机械毕业设计1178000kN立柱试验台结构设计b
试验台的设计毕业设计

1绪论前言阻尼器,是以提供运动的阻力,耗减运动能量的装置。
利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。
1.1课题背景及研究意义汽车阻尼器即减震器,是汽车悬架系统中的一个尤其重要阻尼元件,它的主要作用就是缓和车辆的振动,提高乘客乘坐的舒适性,降低车体给予各部分的动应力,近一步的来提高整车的寿命以及安全性,减震器性能的优劣直接影响到车辆的性能。
因此,在车辆运行过程中,必须保证减震器能够保持可靠和稳定的性能。
设计生产高质量的减震器是提高车辆技术性能的重要的内容。
然而,设计生产高质量的减震器需要性能完善、先进的试验设备作保证。
目前,(阻尼器)减震器试验台按照其作用形成分为机械式、液压式、交流伺服式和其他形式。
减震器试验台主要应用于汽车悬架筒式见证其的台架性能试验。
其特点:(1)减振器的示功试验,绘制示功图;(2)减振器的速度特性试验,绘制速度特性曲线;(3)减振器内摩擦阻力测定,绘制摩擦力—位移曲线;(4)减振器的温度特性试验,绘制温度特性曲线;(5)减振器的耐久性试验;国内在减震器的检测方面比较落后,第一个主要的原因就是国内相应的试验设备不能够满足试验性能的要求以及能实现但是昂贵的试验器材的费用很昂贵,因此制约着我国在减震器以及在减震器试验台性能的提升。
现在的试验台,都是以测试示功图以及滞回曲线为主用的目的,我国国内的试验台大多是开环、机械式、液压伺服等形式。
这些形式的试验台存在着许多不合理的地方。
并且在这方面的技术还不是成熟,主要的功能只是局限于测试示功图,不能快速而且准确地对减震器(阻尼器)的各个性能进行检测,存在着众多的不足之处。
据统计现在汽车减震器(阻尼器)大部分都是筒式液阻减震器,其阻尼力主要通过油液流经空隙的节流作用产生。
汽车悬架系统一般是由弹性元件(弹簧)、阻尼元件(减震器)、导向传力装置三大部分组成。
由此可见,减震器(阻尼器)是悬架系统的重要组成部分。
(完整版)机械类毕业设计目录

【E1】“包装机对切部件”设计【E2】0.1 t数控座式焊接变位机设计【E3】2Jk-510.5型矿用提升机主轴装置设计【E4】2YAH1848圆振筛设计【E5】2吨液压挖掘机的挖掘机构设计【E6】3.0吨调度绞车的设计【E7】3吨蒸汽锤改造为电液锤设计【E8】3自由度圆柱坐标工业机器人【E9】3坐标测量机设计【E10】4T焊接滚轮架机械设计【E11】4个自由度的工业机器人设计【E12】5自由度焊接机器人设计【E13】6SHZ-60直联式双吸离心泵的设计【E14】10L真空搅拌机设计【E15】10t桥式起重机小车运行机构和起升机构设计【E16】20-5t桥式吊钩起重机设计【E17】25KN单柱液压机液压系统设计【E18】40KN单柱液压机液压系统设计【E19】100米钻机变速箱设计【E20】150m钻机的设计【E21】200D多段离心式清水泵结构设计【E22】200米液压钻机变速箱的设计【E23】200米钻机回转器设计【E24】300Kg提升机设计【E25】1750×12000回转窑设计【E26】4000TH差动分级齿辊式破碎机【E27】5141后装压缩式垃圾车的总体设计【E28】8000kN立柱试验台结构设计【E29】AutoCAD环境下减速器轴设计的算法及实现【E30】卧式三面单工位组合钻床设计【E31】DT-(Ⅱ)胶带输送机设计(减速器部分)【E32】DTⅡ型皮带机设计【E33】DX型钢丝绳芯带式输送机设计【E34】GCPS—20型钻机设计【E35】GDC956160工业对辊成型机设计【E36】GE283型纺织机寸行传动件的设计研究【E37】J45-6.3型双动拉伸压力机的设计【E38】JBB-300型搬运绞车设计【E39】JBT62轴流式通风机总体方案和通风机总体结构设计【E40】JD-0.5型调度绞车设计【E41】JDM-30无极绳调车绞车设计【E42】JH14回柱绞车设计【E43】JHB-8型回柱绞车设计【E44】JSDB-140双速多用绞车设计【E45】LB2000沥青搅拌机设计【E48】MG2×65312-WD型采煤机左牵引部设计【E49】MG200-WD采煤机摇臂结构设计【E50】MG700-WD采煤机的截割部设计【E55】MG300700 WD型采煤机截割部的设计【E56】MG300700型交流电牵引采煤机设计【E59】MG2-100- 460-WD采煤机截割部设计-图【E60】MJ300700-WD型电牵引采煤机截割部设计【E61】MPS上料检测站和搬运站机械设计【E62】P—90B耙斗装岩机设计【E63】PE10自行车无级变速器设计【E64】SPJZ-800型平面转弯带式输送机设计【E65】W1100型液压绞车设计【E66】WY型滚动轴承压装机设计【E67】XQB小型泥浆泵的结构设计【E68】YC1040载货汽车底盘总体及制动器设计【E69】YD5141SYZ后压缩式垃圾车的上装箱体设计【E70】YD9160TCL轿运车前后桥设计【E71】YD9160TCL轿运车箱体设计【E72】YF3-10L 溢流阀的制造【E74】ZL50轮式装载机工作装置设计【E75】ZQ100型钻杆动力钳传动系统设计【E76】ZQ-100型钻杆动力钳背钳设计【E77】ZSC26300行走式塔式起重机设计【E84】zz4000型支撑掩护式液压支架设计【E86】Φ3×11M水泥磨总体设计及传动部件设计【E87】Φ200毫米轴承环车床设计【E88】板材坡口机总体设计【E89】板材送进夹钳装置设计【E90】边双链刮板输送机机头部设计【E91】薄煤层采煤机截割部设计【E92】部分断面掘进机工作机构设计【E93】采矿设计【E94】采煤机截割部的设计【E95】采煤机牵引部设计【E96】采煤机总体方案的设计【E97】仓库大门开闭机构设计【E98】叉车设计【E99】柴油机电控系统设计【E100】柴油机高压油泵设计【E101】柴油机喷油器设计【E102】柴油机柱塞式高压喷油泵设计【E103】车床主轴箱箱体左侧8-M8螺纹攻丝机设计【E104】车刀角度测量装置设计【E105】车载提升机的设计及研究【E106】齿耙清污机设计【E107】船用柴油机挂机设计【E108】船用废气燃烧臂设计【E109】垂直轮盘汽车库设计【E110】锤击碎渣机设计【E111】锤片粉碎机设计【E112】大流量柱塞泵设计【E113】大型耙斗装岩机设计【E114】带钢跑偏机的分析设计【E115】带式输送机变频张紧装置设计【E116】带式输送机传动装置设计【E117】带式输送机摩擦轮调偏装置设计【E118】带式输送机伺服调偏装置设计【E119】带式输送机液压缸+绞车式张紧装置设计【E120】带式输送机液压张紧装置设计1【E121】带式输送机液压张紧装置设计2【E122】带式制动器设计【E123】单曲柄往复式给煤机设计【E124】单体液压支柱结构设计【E125】单体液压支柱设计1【E126】单体液压支柱设计2(有proe图)【E127】道路地下打孔机设计【E128】低速载货汽车车架及悬架系统设计【E129】低位放顶煤液压支架设计【E130】涤纶短纤后处理设备七辊牵伸机的牵伸辊设计【E132】对辊成型机设计2【E133】堆取料机皮带机设计【E134】多速绞车设计【E135】DSJ型可伸缩胶带输送机设计【E136】多功能精密播种机设计【E137】多绳摩擦式提升机设计【E138】多用途启动机械手的设计【E139】多用途气动机器人结构设计【E140】鄂式破碎机设计【E141】二柱大采高掩护式液压支架设计【E142】二柱式大采高掩护式液压支架设计(有proe图)【E143】防窜仓往复式给煤机设计【E144】粉罐汽车结构设计【E145】封闭母线自然冷却的温度场分析【E146】复合肥配料混合系统设计【E147】复合式多功能钻机设计【E148】高空作业车液压系统设计【E149】高空作业车转台的结构设计及分析【E150】往复式给料机设计【E151】工业对辊成型机设计1【E152】工业对辊成型机设计2【E153】工业对辊型煤成型机设计1【E154】工业型煤成型机的设计2【E155】工业型煤成型机设计3【E156