六年级奥数题列方程解应用题

合集下载

(完整版)六年级奥数列方程解应用题

(完整版)六年级奥数列方程解应用题

列方程解应用题列方程解应用题,就是用代数算法解应用题。

它以布列方程为前提,先不考虑求得数,只把所求未知数设x。

一般所求问题与已知条件的数量关系明显者,采取设直接未知数的办法,即求什么就设什么为x;而所求问题与已知条件的数量关系隐蔽者,则采取设间接未知数的办法,即设一个跟所求问题与已知条件相关联的未知数为x。

但是,无论设哪种未知数为x,均将其放在与已知数同等的地位,一起参加数量关系的分析和运算。

列方程解应用题,一般分四步进行:①弄清题意,用x表示未知数;②找出数量间的等量关系,列出方程式;③解方程;④检验并作答。

正确的方程式,应符合下列条件:①等号两边的意义的相同;②等号两边的数量相等;③等号两边的单位一致。

例1.光明小学买回一批图书,如果每班发15本,则少20本,如果每班发12本,则剩下16本,这个学校一共有多少个班?买回图书多少本?我能行:1、一批游客过一条河,如果每只船坐10个人,还剩4人,如果每船坐12个人,那么多出1只船,你知道这批游客有多少人?有多少只船?2、小明每天同一时间从家出发去学校,如果每分钟行60米,则可提前1分钟到校,如果每分钟行50米,则迟到2分钟,小明家离学校多少米?3、某班班主任给同学们分巧克力,如果每个人分10块,则剩下8块,如果每个人分12块,有6个同学分不到。

这个班有多少个学生?例2.一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大4倍,个位上的数字减去2,那么所得的两位数比原来大58,求原来的两位数是多少?解析:这道题用算术方法解答有一定的难度,换成方程来解答,思路就比较简洁。

设个位上的数字为x人,则十位上的数字是x -1我能行:1、有一个两位数,它的十位数字和个位数字和是14,如果把十位上的数字和个位上的数字位置交换后,所得的两位数比原来的两位数大36,求原来的两位数?2、甲数是乙数的3倍,甲数减去85,乙数减去5,则两数相等,甲乙两数各是多少?3、一个三位数,十位数字是0,其余两位数字之和是12,如果个位数字减2,百位数字加1,那么所得的新数比原数的百位数字与个位数字互换位置后的数小100,求原三位数。

小学六年级奥数列方程解应用题

小学六年级奥数列方程解应用题

【导语】⽅程(equation)是指含有未知数的等式。

是表⽰两个数学式(如两个数、函数、量、运算)之间相等关系的⼀种等式,使等式成⽴的未知数的值称为解或根。

以下是⽆忧考整理的《⼩学六年级奥数列⽅程解应⽤题》相关资料,希望帮助到您。

1.⼩学六年级奥数列⽅程解应⽤题 1、⾷堂买进⾯粉175千克,⽐⽟⽶⾯的3倍还多25千克,⾷堂买进⽟⽶⾯多少千克? 2、师傅⽐徒弟多加⼯162个零件,已知师傅加⼯零件的个数是徒弟的4倍,师徒⼆⼈各加⼯多少个零件? 3、⽀钢笔⽐15⽀圆珠笔贵7.6元。

每⽀圆珠笔的价钱是2.8元,每⽀钢笔多少元? 4、⼀个三⾓形的⾯积是18平⽅厘⽶,它的底边长是12厘⽶,⾼是多少厘⽶? 5、选择适当的⽅法解答下⾯两题。

(1)学校科技组有18名⼥⽣,⽐男⽣⼈数的1/3少2⼈。

学校科技组有多少名男⽣? (2)学校科技组有36名⼥⽣,男⽣⼈数⽐⼥⽣⼈数的3倍还多6⼈。

学校科技组有多少名男⽣?2.⼩学六年级奥数列⽅程解应⽤题 1、某果园向市场运⼀批⽔果,原计划每车装1.6吨,实际每车装2吨,结果少了4吨,⼀共有多少辆车? 2、某班42个同学参加植树,男⽣平均每⼈种3棵,⼥⽣平均每⼈种2棵,已知男⽣⽐⼥⽣多种56棵,男、⼥⽣各有多少⼈? 3、学校买来科技书的册数是⽂艺书册数的1.4倍,如果再买12册⽂艺书,两种书的册数相等。

