年,父亲、女儿都长了3岁,他们今年的年龄之和为49+3×2=55(岁)由“55 ÷(4+1)”可算出女儿今年11岁,从而,父亲今年44岁。

【例3】陈辉问王老师今年有多少岁,王老师说:“当我像你这么大时,你才3岁;当你像我这么大时,我已经42岁了。

”问王老师今年多少岁?【分析】我们先要明白:如果我比你大a岁,那么“当我像你这么大时”就是在a年前,“当你像我这么大时”就在a年后。

这样便可根据题意画出下图:从图上可看出,a=13,进一步推算得王老师今年29岁。

排列组合问题I一、知识点:分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示5.排列数公式:(1)(2)(1)m n A n n n n m =---+ (,,m n N m n *∈≤) 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.10.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+== 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且组合数的性质1:m n n m n C C -=.规定:10=n C ; 2:m n C 1+=m n C +1-m n C二、解题思路:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有________个.(答案:30个)对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_______种.(答案:350)解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______.(答案:3600)相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种.(答案:240)从总体中排除不符合条件的方法数,这是一种间接解题的方法.b 、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例如:从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A 、B 、C ,所得的经过坐标原点的直线有_________条.(答案:30)三、讲解范例:例1 由数字1、2、3、4、5、6、7组成无重复数字的七位数(1)求三个偶数必相邻的七位数的个数;(2)求三个偶数互不相邻的七位数的个数解 (1):因为三个偶数2、4、6必须相邻,所以要得到一个符合条件的七位数可以分为如下三步:第一步将1、3、5、7四个数字排好有44P种不同的排法;第二步将2、4、6三个数字“捆绑”在一起有33P种不同的“捆绑”方法;第三步将第二步“捆绑”的这个整体“插入”到第一步所排的四个不同数字的五个“间隙”(包括两端的两个位置)中的其中一个位置上,有15P种不同的“插入”方法根据乘法原理共有153344PPP∙∙=720种不同的排法720个符合条件的七位数解(2):因为三个偶数2、4、6互不相邻,所以要得到符合条件的七位数可以分为如下两步:第一步将1、3、5、7四个数字排好,有44P种不同的排法;第二步将2、4、6分别“插入”到第一步排的四个数字的五个“间隙”(包括两端的两个位置)中的三个位置上,有35P种“插入”方法根据乘法原理共有3544PP∙=1440种不同的排法所以共有1440个符合条件的七位数例2将A、B、C、D、E、F分成三组,共有多少种不同的分法?解:要将A、B、C、D、E、F分成三组,可以分为三类办法:下面分别计算每一类的方法数:解法一:从六个元素中取出四个不同的元素构成一个组,余下的两个元素各作为一个组,有46 C解法二:从六个元素中先取出一个元素作为一个组有16C种选法,再从余下的五个元素中取出一个元素作为一个组有15C种选法,最后余下的四个元素自然作为一个组,由于第一步和第二步各选取出一个元素分别作为一个组有先后之分,产生了重复计算,应除以2 2 P所以共有221516PCC∙=15种不同的分组方法第二类(1-2-3)分法,这是一类整体和局部均不等分的问题,首先从六个不同的元素中选取出一个元素作为一个组有16C种不同的选法,再从余下的五个不同元素中选取出两个不同的元素作为一个组有25C种不同的选法,余下的最后三个元素自然作为一个组,根据乘法原理共有2516CC∙=60种不同的分组方法第三类(2-2-2)分法,这是一类整体“等分”的问题,首先从六个不同元素中选取出两个不同元素作为一个组有26C种不同的取法,再从余下的四个元素中取出两个不同的元素作为一个组有24C种不同的取法,最后余下的两个元素自然作为一个组由于三组等分存在先后选取的不同的顺序,所以应除以33P,因此共有332426PCC∙=15种不同的分组方法根据加法原理,将A、B、C、D、E、F六个元素分成三组共有:15+60+15=90种例3一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法?解:九个坐位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有66P种不同的坐法,再将三个空坐位“插入”到坐好的六个人之间的五个“间隙”(不包括两端)之中的三个不同的位置上有35C种不同的“插入”方法根据乘法原理共有3566CP∙=7200种不同的坐法排列组合问题II一、相临问题——整体捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。

捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列.一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。

练习:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有6 6 P种排法,其中女生内部也有33P种排法,根据乘法原理,共有3366PP种不同的排法.二、不相临问题——选空插入法例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可.若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。

练习:学校组织老师学生一起看电影,同一排电影票12张。

8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.解先排学生共有88P种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有47P种选法.根据乘法原理,共有的不同坐法为4788PP种.三、复杂问题——总体排除法或排异法有些问题直接法考虑比较难比较复杂,或分类不清或多种时,而它的反面往往比较简捷,可考虑用“排除法”,先求出它的反面,再从整体中排除.解决几何问题必须注意几何图形本身对其构成元素的限制。

例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.练习:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?分析此题若是直接去考虑的话,就要将问题分成好几种情况,这样解题的话,容易造成各种情况遗漏或者重复的情况.而如果从此问题相反的方面去考虑的话,不但容易理解,而且在计算中也是非常的简便.这样就可以简化计算过程.解 43人中任抽5人的方法有543C种,正副班长,团支部书记都不在内的抽法有540C种,所以正副班长,团支部书记至少有1人在内的抽法有540543CC 种.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

相关文档
最新文档