】刮板输送机设计【E157】刮板输送机减速器设计【E158】关节型机器人腕部结构设计【E159】滚筒采煤机总体方案设计及截割部摇臂箱的设计【E160】滚筒式露天采煤机设计【E161】电厂110kV一次系统设计【E162】横轴履带式半煤岩掘进机设计【E163】花生去壳机设计【E164】化工液罐汽车结构设计【E165】湿式转子式混凝土喷射机设计【E166】混凝土泵车结构设计【E167】混凝土输送泵设计【E168】火车制动梁用异型材矫直机的设计【E169】货车制动系统液压设计【E170】货车转向桥设计【E171】机械动力滑台设计【E172】机械式双头套皮辊机设计【E173】机械无级变速器设计【E174】机液联合张紧装置设计【E175】建筑钢筋弯曲机减速机系统设计【E176】胶带煤流采样机设计【E177】胶带输送机设计【E178】绞车实验台设计(液压系统)【E179】自同步直线振动筛的设计【E180】绞肉机的设计【E181】轿车变速器设计【E182】井下探测救援机器人平台结构设计【E183】卷板机设计【E184】掘进巷道带式输送机设计【E185】颗粒状糖果包装机设计【E186】可伸缩带式输送机结构设计【E187】可伸缩皮带机张紧装置设计【E188】可伸缩式皮带给料机设计【E189】2Jk-510.5型矿用提升机主轴装置设计【E190】空气重介流化床干法选煤机结构改进设计【E191】孔系加工立式组合加工机床设计【E192】矿井井口液压站设计【E193】液压抓斗式矿井水仓清淤机设计【E194】矿井提升机减速器设计【E195】矿井提升机制动系统设计【E196】矿井卸载装置(液控与电控)1【E197】矿井装载装置设计(液压与电控)2【E198】矿井主通风机性能监测系统设计【E199】矿区整体设计【E200】立轴式破碎机设计【E201】立柱、千斤顶工作特性仿真计算及刚度校核【E202】连杆孔研磨装置设计【E203】连续式履带装煤机装运部设计【E204】连续式洗米机设计【E205】两齿辊破碎机设计【E206】龙门式起重机小车设计【E207】龙门式起重机总体设计及机架金属结构设计【E208】路面切槽机设计【E209】履带式半煤岩掘进机截割部设计【E210】履带式半煤岩掘进机设计【E211】履带式半煤岩掘进机行走部3K行星传动设计【E212】轮式装载机行走系统及其装置设计【E213】轮式装载机总体方案及其辅助装置设计【E214】轮式装载机总体方案及其液压系统设计【E215】螺旋千斤顶设计【E216】螺旋输送式混凝土湿式喷射机设计【E217】选煤厂破碎车间的除尘设计【E218】煤矿运输、提升机械选型设计及支撑掩护式液压支架液压系统的设计【E219】煤矿用轴流式通风机设计【E220】门座起重机变幅机构水平位移补偿设计与优化【E221】膜片离合器设计【E222】摩擦压力机设计【E223】浓缩机设计【E224】爬墙机器人设计【E225】耙斗装岩机绞车设计【E226】耙斗装岩机设计【E227】皮带输送机断带保护器设计【E228】破碎机设计【E229】普通式双柱汽车举升机设计【E230】起毛机主传动结构设计【E231】气动通用上下料机械手【E232】汽车大梁生产线全液压铆接机液压系统设计【E233】汽车发动机设计【E234】汽车起重机回转机构设计【E235】汽车起重机起升机构和液压系统设计【E236】汽车起重机起升机构设计【E237】主轴钳设计-图【E238】汽车式起重机力矩限制器的研制【E239】汽车油气弹簧缸设计及其动态特性仿真【E240】汽车自动液压千斤顶设计【E241】牵引绞车及其控制系统设计【E242】强力分级式双齿辊破碎机设计1 【E243】强力分级式双齿辊破碎机设计2 【E244】强力上运带式输送机的结构设计【E245】桥式起重机副起升机构设计【E246】桥式起重机桥架设计与优化【E247】桥式起重机小车运行机构设计【E248】桥式转载机设计【E249】轻型货车变速器设计【E250】驱动式滚筒运输机设计【E251】热电厂电除尘器设计【E252】人性化轮椅设计【E253】真空密封铸造实验设备设计-图【E254】乳化液泵的结构设计1【E255】乳化液泵结构设计2【E256】振动台设计-图【E257】三自由度并联机构的平行机设计【E258】三自由度圆柱坐标型工业机器人设计【E259】湿式混凝土喷射机设计【E260】食品包装机械设计【E261】试卷分拣系统设计【E262】手压式手电筒设计【E263】输送机设计【E264】双层升降横移式车库设计【E265】双齿辊破碎机的设计【E266】双铰接剪叉式液压升降台的设计【E267】双曲柄往复式给料机设计【E268】双曲柄往复式给煤机设计【E269】双柱机械式汽车举升机设计1【E270】双柱机械式汽车举升机设计2【E271】龙门式二柱汽车举升机设计【E272】双柱液压式汽车举升机设计【E273】水泵平衡装置设计【E274】水介质调速型液力耦合器的主机设计【E275】水介质液力偶合器的液压系统设计【E276】四杆中频数控淬火机床的设计【E277】四柱万能液压机系统设计【E278】送料机械手设计【E279】酸菜自动包装生产线注液系统设计【E280】缩式胶带输送机设计【E281】提升机故障诊断技术及主轴承磨损的铁谱分析【E282】提升机减速器故障诊断分析【E283】提升机减速器设计【E284】提升机铁谱分析技术研究【E285】提升机维修及铁谱分析技术【E286】拖挂式混凝土泵设计【E287】拖拉机拨叉铣专机(卧式)设计【E288】挖掘机液压系统设计【E289】往复式防窜仓给料机设计【E290】无极绳绞车设计【E291】五档变速器设计【E292】五龙矿采区设计【E293】五龙矿提升系统选型设计【E294】五自由度工业机器人设计【E295】湘玉竹切片机的设计【E296】新型卫浴设备设计【E297】盐酸分解磷矿装置设计【E298】掩护式液压支架底座设计【E299】掩护式液压支架设计1【E300】掩护式液压支架设计2【E301】掩护式液压支架立柱设计【E302】液力传动变速箱设计与仿真【E303】液压动力滑台(用于精镗)的设计【E304】液压防爆提升机设计【E305】液压缸装配生产线及液压缸装缸机的设计【E306】液压机械手设计【E307】液压绞车设计1【E308】液压绞车设计2【E309】液压拉力器设计【E310】液压式双头套皮辊机设计【E311】液压挖掘机设计【E312】液压张紧装置设计【E313】掩护式液压支架推移装置及系统设计【E314】液压支架的总体设计【E315】液压钻机设计【E316】油罐汽车结构设计【E317】载煤车厢平整系统研究与设计【E318】支撑掩护式液压支架及底座设计【E319】支撑掩护式液压支架设计1【E320】支撑掩护式液压支架设计2【E321】支撑掩护式液压支架总体方案及立柱设计【E322】直联式双吸离心泵的设计【E323】直线振动筛设计【E324】中单链型刮板输送机设计【E325】中厚煤层采煤机截割部的设计【E326】中厚煤层电牵引采煤机截割部结构设计【E327】中煤层采煤机截割部设计【E328】中型货车变速器的设计【E329】中直焊接机设计【E330】重型车辆传动桥加载试验台解耦控制及其仿真【E331】轴承环卡盘多刀车床设计【E332】柱塞泵转子的加工设计【E333】抓斗的设计及仿真【E334】转轮式长冲程抽油机设计【E335】装缸机设计【E336】装载机工作机构及装置设计【E337】综采工作面大型刮板输送机设计与配套【E338】足部按摩洗浴机设计【E339】130T燃煤锅炉设计-图【E340】MDA采煤机破碎机机构设计-图【E344】PBT玻璃纤维增强复合材料水辅注塑成型的实验研究-说明书【E345】QY25型汽车起重机设计-图【E346】QY40型液压起重机液压系统设计-1图1说明书【E347】R175型柴油机机体加工自动线上用的多功能机械手设计-2图1说明书【E348】普通车床主轴箱无级变速设计【E349】液压控制阀的理论研究与设计【E350】背钳设计-图【E351】翅片切断装置设计-图【E352】冲床自动送料装置设计-1图1说明书【E353】磁力驱动离心泵设计-图【E354】大型多级水泵油压平衡装置设计-图【E355】弹性油箱设计-图【E356