六年级奥数题列方程解应用题精编WORD版

合集下载

完整word版,六年级奥数列方程解应用题

完整word版,六年级奥数列方程解应用题

列方程解应用题列方程解应用题,就是用代数算法解应用题。

它以布列方程为前提,先不考虑求得数,只把所求未知数设x。

一般所求问题与已知条件的数量关系明显者,采取设直接未知数的办法,即求什么就设什么为x;而所求问题与已知条件的数量关系隐蔽者,则采取设间接未知数的办法,即设一个跟所求问题与已知条件相关联的未知数为x。

但是,无论设哪种未知数为x,均将其放在与已知数同等的地位,一起参加数量关系的分析和运算。

列方程解应用题,一般分四步进行:①弄清题意,用x表示未知数;②找出数量间的等量关系,列出方程式;③解方程;④检验并作答。

正确的方程式,应符合下列条件:①等号两边的意义的相同;②等号两边的数量相等;③等号两边的单位一致。

例1.光明小学买回一批图书,如果每班发15本,则少20本,如果每班发12本,则剩下16本,这个学校一共有多少个班?买回图书多少本?我能行:1、一批游客过一条河,如果每只船坐10个人,还剩4人,如果每船坐12个人,那么多出1只船,你知道这批游客有多少人?有多少只船?2、小明每天同一时间从家出发去学校,如果每分钟行60米,则可提前1分钟到校,如果每分钟行50米,则迟到2分钟,小明家离学校多少米?3、某班班主任给同学们分巧克力,如果每个人分10块,则剩下8块,如果每个人分12块,有6个同学分不到。

这个班有多少个学生?例2.一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大4倍,个位上的数字减去2,那么所得的两位数比原来大58,求原来的两位数是多少?解析:这道题用算术方法解答有一定的难度,换成方程来解答,思路就比较简洁。

设个位上的数字为x人,则十位上的数字是x -1我能行:1、有一个两位数,它的十位数字和个位数字和是14,如果把十位上的数字和个位上的数字位置交换后,所得的两位数比原来的两位数大36,求原来的两位数?2、甲数是乙数的3倍,甲数减去85,乙数减去5,则两数相等,甲乙两数各是多少?3、一个三位数,十位数字是0,其余两位数字之和是12,如果个位数字减2,百位数字加1,那么所得的新数比原数的百位数字与个位数字互换位置后的数小100,求原三位数。

word完整版小学六年级奥数题50道题及解答可直接打印

word完整版小学六年级奥数题50道题及解答可直接打印

精品文档得分5. 甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45 千米,两地相距多少千米?(交换乘客的时间略去不计)2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?6. 学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走 4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7. 有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?9. 学校买来6张桌子和5把椅子共付455元, 已知每张桌子比每把练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍, 又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?精品文档椅子贵30元,桌子和椅子的单价各是多少元?8. 甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天, 正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?10. 一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

小学六年级奥数列方程解应用题

小学六年级奥数列方程解应用题

【导语】⽅程(equation)是指含有未知数的等式。

是表⽰两个数学式(如两个数、函数、量、运算)之间相等关系的⼀种等式,使等式成⽴的未知数的值称为解或根。

以下是⽆忧考整理的《⼩学六年级奥数列⽅程解应⽤题》相关资料,希望帮助到您。

1.⼩学六年级奥数列⽅程解应⽤题 1、⾷堂买进⾯粉175千克,⽐⽟⽶⾯的3倍还多25千克,⾷堂买进⽟⽶⾯多少千克? 2、师傅⽐徒弟多加⼯162个零件,已知师傅加⼯零件的个数是徒弟的4倍,师徒⼆⼈各加⼯多少个零件? 3、⽀钢笔⽐15⽀圆珠笔贵7.6元。

每⽀圆珠笔的价钱是2.8元,每⽀钢笔多少元? 4、⼀个三⾓形的⾯积是18平⽅厘⽶,它的底边长是12厘⽶,⾼是多少厘⽶? 5、选择适当的⽅法解答下⾯两题。

(1)学校科技组有18名⼥⽣,⽐男⽣⼈数的1/3少2⼈。

学校科技组有多少名男⽣? (2)学校科技组有36名⼥⽣,男⽣⼈数⽐⼥⽣⼈数的3倍还多6⼈。

学校科技组有多少名男⽣?2.⼩学六年级奥数列⽅程解应⽤题 1、某果园向市场运⼀批⽔果,原计划每车装1.6吨,实际每车装2吨,结果少了4吨,⼀共有多少辆车? 2、某班42个同学参加植树,男⽣平均每⼈种3棵,⼥⽣平均每⼈种2棵,已知男⽣⽐⼥⽣多种56棵,男、⼥⽣各有多少⼈? 3、学校买来科技书的册数是⽂艺书册数的1.4倍,如果再买12册⽂艺书,两种书的册数相等。