学校买来两种书各有多少册? 4、学校买6张办公桌和15把椅⼦共⽤去660元。

已知每张办公桌与3把椅⼦的价钱相等,求多少元? 5、东⽅⼩学五年级举⾏数学竞赛,共10个赛题每做对⼀题得8分,错⼀题倒扣5分,张华全部解答,但只得41分,他做对多少题? 6、松⿏妈妈采松⼦,晴天每天可采24个,⾬天每天可采16个,他⼀连⼏天⼀共采了168个松⼦,平均每天采21个,这⼏天中⼀共有多少是天晴天? 7、甲⼄两个仓库共有⼤⾖138吨,若从甲仓库运⾛30吨,从⼄仓库运⾛35吨,这时⼄仓库⽐甲仓库的⼀半还多4吨,求两个仓库原来各有⼤⾖多少吨? 8、甲、⼄、丙、丁四⼈共做零件270个,如果甲多做10个,⼄少做10个,丙做的个数乘以2,丁做的个数除以2,那么四⼈做的零件数恰好相等,丙实际做了多少个? 9、某仓库运出四批原料,第⼀批运出的占全部库存的⼀半,第⼆批运出的占余下的⼀半,以后每⼀批都运出前⼀批剩下的⼀半。

六年级奥数上册:第1讲 列方程解应用题

六年级奥数上册:第1讲 列方程解应用题

六年级奥数上册:第1讲列方程解应用题列方程解应用题是用字母来代替未知数,根据数量关系列出含有未知数的等式,也就是列方程,然后解出未知数的值。

列方程解应用题的优点在于可以使未知数直接参加运算。

列方程解应用题的一般步骤是:①弄清题意,找出已知条件和所求问题。

②依题意确定等量关系,设未知数x。

③根据等量关系列出方程。

④解方程。

⑤检验,写出答案。

【典型例题】例1:甲收集的邮票枚数是乙的4倍。

如果甲给乙9枚邮票,那么两人的邮票数就相等。

求甲、乙原来各有多少枚邮票?例2:小东买了1支铅笔和3本练习本,一共花了3.5元,练习本的价钱是铅笔价钱的2倍。

铅笔和练习本的单价各多少元?例3.:妈妈买回一筐苹果,按计划天数,如果每天吃4个,则多出48个苹果;如果每天吃6个,则又少8个苹果,问:妈妈买回苹果多少个?计划吃多少天?例4:有两个正方形,第一个正方形的边长比第二个正方形的边长的2倍多1厘米,而它们的周长相差24厘米,求这两个正方形的面积。

例5:甲、乙、丙、丁四人共做零件270个。

如果甲多做10个,乙少做10个,丙做的个数乘2,丁做的个数除以2,那么四人做的零件数恰好相等。

问:丙实际做了多少个?(这是设间接未知数的例题)挑战题:某县农机厂金工车间有77个工人。

已知每个工人平均每天可以加工甲种零件5个或乙种零件4个,或丙种零件3个。

但加工3个甲种零件,1个乙种零件和9个丙种零件才可以恰好配成一套。

问:应安排生产甲、乙、丙种零件各多少人,才能使生产的三种零件恰好配套?【拓展练习】1、妈妈带一些钱去买布,买2米布还剩下1.8元;如果买同样的布4米则差2.4元。