】刀库结构设计-图【E357】电动滚筒设计-图【E358】调速液力耦合器设计-图【E359】对称传动剪板机设计-3图1说明书【E360】飞机鸵机液压缸设计-图【E361】浮动活塞式推移千斤顶设计-图【E362】复合天轮式长冲程节能抽油机设计-图【E363】矸石制浆材料工业生产线系统设计-图【E364】钢管切断专机设计-图【E365】高速压力机设计-2图1说明书【E366】焊接件设计-图【E367】回转盘设计-图【E368】混凝土泵设计-总装图【E369】基于SOLIDWORKS的汽车起重机伸缩臂架结构设计-图【E370】检测仪支撑装置设计-图【E371】交通监测车的改装设计开题报告【E372】绞车结构设计-图【E373】可伸缩带式输送机设计-说明书【E374】离合器设计-图【E375】连续采煤机截割部分设计-图【E376】玉米脱粒机设计-2图1说明书【E377】粮食气力清仓机设计-图【E378】两端铆合机设计-说明书【E379】流体动压轴承-挠性转子系统的非线性动态特性-论文【E380】六足爬行机器人设计-图【E381】履带式液压挖掘机挖掘机构设计-图【E382】煤岩磨蚀系数实验台设计-图【E383】门座起重机变幅机构水平位移补偿设计与优化【E384】盘磨机传动装置设计-说明书【E385】喷油器设计-图【E386】锥式破碎机设计-图【E387】液压台虎钳设计-1图1说明书【E388】球笼万向节设计-1图【E389】全自动麻将机设计-开题报告【E390】三缸单作用泥浆泵设计-图【E391】实验设备液压推移设计-图【E392】水泵结构设计-图【E393】水雾除尘系统设计-图【E394】推移千斤顶设计-图【E395】万能液压机液压传动系统设计-说明书【E396】污水泵设计-图【E397】下运带式制动器设计-图【E398】新型手电筒设计-说明书【E399】压缩机冷凝器设计-图【E400】压装扩口装置设计-图【E401】摇臂设计-图【E402】双齿辊破碎机设计-图【E403】门座起重机变幅机构水平位移补偿设计与优化-说明书【E405】离心式水泵设计-图【E406】连续式装煤机行走部设计-图【E407】龙门铣床设计-图【E408】汽车举升机设计-三维图【E409】弯管机设计-说明书【E410】摇臂式自卸汽车设计-图【E411】液力偶合器设计-图【E412】液力耦合器设计-图【E413】液压缸设计-图【E414】液压缸支架设计-图【E415】液压机设计-图【E416】液压挖掘机的半自动控制系统设计-说明书【E417】液压制动系统设计-图【E418】液粘调速离合器设计-图【E419】1G-160型旋耕灭茬机总体及侧边传动装置设计【E420】低速载货汽车驱动桥的设计【E421】电葫芦设计-总图【E422】高空作业车工作臂设计【E423】糕点切片机设计【E424】轮边减速器式汽车后桥设计-图【E425】专用机械手设计【E426】装卸机械手设计【E427】SCARA型装配机械手结构设计-说明书【E428】气压传动两维运动机械手设计【E429】轻型平动搬运机械手的设计及运动仿真-说明书【E430】三电机驱动的多速卧式卷扬机的设计-1图1说明书【E431】三自由度机械手设计-图【E432】五自由度工业机器人【E433】柱塞泵设计-图【E434】自动曲线焊接机床设计-图【E435】3-TPS混联机床动力学设计与仿真分析【E436】3-TPS混联机床运动学仿真分析【E437】9辊钢板矫直机设计【E438】11辊式钢板矫直机设计【E439】MZ75165钻式采煤机传动机构设计【E440】P90耙斗装岩机设计-图【E441】TY160推土机工作装置设计【E442】ZL30装载机工作装置优化设计【E443】Φ400mm冷轧带材卷取机设计-减速机与卷筒装配设计【E444】Φ400mm冷轧带材卷取机设计-卷筒轴装配设计【E445】搬运机器人的设计【E446】超高速磨削接触区流场动压力建模与仿真【E447】超高速磨削温度场建模及其有限元分析论文【E448】走廊清扫机设计【E449】风力提水系统的设计【E450】干粉砂浆搅拌机-搅拌罐及卸料系统设计【E451】干粉砂浆搅拌机-搅拌系统设计【E452】花生剥壳机设计【E453】花生剥壳设备带式输送机设计【E454】基于SolidWorks汽车起重机的臂架伸缩机构设计【E455】普通车床CA6163的数控化改造设计与仿真【E456】普通铣床XA5132的数控化改造设计与仿真【E457】水桶提升机设计【E458】四辊冷轧机上支撑辊平衡系统设计【E459】四辊冷轧机设计之压下系统设计【E460】四辊冷轧机之轧钢机机架设计【E461】四辊冷轧机之轧辊系统设计【E462】氧化锆纳米复合陶瓷材料的力学性能研究论文【E463】氧化锆纳米复合陶瓷材料去除机理研究【E464】液压凿岩机总体结构设计【E465】液压绞车设计3【E466】液压凿岩机设计【E467】直径500mm带材卷取机之卷筒装配设计【E468】直径500mm带钢卷取机之减速机与卷筒轴装配设计【E469】2.5T矿用隔爆电机车设计【E470】3t手拉葫芦设计【E471】30—35T-h高压对辊成型机设计【E472】EBZ200型掘进机截割部设计【E473】JD-5型调度绞车设计【E474】JD-25型调度绞车设计【E475】JDHB-20型双速调度回柱绞车设计【E476】JHB-8型回柱绞车设计2【E477】JHD-7型回柱绞车设计【E478】JMB-380慢速绞车设计【E486】MZ75-165钻式采煤机传动机构设计【E487】MZ75-165钻式采煤机工作机构设计【E488】MZ75-165钻式采煤机液压系统设计【E490】NGW(2K-H负号机构)行星减速装置设计【E491】NGW(2K-H负号)行星减速装置设计【E492】NGW-单级行星轮减速器设计-图【E493】P30耙斗装岩机设计【E494】P90-B耙斗装岩机设计【E495】P-30B耙斗装岩机工作滚筒设计【E496】P—30B耙斗装岩机设计-图【E497】ZKB1852直线振动筛设计【E508】薄煤层采煤机截割部设计2【E509】薄煤层采煤机截割部设计3【E510】薄煤层采煤机牵引传动部设计1【E511】采煤机截割部设计1【E512】采煤机截割部设计2【E513】采煤机左摇臂设计【E514】叉车设计2【E515】大采高掩护式液压支架【E516】大采高液压支架的设计及结构强度有限元分析【E517】大功率采煤机截割部设计【E518】大功率采煤机牵引传动部设计1【E519】大功率采煤机牵引传动部设计2【E520】大倾角掘进巷道皮带输送机设计【E521】带式输送机变频张紧装置设计2【E522】带式输送机设计2【E523】带式输送机液压张紧装置设计3【E524】单滚筒薄煤层采煤机截割部及三机配套设计【E525】单曲柄往复式给煤机设计2【E526】单曲柄往复式给煤机设计3【E527】单曲柄往复式给煤机设计4【E528】单绳缠绕式提升机设计【E529】低位放顶煤液压支架设计2【E530】低位放顶煤液压支架设计3【E531】电铲提升机构设计【E532】斗式提升机设计【E533】对辊式破碎机设计【E534】颚式破碎机设计【E535】防块煤破碎煤仓设计【E536】防跑车防护装置设计【E537】防跑车装置设计1【E538】防跑车装置设计2【E539】防跑车装置设计3【E540】干式混凝土喷射机设计【E541】钢丝绳罐道自动张紧系统设计【E542】给料破碎机设计【E543】工业型煤成型机的设计3【E544】固定式带式输送机的设计【E545】刮板输送机驱动部设计及机头打齿问题解决【E546】刮板输送机设计2【E547】刮板输送机设计3【E548】混凝土搅拌机设计【E549】架空乘人索道装置设计【E550】架空人行车的总体及结构设计【E551】胶带煤流采样机设计2【E552】卷扬机设计【E553】掘进机总体设计及行走部设计【E554】靠壁式抓岩机设计【E555】可伸缩带式输送机设计1【E556】可伸缩带式输送机设计2【E557】可伸缩式皮带给料机设计【E558】矿车清车机设计【E559】矿用隔爆电机车设计【E560】矿用液压立柱拆装机设计【E561】拉紧绞车设计-图【E562】连续采煤机给料转载破碎机设计【E563】连续采煤机截割部设计【E564】铝水倾卸装置设计【E565】履带式半煤岩掘进机截割部设计2 