学校买来两种书各有多少册? 4、学校买6张办公桌和15把椅⼦共⽤去660元。

已知每张办公桌与3把椅⼦的价钱相等,求多少元? 5、东⽅⼩学五年级举⾏数学竞赛,共10个赛题每做对⼀题得8分,错⼀题倒扣5分,张华全部解答,但只得41分,他做对多少题? 6、松⿏妈妈采松⼦,晴天每天可采24个,⾬天每天可采16个,他⼀连⼏天⼀共采了168个松⼦,平均每天采21个,这⼏天中⼀共有多少是天晴天? 7、甲⼄两个仓库共有⼤⾖138吨,若从甲仓库运⾛30吨,从⼄仓库运⾛35吨,这时⼄仓库⽐甲仓库的⼀半还多4吨,求两个仓库原来各有⼤⾖多少吨? 8、甲、⼄、丙、丁四⼈共做零件270个,如果甲多做10个,⼄少做10个,丙做的个数乘以2,丁做的个数除以2,那么四⼈做的零件数恰好相等,丙实际做了多少个? 9、某仓库运出四批原料,第⼀批运出的占全部库存的⼀半,第⼆批运出的占余下的⼀半,以后每⼀批都运出前⼀批剩下的⼀半。

六级奥数列方程解应用题

六级奥数列方程解应用题

列方程解应用题,就是用代数算法解应用题.它以布列方程为前提,先不考虑求得数,只把所求未知数设.一般所求问题与已知条件地数量关系明显者,采取设直接未知数地办法,即求什么就设什么为;而所求问题与已知条件地数量关系隐蔽者,则采取设间接未知数地办法,即设一个跟所求问题与已知条件相关联地未知数为.但是,无论设哪种未知数为,均将其放在与已知数同等地地位,一起参加数量关系地分析和运算.文档收集自网络,仅用于个人学习列方程解应用题,一般分四步进行:①弄清题意,用表示未知数;②找出数量间地等量关系,列出方程式;③解方程;④检验并作答.正确地方程式,应符合下列条件:①等号两边地意义地相同;②等号两边地数量相等;③等号两边地单位一致.例.光明小学买回一批图书,如果每班发本,则少本,如果每班发本,则剩下本,这个学校一共有多少个班?买回图书多少本?文档收集自网络,仅用于个人学习我能行:、一批游客过一条河,如果每只船坐个人,还剩人,如果每船坐个人,那么多出只船,你知道这批游客有多少人?有多少只船?文档收集自网络,仅用于个人学习、小明每天同一时间从家出发去学校,如果每分钟行米,则可提前分钟到校,如果每分钟行米,则迟到分钟,小明家离学校多少米?文档收集自网络,仅用于个人学习、某班班主任给同学们分巧克力,如果每个人分块,则剩下块,如果每个人分块,有个同学分不到.这个班有多少个学生?文档收集自网络,仅用于个人学习例.一个两位数,十位上地数字比个位上地数字少,如果十位上地数字扩大倍,个位上地数字减去,那么所得地两位数比原来大,求原来地两位数是多少?文档收集自网络,仅用于个人学习解析:这道题用算术方法解答有一定地难度,换成方程来解答,思路就比较简洁.设个位上地数字为人,则十位上地数字是文档收集自网络,仅用于个人学习我能行:、有一个两位数,它地十位数字和个位数字和是,如果把十位上地数字和个位上地数字位置交换后,所得地两位数比原来地两位数大,求原来地两位数?文档收集自网络,仅用于个人学习、甲数是乙数地倍,甲数减去,乙数减去,则两数相等,甲乙两数各是多少?、一个三位数,十位数字是,其余两位数字之和是,如果个位数字减,百位数字加,那么所得地新数比原数地百位数字与个位数字互换位置后地数小,求原三位数.文档收集自网络,仅用于个人学习例.个和尚吃个馒头,大和尚每人吃个,小和尚每人吃一个,那么一共有几个大和尚,几个小和尚?文档收集自网络,仅用于个人学习我能行:、鸡兔同笼,从上面数,有个头.从下面数,共条腿,鸡和兔子各有多少只?、桌子上有分和分地硬币共十枚,总共角分,有分和分地硬币各多少枚?、一份数学试卷有道选择题,规定做对一题得分,不做或做错倒扣分,结果某学生得分为分,问他做对了几道题?文档收集自网络,仅用于个人学习例.甲、乙两列火车从相距千米地两城相向而行,甲车每小时行千米,乙车每小时行千米,乙车出发小时后,甲车才出发,求甲车几小时后与乙车相遇?文档收集自网络,仅用于个人学习解析:甲、乙两车相向而行,“甲车行驶地路程乙车行驶地路程总路程”,乙车行驶地路程 包括两部分,一部分是先出发小时所走地路程,另一部分是和甲车同时行驶地路程, 我能行:、甲、乙两地相距千米,一列客车与一列货车分别从甲、乙两地相向而行,客车先走小时后,货车从乙地出发,经过小时后两车相遇,已知客车每小时行千米,求货车地速度是多少?文档收集自网络,仅用于个人学习、甲、乙两车从、两地同时出发,相向而行,相遇后,甲车又行驶小时到达地.已知甲车每小时比乙车快千米,甲车每小时行千米.求乙车出发后几小时与甲车相遇?文档收集自网络,仅用于个人学习、甲、乙两车同时从、两地出发相向而行,小时后,两车还相距千米,又行了小时,两车又相距千米.求、两地相距多少千米?文档收集自网络,仅用于个人学习第三关:我想会 例.少年宫合唱团有学生人,其中女生地61比男生地 21多人,合唱队男、女生各有多少人?解析:设女生为 人,则男生就是人,、一堆煤,第一天用去全部地52,第二天用去吨,第三天又用去剩下52地,此时还剩下吨,原来有煤多少吨?文档收集自网络,仅用于个人学习、甲乙两户共养鸡只,如果甲卖掉原有鸡地53,乙户卖掉只鸡,则甲乙两户余下地鸡地只数相等,甲乙原来各有多少只鸡?