问:妈妈带了多少钱?2、第一车间工人人数是第二车间工人人数的3倍。

如果从第一车间调20名工人去第二车间,则两个车间人数相等。

求原来两个车间各有工人多少名?3、两个水池共储水40吨。

甲池注入4吨,乙池放出8吨,甲池水的吨数与乙池水的吨数相等,两个水池原来各储水多少吨?4、两堆煤,甲堆有4.5吨,乙堆有6吨。

六年级奥数试题及答案汇总:列方程解应用题

六年级奥数试题及答案汇总:列方程解应用题

六年级奥数试题及答案汇总:列方程解应用题1、甲、乙、丙三种货物,如果购买甲3件、乙7件、丙1件共花3.15元;如果购买甲4件、乙10件、丙1件共花4.20元,那么购买甲、乙、丙各1件需多少钱?答案与解析:考点:列方程解含有两个未知数的应用题.专题:列方程解应用题.分析:由题意可以列出算式:3甲+7乙+丙=3.15;4甲+10乙+丙=4.20;两式相减可以得出甲和乙的关系,第一个算式乘4,第二个算式乘3,后再相减就可以得出乙和丙之间的关系,然后把它们代入同一个算式中就可以得出甲+乙+丙的值.解答:解:由题意得:3甲+7乙+丙=3.15元------------(1)4甲+10乙+丙=4.2元------------(2)(2)-(1)得:甲+3乙=1.05元------(3)(2)×3-(1)×4得:4甲×3+10乙×3+丙×3-(3甲×4+7乙×4+丙×4)=4.2×3-3.15×412甲+30乙+3丙-12甲-28乙-4丙=12.6-12.62乙-丙=0;2乙=丙----(4)(4)代入(3)中得:甲+乙+2乙=甲+乙+丙=1.05元;答:购买甲、乙、丙各1件需要花1.05元.点评:解决这类问题的关键是把等式通过加减或代换变成只含有一个未知数的方程.2、甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍.甲、乙原来各有存款多少元?答案与解析:考点:列方程解含有两个未知数的应用题.分析:根据“如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍”,可找出数量之间的相等关系式为:(甲原来的存款-110)×3=乙原来的存款+110,再根据“原来甲的存款是乙的4倍”,设原来乙的存款为x元,那么甲的存款就是4x元,据此列出方程并解方程即可.解答:解:设原来乙的存款为x元,那么甲的存款就是4x元,由题意得:(4x-110)×3=x+110,12x-330=x+110,12x-x=110+330,11x=440,x=40,甲的存款:4×40=160(元);答:甲原有存款160元,乙原有存款40元.点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.。

列方程解应用题奥数思维拓展(试题)-小学数学六年级上册人教版(含答案)

列方程解应用题奥数思维拓展(试题)-小学数学六年级上册人教版(含答案)

列方程解应用题奥数思维拓展-小学数学六年级上册人教版一.选择题(共6小题)1.一个学生投篮,没投进去的比投进去的多6个,投进去的比总数的多3个,这个学生一共投篮()次.A.12B.21C.27D.362.甲、乙两班学生的平均人数是43人,甲班比乙班多4人,甲、乙两班各有多少人?设乙班有x人,列出的方程是()A.43×2﹣x=4B.43×2+4=2xC.x+(x+4)=43×23.有2只桶装油44千克,如第一桶倒出,第二桶里倒进2.8千克,则2只桶内油相等,原来第二桶装油多少千克.()A.18千克B.15千克C.8千克D.28千克4.动物园的门票售价:成人票每张50元,儿童票每张30元.某日动物园售出门票700张,收入29000元.设儿童票售出x张,根据题意可列出方程为()A.30x+50(700﹣x)=29000B.50x+30(700﹣x)=29000C.30x+50(700+x)=29000D.50x+30(700+x)=290005.甲乙两条绳子共长20米,如果甲减去2米,乙增加米,则两条绳子相等,求乙绳的长度?设乙绳的长为x米,可列方程()A.B.x+=20﹣x﹣2C.x+x=20﹣x﹣2D.x+﹣2=20﹣x6.和平小学共有教师120人,其中男教师是女教师的,求女教师的人数.解:设女教师有x人.下列所列方程中正确的是()A.x+x=120B.x+3x=120C.x+2x=120D.x+x=120二.填空题(共6小题)7.老王体重的等于小李体重的,老王体重的比小李体重的轻1.5千克.求老王的体重是千克,小李的体重是千克.8.两袋粮食共重81千克,第一袋吃去了,第二袋吃去了,共余下29千克,原来第一袋粮食重千克.9.甲、乙两数的和是42.14,甲数的小数点向左移动一位就恰好等于乙数的,则甲数是.10.甲、乙两个数的和是136,甲数的小数点向左移动一位等于乙数的,甲数是.11.两个书架共有372本书,甲书架本数的与乙书架本数的相等,甲书架有书本.12.由于浮力的作用,金放在水里称,重量减轻,银放在水里称,重量减轻.有一块重500克的金银合金,放在水里称减轻了32克,这块合金含金克.三.应用题(共9小题)13.“6•26”禁毒日当天,学校组织甲、乙两组学生参观禁毒教育基地,甲组人数是乙组的,如果从乙组调整40人到甲组,这时甲组人数是乙组人数的2倍,那么甲、乙两组原来各有多少人?(用方程解答)。