【E566】履带式半煤岩掘进机设计【E567】履带式半煤岩掘进机行走部设计【E568】履带式岩掘进机截割部设计【E569】螺旋式喷浆机设计【E570】慢速小绞车设计【E571】煤矿副井摩擦式提升系统传动总体设计【E572】耙斗装岩机传动装置设计【E573】耙斗装岩机设计2【E574】汽车起重机的设计【E575】乳化液泵站设计【E576】湿式混凝土喷射机设计4 【E577】湿式混凝土喷射机设计2【E578】湿式混凝土喷射机设计3【E579】双齿辊式破碎机设计【E580】双辊振动破碎机设计【E581】双滚筒薄煤层采煤机截割部设计【E582】双曲柄往复式给煤机设计2【E583】塑料挤出机的研究与设计【E584】移动式带式输送机设计【E585】瓦斯抽放钻机(泵站部分)设计【E586】瓦斯抽放钻机工作机构设计【E587】瓦斯抽放钻机设计【E588】外置式减速滚筒设计【E589】ZKB2055自同步直线振动筛的设计【E590】外装式电动滚筒设计1【E591】外装式电动滚筒设计2【E592】外装式电动滚筒设计3【E593】外装式电动滚筒设计4【E594】往复式防窜仓给料机设计2【E595】往复式给煤机设计【E596】小汽车回转调头装置设计【E597】斜井常闭式防跑车系统的设计1 【E598】行星减速装置设计【E599】掩护式液压支架设计4【E600】掩护式液压支架总体及结构设计【E601】叶轮式选择性破碎机设计-图【E602】液压泵站设计【E603】液压绞车设计4【E604】液压绞车设计5【E605】液压提升机模拟试验台设计【E606】液压张紧装置设计2【E607】液压自动张紧装置设计【E608】运输绞车设计【E609】支撑掩护式液压支架设计3【E610】支撑掩护式液压支架设计4【E611】支撑掩护式液压支架设计5【E612】中厚煤层采煤机截割部设计1【E613】中厚煤层采煤机牵引传动部设计2【E614】中厚煤层电牵引采煤机截割部的设计2 【E615】抓岩机绞车设计【E616】转子式喷浆机设计【E617】装煤机行走部设计【E618】装煤机行走部设计-图【E619】装煤机装运部设计【E620】电机车转向装置设计-图【E621】55KW外置式减速滚筒设计【E622】37KW外置式减速滚筒设计【E623】自同步立式振动离心机设计【E624】Santana2000轿车制动系统设计【E625】履带式半煤岩掘进机主减速器及截割部设计【E626】矫直机设计-1装配图【E627】三通道吊式直线振动筛设计【E628】单转子可逆式锤式破碎机设计-说明书【E629】辊边机设计【E630】电动自行车调速系统的设计【E631】激光打标用自动排列机的设计【E632】烟叶自动筛选装置设计-图【E633】DT250斗式提升机设计【E634】茶叶修剪机设计【E635】齿轮泵的研究与三维造型设计【E636】齿轮链轮套件设计【E637】传动剪板机设计【E638】多功能刷地机设计【E639】风力发电机设计【E640】谷物运输机传动装置设计【E641】管道清灰机器人设计【E642】金属切管机的设计【E643】矿井水仓清理工作的机械化设计【E644】纳米粉体的实验装置设计【E645】普通带式输送机的设计论文【E646】起重机设计【E647】可调速钢筋弯曲机的设计【E648】汽车差速器及半轴设计【E649】巧克力包装机设计【E650】青饲料切割机的设计【E651】清车机设计【E652】驱动桥设计【E653】双螺杆压缩机的设计【E654】双面卧式攻丝机床设计【E655】水峪矿300万吨新井设计【E656】提升机制动系统设计【E657】移动式X光机总体及组件设计【E658】轴向柱塞泵设计【E659】自动小颗粒罐装生产线上的送料机的结构设计【E660】攻丝组合机床设计【E661】数控回转工作台设计【E662】MC无机械手换刀刀库设计【E663】TGSS-50型水平刮板输送机---机头段设计【E664】播种机设计【E665】彩瓦机驱动系统结构设计【E666】罐笼装置设计【E667】机车减振弹簧拆装用10T四立柱压力机的设计【E668】起重机总体设计及金属结构设计【E669】铁水浇包倾转机构的设计【E670】粘土制浆系统设计【E671】装卸料机械手设计【E672】数控车床电动刀架设计【E673】N402—1300型农用拖拉机履带底盘的设计【E674】OKL-150型螺旋式颗粒肥料成型机的设计【E675】QTZ63型塔式起重机顶升机构的研究及设计【E676】SGZ刮板运输机机头设计【E678】蚕豆脱壳机设计【E679】草坪播种机的设计【E680】对辊形煤成型机设计【E681】滚筒采煤机截割部分的设计【E682】后装压缩式垃圾车设计【E683】矿车轮对拆卸机构的设计【E684】马铃薯播种机设计【E685】膜片弹簧离合器的设计【E686】柠条联合收割机切割及拨禾装置的设计【E687】柠条联合收割机压扁及切碎装置的设计【E688】耙斗装岩机绞车设计【E689】汽车回转盘的盘面和驱动的设计【E690】汽车机械转向系统设计【E691】沙石振动筛的设计【E692】石材雕刻机设计-图【E693】手提往复式绿篱修剪机设计【E694】手推式剪草机的设计【E695】四杆机构的优化设计【E696】土壤表面整平的装置设计【E697】往复式煤炭输送机设计【E698】预加水盘式成球机设计【E699】6SX-320型叶菜清洗机的设计研究【E700】BM—4010PD万达汽车后驱动桥的设计【E701】KLZ-27 型螺旋开沟机设计-图【E702】机械结构有限元和优化设计【E703】六挡手动变速器设计【E704】捷达车制动系统改装设计【E705】轮胎气压时实监测系统的设计【E706】汽车电动助力转向系统的研究【E707】三层立体车库设计【E708】折叠臂式高空作业车设计【E709】S100掘进机设计-图【E710】EBZ135型半煤岩掘进机行走机构的总体设计【E711】卧式锤式破碎机设计【E712】薄层采煤机截割部传动系统设计【E713】薄煤层采煤机总体方案设计及截割减速器设计。
机械毕业设计-多功能试验台的设计 (2)

关键词:多功能试验台,传动设计,结构设计
II
Abstract
The development of multi function test bench, test system design and transmission part structure design principle, multifunctional test-bed of analysis and determine multi-function test platform system design and transmission part structure design the content contained in the mechanical drawing rendering, calculation of overall and the transmission part of the structure design conclusion and suggestions are mainly introduced in this paper. In mechanical professional learning, there are many courses need to experiment, such as "the principle of machines, the innovative design and advanced manufacturing technology, etc., the multi function test bed can provide a flexible experimental platform for curriculum. Through the graduation design of existing transmission were compared, we design a test platform