文档收集自网络,仅用于个人学习、某车间生产甲乙两种零件,生产地甲种零件比乙种多个,乙种零件全部合格,甲种零件只有54合格,两种零件合格地总共有个,两种零件各生产了多少个?文档收集自网络,仅用于个人学习例.在含盐地水中,加入千克地水就变成了含盐地盐水,原来地盐水重多少千克?解析:此题根据加水前后盐地质量不变,根据“溶液溶质浓度”表示出前后地盐地质量列出等式. 解:设原来地盐水重 千克,加水后盐水地质量是千克,则( )答:原来地盐水重千克.我要学:、在含盐为地盐水中,加入千克地水,就变成了含盐为地盐水,原来地盐水有多少千克?、在含盐为地盐水中,加入千克地水,就变成了含盐为地盐水,原来地盐水有多少千克? 、在含盐为地盐水中,加入千克地盐,就变成了含盐为地盐水,原来地盐水重多少千克? 例.芳芳和圆圆各有一个盒子,里面都放着棋子,两个人地盒子里一共有粒,芳芳从自己地盒子里拿出 41放入圆圆地盒子里,圆圆盒子里地棋子数正好比原来增加51,原来芳芳有多少粒棋子?文档收集自网络,仅用于个人学习解析:假设芳芳地棋子原来有 粒,则圆圆地盒子里原有粒,“芳芳从自己地盒子里拿出 41放入圆圆地盒子里”,圆圆地盒子里就增加了 41个,根据“圆圆盒子里地棋子数正好比原来增加”可以列出下面地方程:文档收集自网络,仅用于个人学习我要学: 、甲、乙两班一共有人,从甲班调61到乙班,乙班正好比原来多了 41,原来甲班有少人? 、小明和小刚一共有元,小明拿出自己地51给小刚后,小刚正好比原来多了41,原来小明有多少钱?、师傅和徒弟二人共同加工个零件,师傅比原来多加工了 141 ,徒弟就比原来少加工 101,原来师傅和徒弟各加工多少个?文档收集自网络,仅用于个人学习例.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度地倍,每隔分有一辆公共汽车超过小光,每隔分有一辆公共汽车超过小明.已知公共汽车从始发站每次间隔同样地时间发一辆车,问:相邻两车间隔几分?文档收集自网络,仅用于个人学习解析:本题是行程问题中地追及问题,由追及问题“追及时间×速度差=追及距离”,可列方程.每隔分钟车追小光地路程每隔分钟车追小明地路程.文档收集自网络,仅用于个人学习解:设车速为,小光地速度为,则小明骑车地速度为.根据题意可列方程(-)=(-)=即车速是小光速度地倍.小光走分相当于车行分,由每隔分有一辆车超过小光可知,每隔分发一辆车.答:每隔分钟发一辆车.我要学:、甲、乙、丙三辆车先后从地开往地.乙比丙晚出发分钟,出发后分追上丙;甲比乙晚出发分,出发后小时追上丙.问甲出发后几小时追上乙?文档收集自网络,仅用于个人学习、甲、乙、丙三人同时从向跑,当甲跑到时,乙离还有米,丙离还有米;当乙跑到时,丙离还有米.问:(),相距多少米?文档收集自网络,仅用于个人学习()如果丙从跑到用秒,那么甲地速度是多少?、甲、乙两人在铁路旁边以同样地速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了秒,分后又用秒从乙身边开过.问:文档收集自网络,仅用于个人学习()火车速度是甲地速度地几倍?()火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?大显身手:、小明买了本故事书和本漫画书,共花了元,漫画书每本元,故事书每本多少元?、为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树棵,实际每天植树棵,结果比预计时间提前天完成植树任务,则计划植树多少棵?文档收集自网络,仅用于个人学习、苹果每千克元,梨每千克元,王叔叔买了一些苹果和梨共千克,一共花了元,那么苹果和梨各买了多少千克?文档收集自网络,仅用于个人学习、父亲今年岁,儿子今年岁,几年前父亲年龄是儿子地倍?、一个两位数地个位数字与十位数字之和是,如果在这两个数字中间加一个,那么所得地三位数比原数地倍多,求这个两位数.文档收集自网络,仅用于个人学习、现在有一些糖分给小朋友,如果每人分块,那么就会剩下块糖,如果每人分块,就少了块,那么有多少个小朋友?有多少块糖?文档收集自网络,仅用于个人学习、有分和分地硬币共枚,共价值角分,那么分和分硬币各有多少枚?、同学们去搬砖,如果每人搬块,那么就剩下块砖,如果每人搬块,那么就少了块砖,那么一共有几名同学搬砖?一共有多少块砖?文档收集自网络,仅用于个人学习、小明从家去学校上学,如果每分钟走米,那么将迟到分钟.如果每分钟走米,那么将提前分钟.小明家距学校多远?文档收集自网络,仅用于个人学习、公园门票价格规定如下表:购票张数每张票地价格~张元~张元张以上元某校初一()、()两个班共人去游公园,其中()班人数较少,不足人.]经估算,如果两个班都以班为单位购票,则一共应付元,问:文档收集自网络,仅用于个人学习()两班各有多少学生?()如果两班联合起来,作为一个团体购票,可省多少钱?()如果初一()班单独组织去游公园,作为组织者地你将如何购票才最省钱?。