六年级奥数题及答案(二)

六年级奥数题及答案(二)

(一)小学六年级奥数试题及答案:列方程解应用题1.甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍.甲、乙原来各有存款多少元?考点:列方程解含有两个未知数的应用题.分析:根据“如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍”,可找出数量之间的相等关系式为:(甲原来的存款-110)×3=乙原来的存款+110,再根据“原来甲的存款是乙的4倍”,设原来乙的存款为x元,那么甲的存款就是4x元,据此列出方程并解方程即可.解答:解:设原来乙的存款为x元,那么甲的存款就是4x元,由题意得:(4x-110)×3=x+110,12x-330=x+110,12x-x=110+330,11x=440,x=40,甲的存款:4×40=160(元);答:甲原有存款160元,乙原有存款40元.点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.(二)六年级奥数题及答案:组合图形的面积2.长方形ABCD的边上有两点E.F,线段AF、BF、CE、BE把长方形分成若干块,其中三个小木块的面积标注在图上,阴影部分的面积是多少平方米?考点:组合图形的面积.分析:所求的影阴部分,恰好是三角形ABF与三角形CBE的公共部分,而S1,S2,S3这三块是长方形中没有被三角形ABF与三角形CBE盖住的部分.因此,△ABF面积+△CBE 面积+(S1+S2+S3)=长方形面积+阴影部分面积.而△ABF的底是长方形的长,高是长方形的宽;△CBE的底是长方形的宽,高是长方形的长.因此,三角形ABF面积与三角形CBE面积,都是长方形面积的一半.解答:解:设长方形的面积为S,则S△CBE=S△ABF=(1/2)S,由图形可知,S+S阴影=S△CBE+S△ABF+15+46+36,S阴影=(1/2)S+(1/2)S+15+46+36-S=97(平方米),答:阴影部分的面积是97平方米.点评:本题考查长方形面积、三角形面积的计算.本题明白所求的影阴部分,恰好是三角形ABC与三角形CDE的公共部分,而面积为15、46、36这三块是长方形中没有被三角形ABC与三角形CDE盖住的部分是解决本题的关键,从而根据S+S阴影=S△CBE+S△ABF+15+46+36建立等量关系求解.(三)六年级奥数题及答案:四边形面积3.在平行四边形ABCD中,三角形AOD的面积为12平方厘米,三角形BOC的面积是平行四边形面积的1/5,求平行四边形的面积.考点:平行四边形的面积.分析:根据题意可知,三角形BOC和三角形AOD的高等于平行四边形ABCD的高,三角形的面积等于与它等底等高的平行四边形的面积的一半,所以可用1/2平行四边形的面积减去1/5平行四边形的面积等于三角形AOD的面积,列式解答即可得到答案.解答:解:设平行四边形ABCD的面积为x平方厘米,答:平行四边的面积是40平方厘米.点评:解答此题的关键是根据三角形BOC和三角形AOD的高等于平行四边形ABCD的高确定三角形BOC和三角形AOD的面积等于平行四边形ABCD的面积的一半,然后再列式计算即可.。

六年级奥数 第五讲 列方程解应用题

六年级奥数   第五讲 列方程解应用题

六年级奥数第五讲列方程解应用题六年级奥数-第五讲列方程解应用题六年级数学奥林匹克--第五讲:解方程的应用题第五讲列方程解应用题[知识要点]1、应用题也是常见的典型应用题。

列方程解应用题的主要特征是未知数和已知数同样都是运算对象,通过找出“未知”与“已知”之间的等量关系,列出方程,使问题得以解决。

列方程解应用题往往比算术方法易于思考。

2.用方程解决应用问题的一般步骤是:检查问题;设定未知;找出一系列相等数量的方程式;解方程;测试和回答。

【例题精讲】例1:三牌楼小学6(1)班有56人,6(2)班有30人。

有多少人可以从6(1)班转到6(2)班,使6(2)班的人数比6(1)班少10倍?[思路]可以设从从六(1)班调x人到六(2)班,可使六(2)班的人数比六(1)班的2倍少10人。