of the machine frame, the test bench can driving gear, belt drive and chain drive various forms of experimental, each kind of form have the motion characteristics, and the various forms of transmission to exchange, test bench has the advantages of convenient disassembly, flexible operation, is convenient for students to experiment with a variety of mechanical. The structure of the machine is mainly generated by the electric motor. The power will need to be transmitted to the reducer, and the reducer will be allocated to improve labor productivity and automation level. Research content of this thesis: (1) the overall structure design of the multi function test bed and the transmission part. (2) working performance analysis of the overall and transmission performance of the multi function test bed. (3) motor selection. (4) the overall and the transmission system of the transmission system and the implementation of the transmission parts. (5) design and calculation analysis and verification of design parts. (6) drawing the assembly drawing and the assembly drawing of the important parts. Keywords:
8000kN立柱试验台结构设计毕业设计

中国矿业大学毕业设计任务书毕业设计题目:8000kN立柱试验台结构设计摘要液压支架是现代煤矿综采工作面中的配套支护设备,立柱是其主要结构件。
立柱工作的可靠性直接关系到矿井生产的正常化和工人的生命安全。
随着我国煤炭工业的不断发展,国家对安全生产治理力度的加大,对矿用机电设备的检测技术提出了更高的要求。
立柱性能检测试验台是进行立柱质量检测的必要设备,是立柱质量监控的保障。
本文设计的立柱试验台能够兼容欧洲标准和国家标准,能够检测单根工作阻力达8500kN的立柱的性能。
本文介绍了立柱性能检测的方法、试验台的组成、原理,设计了加载系统和承载框架。
本设计的主要内容:1. 详细设计了外加载系统、加载液压缸、增压缸、油箱、联结罩、联轴器、承载框架。
2. 选取外加载泵站、大泵组、增压缸、加载液压缸、联轴器、加载缸导向套等零部件进行了绘图。
3. 承载框架部分,用SolidWorks 2007进行建模,并借助于SolidWorks 2007的一款有限元分析工具COSMOS进行了应力分析。
关键词:液压支架立柱;液压加载系统;试验台;ABSTRACTIn the modern mining the hydraulic support is the necessary ancillary equipment, the legs is one of its main elements. The reliability of the legs directly relates the mine pit production normalized and worker's safe.Along with China coal industry unceasing development, the government to safety dynamics enlarging in production set a higher request to the mineral electromechanical device examination technology.The legs performance test-bed is the legs quality examination of the fittings is the quality monitoring safeguard of the legs.The legs test-bed of this article designed can compatible European standard and the national standard.,can examine the legs performance of the working resistance reach 8500kN。
毕业设计(论文)-小型轴承转子实验台设计(全套图纸)

毕业论文(设计)论文(设计)题目:小型轴承转子实验台设计姓名学号学院机械工程学院专业机械设计制造及其自动化年级 2009指导教师2013年 6 月 3 日摘要随着科学技术的不断发展,旋转机械也向着越来越精密,转速越来越高发展,这也就对旋转机械的转子的各种运动状态的测试、分析提出了更高的要求,这为转子动力学的研究提出了一系列的研究课题,也有力地促进了转子动力学的发展。
对转子动力学特征的研究可以优化设计方案,从而提出更加高效节能、更加安全的转子系统,对于理论和实践都有着很大的意义。
本课题设计的是转子动力学的动态实验系统——小型轴承转子实验台,将转子动力学基本理论作为主要研究方法,以振动分析为主要手段。
在现有轴承转子实验台的基础上,对轴的直径、转子的直径、电机转速加以改变,通过对转速的控制,模拟出单自由度转子在不同的转速下的各种运动状态。
在考虑轴心轨迹的测试和轴承座上进行加速度测量前提下,满足锤击激振、电磁激振器激振。
系统由机械部分和测控部分组成,机械部分主要完成对转子—轴承系统的结构设计和电机选型;测控部分完成了传感器等软硬件设备的选取,最终组成完整的实验系统。
关键词实验台;转子;滑动轴承ABSTRACTWith the development of science and technology, rotating machinery are becoming more and more accurate,and the speed are higher and higher. Those also take higher requirements on rotor state of motion testing and analysis.It also takes a series of research topics, but also effectivelypromotes the development of rotor dynamics.Then dynamic characteristics of the rotor can be optimized , which makes more efficient, more secure rotor system。
机械毕业设计论文液压试验台设计全套图纸

机械毕业设计论文液压试验台设计全套图纸
抱歉,我不能直接提供任何论文或图纸的下载或复制。
这是违反学术道德和知识产权法律的行为。
建议你自行搜索相关资料或向导师、教授或图书馆咨询获取可靠的资料。
同时,我可以给你一些指导和建议来帮助你完成液压试验台的设计:
设计步骤:
1. 确定实验参数和目标:确定液压试验台的参数和目标,比如所需承受的压力、流量、温度、工作介质等等。
2. 选择液压元件和材料:根据实验参数和目标,选择适当的液压元件和材料,包括油泵、液压缸、油箱、阀门等。
3. 设计液压试验台的结构:根据实验要求设计液压试验台的结构,包括支架、托架、升降装置、夹具等。
4. 绘制3D图形和详细图纸:使用设计软件绘制液压试验台的三维图形和详细图纸,包括外观图、部件图、装配图等。
5. 完成装配和测试:将设计好的液压试验台进行装配和测试,并注意安全操作。
常见设计要点:
1. 确保液压试验台的承载能力和稳定性;
2. 选择并匹配适合实验要求的液压元件,包括油泵、液压缸、油箱和阀门等;
3. 保证液压试验台的密封性和耐腐蚀性;
4. 精确设计液压试验台的控制系统,包括仪表盘、操作面板等。
总之,设计液压试验台需要根据具体实验要求进行详细的分析和设计,同时需要充分考虑材料、装配工艺和安全要求等方面。
(机械设计制造及其自动化专业)毕业设计(论文)选题汇总表

15 面向EQ140-1汽车变速箱一轴的先进制造工艺研究 16 基于EQ140-1汽车变速器一档齿轮的加工工艺及工装设计 17 面向柴拖变速箱体的加工工艺及工装夹具设计 18 面向EQ140-1汽车变速器一档齿轮的先进制造工艺研究 19 CBGW-1型摆线滚柱减速机设计 20 用于井下螺杆泵的减速机设计 21 弹性环均载两级三环减速机设计 22 混凝土物料输送皮带机设计 齿轮变速箱参数化造型系统开发 23 1)基于UG的轴面标准件参数化造型模块的创建 24 2)基于UG的特征轴段参数化造型模块的创建 25 3)基于UG的箱体箱盖的参数化造型的实现 26 4)变速箱造型系统数据库的开发与完善 数控编程系统开发 27 1)数控车床编程教学系统开发 28 2)数控车床编程教学系统扩展功能开发 29 3)数控铣床编程教学系统开发 30 4)数控铣床编程教学系统扩展功能开发 31 钻轴均布不可调钻床多轴头
2002级(机械设计制造及其自动化专业)毕业设计(论文)选题汇总表
序号 课题名称 基于滚轮法的工件磨削外圆直径测控系统设计 1 2 1)测量与进给机械系统设计 2)传感器与步进电机选型及测控软件开发 基于径向尺寸间接测量的外圆直径测控系统设计 3 4 1)测量与进给机械系统设计 2)传感器与步进电机选型及测控软件开发 基于柴拖变速箱箱体精镗孔专机的CAD技术研究 5 6 7 1)基于柴拖变速箱箱体精镗孔专机总体与夹具CAD技术研究 2)基于柴拖变速箱箱体精镗孔专机传动系统CAD技术研究 3)基于柴拖变速箱箱体精镗孔专机进给系统CAD技术研究 基于EQ140-1汽车中轴半圆槽铣削专机的CAD技术研究 8 9 1)基于EQ140-1汽车中轴半圆槽铣削专机总体和夹具CAD技术研究 2)基于EQ140-1汽车中轴半圆槽铣削专机主传动系统CAD技术研究 课题来源 常州齿轮厂 常州齿轮厂 常州齿轮厂 常州齿轮厂 常州齿轮厂 常州齿轮厂 飞天集团 飞天集团 飞天集团 飞天集团 飞天集团 飞天集团 飞天集团 飞天集团 江苏昌力油缸有限公司 江苏昌力油缸有限公司 江苏昌力油缸有限公司 江苏昌力油缸有限公司 江苏昌力油缸有限公司 指导教师 唐国兴 唐国兴 唐国兴 唐国兴 唐国兴 唐国兴 周堃敏/黄志荣 周堃敏/黄志荣 周堃敏/黄志荣 周堃敏/黄志荣 周堃敏/黄志荣 周堃敏/黄志荣 周堃敏/黄志荣 周堃敏/黄志荣 周堃敏/金卫东 周堃敏/金卫东 周堃敏/金卫东 周堃敏/金卫东 周堃敏/金卫东 职称 副教授 副教授 副教授 副教授 副教授 副教授 教授/讲师 教授/讲师 教授/讲师 教授/讲师 教授/讲师 教授/讲师 教授/讲师 教授/讲师 教授/讲师 教授/讲师 教授/讲师 教授/讲师 教授/讲师 学生数 (2) 1 1 (2) 1 1 (3) 1 1 1 (3) 1 1 1 (4) 1 1 1 1
机械专业毕业设计目录大全

机械专业毕业设计目录大全上千套优秀设计供你参考,#优秀研硕团队专业代做机械类(模具,机电,汽车等)#各科毕业设计.#专业设计资源,一对一量身定做,让你轻松毕业!需要详细了解设计的可以++ ###Q*Q:## 2950-11539# 诚信专业服务1.光轴生产线专用气压搬运机械手设计2.转载锤式破碎机总体设计3.双齿辊破碎机设计4.混凝土搅拌机设计5.冲击器试验台液压系统设计6.ZMX粉碎机下机体支承面专用铣床设计7.14米高空作业车液压系统设计8.机械手设计9.四自由度多用途气动机器人(机械手)结构设计及控制实现10.轿车变速箱设计(五档变速器设计)11.天然气电控发动机设计毕业设计12.TGSS-50型水平刮板输送机机头段设计13.组合机床设计14.1G-160型旋耕灭茬机总体及侧边传动装置设计15.颚式破碎机设计16. 除雪机的转载部分结构设计17. 皮带运输机PLC电气控制系统设18. 普通带式输送机的设计19. 泵吸式清淤系统设计20. 龙门式起重机总体设计及金属结构设计21. 桥式起重机小车运行机构设计22. 液压传动虚拟实验设计23.卷扬机设计24. 提升机驱动系统设计25. 双齿减速器设计26.5T重轮式装载机的装载机设计27.普通铣床数控化改造设计28.复摆颚式破碎机设计29.气流粉碎机设计与粒度控制30.低速载货汽车驱动桥设计31.压力机与垫板间夹紧机构设计32.FDP-15非开挖钻机设计33.J45-6.3型双动拉伸压力机及PLC控制系统设计34.机械毕业设计:MC型埋刮板输送机设计35.数控回转工作台设计36.机械毕业设计:冲压搬运机械手设计37.行走式小型液压起重机设计38.150T液压机设计39.机床上下料机械手设计40.矿用固定式带式输送机设计41.气门摇杆轴支座设计42.卸料器的设计及改进设计43.薄煤层采煤机总体方案设计及截割减速器设计44.BM—4010PD万达汽车后驱动桥设计45.普通CA6140车床的经济型数控化改造设计46.机械毕业设计:数控钻床横、纵两向进给系统的设计47.铣床的数控X-Y工作台设计48.机械毕业设计:液压绞车泵站设计49.膜片离合器设计50.400型水溶膜流研成型机设计51.自动售货机的PLC系统设计52. 机械毕业设计:圆盘剪切机设计53.Y—6.3S型液压机机械结构设计54.Φ2.4×11m球磨机总体及筒体设计55.立体车库内部机械结构优化设计56.液力传动变速箱设计与仿真设计57.数控车床系统XY工作台与控制系统设计58.矸石制浆材料工业生产线系统设计59.Ф2600筒辊磨滑履支承及密封装置设计60.C6140普通车床的数控化改造设计61.液压防溢板设计62.专用机床液压系统设计63.中煤层采煤机截割部设计64.车载机械自动调平机械系统设计65.四自由度的工业机器人设计66.J01型机械转向器设计67.电动观光汽车总体设计68.定梁数控龙门镗铣床溜板进给系统设计69.聚氯乙烯搅拌反应釜设计70.Santana2000轿车制动系统设计71.轿车机械式变速器设计71.1堆取料机皮带机设计71.2电机车的气制动设计71.3带位移电反馈的二级电液比例节流阀设计71.4花生去壳机设计71.5ZQ--100型转杆动力钳背钳设计71.6QY40型汽车起重机液压系统的设计72.XA5032普通立式铣床进行数控化改造(普通铣床数控化改造)73.普通车床的数控化改造74.组合钻床设计75.组合镗床设计76.凿岩机机头零件工艺规程及工艺装备设77.CA6140车床尾座体的工艺规程以及设尾座体的两组专用夹具设计78.薄煤层采煤工作面电缆拖移系统79.掩护式液压支架设计80.综采工作面大型刮板输送机设计81.履带式半煤岩掘进机设计82.放顶煤开采液压支架设计83.矿车轮对装拆机设计84.装煤机设计85.矿车清车机86.薄煤层采煤机牵引部设计87.薄煤层采煤机截割部设计88.矿山机械实验室设备管理系统的建立89.瓦斯抽放液压钻机设计90.机械毕业设计:pc-φ800×800锤式破碎机设计91.双腔鄂式破碎机设计92.液压式测力装置设计93.卧式钢筋切断机设计94.工业机械手模型基于PLC的控制系统软硬件设计95.船舶辅助机械PLC控制系统设计96.板料折弯机液压系统设计97.柴油机P型喷油器设计98.螺旋管状面筋机总体及坯片导出装置设计99.数控多工位钻床设计100.柴油机供油角度自动提前器的结构特点与制造工艺设计101.机械毕业设计:数控钻床横、纵两向进给系统的设计论文下载含cad图纸102.机械毕业论文:经济型数控车床控制系统设计论文下载含cad图纸103.自动售货机设计104. 振动筛式花生收获机的设计105.给料装置传动系统设计106.工业机械手液压系统设计107.离心通风器设计108.R180柴油机曲轴工艺设计及夹具设计109.矩形型材端面坡口铣削机设计110.钢筋调直机的设计111.DTⅡ胶带输送机设计112.XK5025型数控立铣床自动换刀装置设计113.机械毕业设计:靠模攻丝组合机床设计114.机械毕业设计:搅拌器设计115.机械毕业设计:加工中心主传动系统(电主轴)设计116.CA6140普通车床的数控化改造设计117.机械毕业设计:DTII型固定式带式输送机设计118.气门摇臂轴支座的机械加工工艺及夹具设计119.离合器设计119.汽车ABS防抱死制动系统设计120.专用榫齿铣PLC电气控制系统设计121.随车提升机的设计122.468Q发动机缸体双面卧式钻床总体设计及左主轴箱设计123.PLC自动售货机设计124.CA6140车床拨叉A加工工艺及夹具设计125.CA6140车床拨叉C加工工艺及夹具设计126.自来水厂流量、水压远程采集系统设计127.汽车轮胎内压自动监测及便携式补气装置设计128.离心通风器设计论文129.阀堵工艺工装设计及CAD/CAM130.32/5T桥式起重机起升机构设计131.QAY50起重机设计132.CA6410车床拨叉831002加工工艺和夹具设计133.齿轮箱工艺钻2-φ20孔工装及专机设计134.齿轮箱工艺钻孔工装及专机设计135.送料机械手设计136.U型管式换热器设计137.CAK6150普通车床的数控化改造138.斜胶胎2号成型机四连杆式后压滚设计139.啤酒周转箱注射机液压系统设计140.轻型液压浅孔钻机设计141.中等压力润滑泵的设计142.炼钢厂滑动水口液压系统设计143.活塞工艺夹具设计144.农业机械毕业设计:水力驱动带状喷灌系统设计145.卧式加工中心自动换刀机械手设计146.固定式智能水泥包装机设计147.带式物料输送机设计148.潜孔钻气动冲击器设计149.液压绞车设计150.驱动小车设计151.机械毕业设计:起重梁设计152.单轨吊液压驱动葫芦设计153.单轨吊车液压泵站的设计154.单轨吊承载小车的设计155.轮式装载机工作装置设计156.CA6140杠杆加工工艺及夹具设计157.支承套零件的专用夹具设计158.推动架加工工艺规程设计159.铝线及CP送丝装置设计与典型零件数控加工160.数控龙门铣床立铣头部件设计161.输出轴工艺与工装设计162.气门摇臂轴支座加工工艺及夹具设计163.汽车空调器前缸盖数控加工工艺的制订及夹具设计164.机械毕业设计:塑料瓶理瓶机设计165.煤矿机械毕业设计:2×132/630-WD采煤机可调行走箱设计166.矿山毕业设计:300吨每小时煤粉带式输送机设计167.机械毕业设计:隔水管套内焊缝自动焊接装置设计168.机械毕业设计:HSG螺纹式连接液压缸结构设计169.毕业设计:HSG拉杆式液压缸结构设计170.大专机械毕业设计:自动采油系统地面提升绞车设计171.机械毕业设计:三坐标数控铣床设计172.机械毕业设计:物料传输颜色分拣系统设计173.毕业设计:4102机体主凸孔扩孔镗削加工夹具设计174.机械毕业设计:缸阀体的工艺分析及夹具设计175.机械毕业设计:凸轮轴零件工艺规程设计176.机械毕业设计:ZFG6600/17/32H型放顶煤液压支架设计177.机械毕业设计:绞盘机的减速机构设计178.机械毕业设计:CA6140下部刀架的工艺工装的设计179.大学机械毕业设计:机车凸轮轴工艺夹具设计180.机械毕业设计:汽车后桥壳体工艺夹具设计181.汽车毕业设计:奥迪A6自动变速器实验台电路设计182.机械毕业设计:轻型货车变速器设计183.机械毕业设计:三坐标数控铣床设计184.机械毕业设计:ZFG6600/17/32H型放顶煤液压支架设计185.本科机械毕业设计:CA6140开合螺母工艺工装设计186.机械毕业设计:汽车后桥壳体工艺夹具设计187.大学机械毕业设计:机车凸轮轴工艺夹具设计188.机械毕业设计:CA6140下部刀架的工艺工装的设计189.机械毕业设计:绞盘机的减速机构设计190.机械毕业设计:汽车变速器壳体工艺夹具设计191.机械毕业设计:CA6140方刀架工艺工装设计192.机械毕业设计:离心式水果榨汁机的机械设计193.机械毕业设计:铣床强力万能铣头设计194.机械毕业设计:果蔬原料去皮机的设计195.机械毕业设计:MG400-940采煤机摇臂减速箱设计196.机械毕业设计:活塞机械加工工艺规程及粗镗销孔夹具设计197.机械毕业设计:钢筋矫直切断机设计198.机械毕业设计:机械式钢筋钢管多功能加工机设计199.机械毕业设计:JTP-1.6×1.2矿用提升绞车主轴装置设计200.机械毕业设计:间歇式环保包装件成型设备设计201.煤矿机械毕业设计:大功率采煤机截割部的设计202.机械毕业设计:300/50KN单主梁龙门式起重机设计203.机械毕业设计:立式精锻机自动上料机械手大臂升降及回转机构设计204.机械毕业设计:立式浮动悬辊磨零部件优化设计205.机械毕业设计:智能机器狗结构设计206.机械毕业设计:车削中心机械部分设计207.机械毕业设计:圆锯床设计208.机械毕业设计:1吨单层全自动罐笼门设计209.机械毕业设计:NGW行星齿轮传动电动滚筒设计210.机械毕业设计:数控激光切割机设计211.机械毕业设计CTY8/6-PG 电机车的设计212.机械毕业设计:链驱动双层升降横移式立体车库设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 立柱试验台总体结构方案设计1.1 课题研究背景和意义液压支架的立柱以乳化液为工作介质,在液压支架支护采煤工作面顶板、破碎顶板方面起到了至关重要的作用。
液压支架立柱的可靠性及安全性直接关系到矿井生产的正常化及煤矿工人的人身安全。
随着中国煤炭工业的不断发展,国家对安全生产治理力度的加大,对矿用机电设备检测技术提出了更高的要求。
由于我国煤炭工业迅猛发展,大型综采配套现代化矿井逐年增加,液压支架的使用量逐年上升,并且随着技术的革新,单根立柱的缸径已经突破400mm,额定工作压力突破43MPa,额定工作阻力达到5400kN,向大缸径、超高压、大工作阻力发展是矿用液压支架发展的大势所趋,相信在不久的将来,单根工作阻力超过8000kN的立柱便会设计制造并投产使用,到那时检修量和实验的工作量也大大增加。
液压支架立柱检测设备是生产和研制高产高效液压支架的关键设备,面对迅速发展的支护技术,需要有一种能够快速、准确地检测如此大缸径、大工作阻力液压支架立柱的实验台。
为此本文设计了这台能够准确检测单根额定工作阻力为8000kN液压立柱的实验台。
1.2 立柱试验台检测项目和实验方法1.3 拟定试验台总体结构方案分析以上标准和试验方法,测试立柱的试验台主要由:承载机构、加载机构、压力检测机构、电气控制部分组成。
本试验台的加载系统和试验台承载框架是这次毕业设计的主要内容,下面从这两方面入手,确定方案。
加载方式有很多种,例如有机械加载、电加载、液压加载等方式。
液压加载系统与其他加载方式相比较具有简单易行,可以实现无级变速连续加载,所需元件数量少,能远距离控制,运动件的惯性小,能够频繁换向,传动工作平稳等优点,所以本试验台加载系统选用液压系统。
液压加载系统分别选用液压油外加载系统和乳化液内加载系统,这种液压系统结构简单,维修方便。
按照设计要求主要设计试验台的外加载泵站、加载液压缸、增压液压缸、泵站油箱、联结罩、联轴器、增压缸、活塞杆、加载缸导向套等关键零部件。
承载部分采用钢板焊接成整体框架式。
两侧承载梁的截面积及钢板的厚度设计校核时最终确定。