调动后六(1)班(56-x)人,六(2)班(30+x)人。

现在六(1)班人数=六(2)班人数×2+10。

模仿练习:有两条绳子。

这根长绳有20米,是短绳的三倍多。

如果长绳需要25米,短绳需要10米,那么长绳是短绳的四倍。

长绳和短绳有多少米?例2:用一根绳子测量井的深度,如果把绳子3折,井外多2米;如果把绳子4折,还差1米不到井口。

井深多少米?绳子长多少米?【思路点拨】如果井深可以设置为x m,绳索长度为3x+2×3或4x-1×4。

孩子们,你们能做到吗?模仿练习:用一根绳子测一口井的深度,绳子对折时,比井深长60厘米,绳子三折时,比井深短40厘米。

求绳子的长度和井深。

一六年级奥数――第五讲列方程解应用题例3:在除法公式中,除数、除数、商和余数之和为127。

如果商是3,余数是2,那么除数是什么?[思路]可以设除数是x。

被除数=除数×商+余数,你找到等量关系了吗?模仿练习:数字a和数字B,数字a除以数字B商3大于15,数字B除以数字a商5大于50 a和B的数字是什么?例4:3年前,张老师的年龄是小芳的5倍;5年后,张老师的年龄是小芳的3倍。

六年级奥数题列方程解应用题定稿版

六年级奥数题列方程解应用题定稿版

六年级奥数题列方程解应用题精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】列方程解应用题训练1.一个分数约分后将是54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是94.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克.6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的101,照此类推,第i 班取走树苗100i 棵又取走剩下树苗的101.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵有几个班每个班取走树苗多少棵13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里? 1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a 5a +182=(14a -13)(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a 5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)11=(x +11)10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯x x 解得x =4200(千克).6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30[(55-15)(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x 40%+(300-x )10%=30030%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x .由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3(2x )+4(3x )=10(工时). 即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2(3x )+10(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6(1998-x )-18x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得 2030601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵. 13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504040504545+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千米,骑马行x 千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数题列方程解应
用题
Prepared on 22 November 2020
列方程解应用题训练
1.一个分数约分后将是
54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是9
4.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .
3,□,□,□,□,□,□180
3.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.
4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.
5.粮店中的大米占粮食总量的
73,卖出600千克大米后,大米占粮食总量的3
1.这个粮店原来共有粮食 千克.
6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .
7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.
8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.
9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费元,那么,在运输过程中共损坏.
10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.
、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的
12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的
101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的10
1,照此类推,第i 班取走树苗100i 棵又取走剩下树苗的10
1.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵有几个班每个班取走树苗多少棵
13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了3
1的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.
14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里 1. 335
268. 设原分数是
x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12
设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由
24+13x =180,解得 x =12.
3. 630
设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程
14a 5a +182=(14a -13)(5a +13)
70a 2+182=70a 2+117a -169
解得a =3,所以原长方形的面积为14a 5a =70a 2=630(平方厘米)
4. 55
设成本是x 元.根据题意可列方程(x +5)11=(x +11)10,解得x =55(元).
5. 4200
设原来有粮食x 千克,根据现有大米可列方程,3
1)600(60073⨯-=-⨯
x x 解得x =4200(千克).
6. 42
设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(60
20)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30[(55-15)(55-5)]=24(千米/小)
7. 200
浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.
设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x 40%+(300-x )10%=30030%,解得x =200(克).
8. 20
设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x . 由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3(2x )+4(3x )=10(工时). 即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:
2(3x )+10(2x )+14x =40x =20(工时).
9. 7
设共损坏x 套茶具,依题意,得(1998-x )-18x =,解得x =7.
10. 600
设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(3
1400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).
11. 设甲出发后x 分钟开始减速的,依题意,得 203060
1)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.
12. 设这批树苗有x 棵,则第一班取走树苗(100+)10
100-x 棵,第二班取走 树苗10)1010100(200200-+
--+x x 棵.依题意,得
10
)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为9900
8100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵.
13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504040504545+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).
14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千
米,骑马行x 千米,依题意,得
12
45112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

相关文档
最新文档