设计承载框架,按照导师的建议,借助三维软件SolidWorks 2007进行设计,对框架进行三维建模,用SolidWorks 2007带的有限元分析工具COSMOS进行应力分析。
2 外加载液压系统设计2.1 液压技术简介液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。
液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。
2.1.1 液压系统概述液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。
如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。
1795年英国约瑟夫·布拉曼(Joseph Braman,1749~1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。
1905年将工作介质水改为油,又进一步得到改善。
第一次世界大战(1914~1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。
液压元件大约在19 世纪末20 世纪初的20年间,才开始进入正规的工业生产阶段。
1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。
20 世纪初康斯坦丁·尼斯克(G·Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。
第二次世界大战(1941~1945)期间,在美国机床中有30%应用了液压传动。
应该指出,日本液压传动的发展较欧美等国家晚了近20 多年。
在1955 年前后, 日本迅速发展液压传动,1956 年成立了“液压工业会”。
近20~30 年间,日本液压传动发展之快,届世界领先地位。
液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等国;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
液压传动的基本原理是在密闭的容器内,利用有压力的油液作为工作介质来实现能量转换和传递动力的。
其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。
一个完整的液压系统是由各种不同功能的基本回路构成,去完成执行机构的工作要求。
液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成:(1)动力元件(油泵)它的作用是把液体利用原动机的机械能转换成液压力能;是液压传动中的动力部分。
(2)执行元件(油缸、液压马达)它是将液体的液压能转换成机械能。
其中,油缸做直线运动,马达做旋转运动。
(3)控制元件包括压力阀、流量阀和方向阀等。
它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。
(4)辅助元件除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件及油箱等,它们同样十分重要。
(5)工作介质工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换。
2.1.2 液压传动的优点液压传动之所以能得到广泛的应用,是由于它具有以下的主要优点:(1)由于液压传动是油管连接,所以借助油管的连接可以方便灵活地布置传动机构,这是比机械传动优越的地方。
例如,在井下抽取石油的泵可采用液压传动来驱动,以克服长驱动轴效率低的缺点。
由于液压缸的推力很大,又加之极易布置,在挖掘机等重型工程机械上,已基本取代了老式的机械传动,不仅操作方便,而且外形美观大方。
(2)液压传动装置的重量轻、结构紧凑、惯性小。
例如,相同功率液压马达的体积为电动机的12%~13%。
液压泵和液压马达单位功率的重量指标,目前是发电机和电动机的十分之一,液压泵和液压马达可小至0.0025N/W,发电机和电动机则约为0.03N/W。
(3)可在大范围内实现无级调速。
借助阀或变量泵、变量马达,可以实现无级调速,调速范围可达1∶2000,并可在液压装置运行的过程中进行调速。
(4)传递运动均匀平稳,负载变化时速度较稳定。
正因为此特点,金属切削机床中的磨床传动现在几乎都采用液压传动。
(5)液压装置易于实现过载保护——借助于设置溢流阀等,同时液压件能自行润滑,因此使用寿命长。
(6)液压传动容易实现自动化——借助于各种控制阀,特别是采用液压控制和电气控制结合使用时,能很容易地实现复杂的自动工作循环,而且可以实现遥控。
(7)液压元件已实现了标准化、系列化和通用化,便于设计、制造和推广使用。
2.1.3 液压技术的缺点(1)使用液压传动对维护的要求高,工作油要始终保持清洁;(2)对液压元件制造精度要求高,工艺复杂,成本较高;(3)液压元件维修较复杂,且需有较高的技术水平;(4)用油做工作介质,在工作面存在火灾隐患;(5)传动效率低。
2.2 液压加载系统工况分析及设计要求仔细理解欧洲标准中规定的立柱试验的过程,可得到加载液压缸的设计要求。
(1)加载系统加载力要求理论上可以计算出加载系统所需产生的最大推力,即该系统的最大加载力:kN 16886844322max =⨯=⨯=F F根据设计要求,该系统的最大加载力取F =17000 kN(2)加载系统拉力分析试验台工作情况该系统的平均力取F 拉=100 kN(3) 液压加载缸的运动速度加载缸在试验过程中的运动速度:最小加载速度: mm/min 2 1=v 让压加载速度: mm/min 10 2=v最大加载速度: mm/min 100 3=v空载运行速度: v 空mm/min 100 =缩回速度: mm/min 100 =v 缩(4)液压加载缸最大加载行程分析试验台的实际需要,加载缸所需的最大加载行程取1000 mm 。
2.3 液压加载系统方案设计2.3.1 选择液压动力源液压系统的工作介质完全由液压源来提供,液压源的核心是液压泵。
为节省能源提高效率,液压泵的供油量要尽量与系统所需流量相匹配。
对在工作循环各阶段中系统所需油量相差较大的情况,一般采用多泵供油或变量泵供油。
对长时间所需流量较小的情况,可增设蓄能器做辅助油源。
参考国内矿用设备及国内同类或相关设备和资料,经初步估算该液压系统的压力和流量的变化范围大,采取两台泵较合适。
拟选用一台恒压变量柱塞泵,一台定量柱塞泵。
节流调速系统一般用定量泵供油,在无其他辅助油源的情况下,液压泵的供油量要大于系统的需油量,多余的油经溢流阀流回油箱,溢流阀同时起到控制并稳定油源压力的作用。
容积调速系统多数是用变量泵供油,用安全阀限定系统的最高压力。
所以本系统拟采用操纵变量机构改变系统流量和采用单向节流调速阀结合的方式达到调节速度的目的。
系统背压力初估为1.5MPa 。
2.3.2 选择执行元件加载缸有正向加载和反向缩回两个方向的动作,因此选用双作用单活塞杆液压缸。
加载缸空载运行速度与缩回速度相等,确定无杆腔面积A 1 等于有杆腔面积 A 2的2倍,即A 1 = 2A 2 。
2.3.3 确定控制方式执行元件的控制方式有泵控制方式和阀控制方式,泵控制方式采用双向变量泵,通过控制泵的流量实现执行元件的速度控制,通过控制泵的出油方向实现执行器的方向控制。
这种方式中每个执行元件需要一个变量泵。
重视能源的经济的场合或者负载惯性大、起动停止冲击成问题时可以采用。
阀控制方式中,用方向控制阀实现执行器的方向控制,用流量控制阀实现执行器的速度控制。
这种方式应用最广泛,适用于一个液压源同时驱动多个执行器的场合或者输入信号很复杂而要求快速响应的场合。
本试验台采用换向阀的控制方式。
2.3.4 液压回路设计由于设计者的思路、经验或对所有元件的考虑方法不同,即使针对同样目的,设计出来的液压回路也是千差万别的。
因此拟定几种符合目的的液压回路,再从成本、重量、使用方便等方面进行对比论证,确定最合适的液压回路。
液压回路包括油压发生回路、执行器控制回路、油液处理回路、其他辅助回路等。