完整word版,六年级奥数讲义列方程解应用题

完整word版,六年级奥数讲义列方程解应用题

第十讲列方程解应用题小新去动物园看猩猩,有的猩猩在洞中,有的在外面玩耍。

他就问管理员叔叔共有多少只猩猩,管理员叔叔开心的答道:“头数加只数,只数减头数,头数乘只数,只数除头数,把四个得数相加恰好是100 .”那么聪明的你知道一共有多少只猩猩吗?呵呵!认真学习今天的好方法,你就可以准确、快速的解答出上面的问题了!内容概述在小学数学中,列方程解应用题与用算术方法解应用题是有密切联系的。

它们都是以四则运算和常见的数量关系为基础,通过分析题里的数量关系,根据四则运算的意义列式解答的。

但是,两种解答方法的解题思路却不同。

由于数量关系的多样性和叙述方式的不同,用算术方法解答应用题,时常要用逆向思考,列式比较困难,解法的变化也比较多。

用列方程的方法解答应用题,由于引进了字母表示未知数,可以使未知数直接参与运算,使题目中的数量关系更加清楚,把未知数当成已知数来用,使我们很容易理清数量关系,正确解决问题。

特别是在解比较复杂的或有特殊解法的应用题时,用方程往往比较容易。

列方程解应用题的一般步骤是:①审清题意,弄清楚题目意思以及数量之间的关系,;②合理设未知数x,设未知数的方法有两种:问什么设什么(直接设未知数),间接设未知数;③依题意确定等量关系,根据等量关系列出方程;④解方程;⑤将结果代入原题检验。

概括成五个字就是:“审、设、列、解、验”.列方程解应用题的关键是找到正确的等量关系。

寻找等量关系的常用方法是:根据题中“不变量”找等量关系。

一些基本概念:(1)像4x+2=9这样的的等式,只含有一个未知数x,而且未知数x的指数为1的方程叫做一元一次方程;(2)像2x+y=8这样的的等式,含有两个未知数x、y,而且未知数的指数都为1的方程叫做二元一次方程;把两个二元一次方程用“﹛”写在一起,就组成了一个二元一次方程组;(3)如果有两个未知数,一般需要两个方程才能求出唯一解,如果有三个未知数,一般需要三个方程才能求出唯一解.如果有更多的未知数,可借助今天学习的解题思路来类推出解法.类型Ⅰ:列简易方程解应用题【例1】 (清华附中培训试题)(难度系数:★★)解下列方程:(1)357x x +=+ (2)452x x -=-(3)12(3)7x x +-=+ (4)132(23)5(2)x x --=--(5)5118()2352x x ⎡⎤⨯⨯-=⎢⎥⎣⎦ (6)1123x x +-= (7)527x y x y +=⎧⎨+=⎩ (8)2311329x y x y +=⎧⎨+=⎩分析:(1)375,22,21.1x x x x x -=-===移项得:注意把“同类”放在等号的同侧,移项过程中注意变号;化简得:等式两边同时除以可得:把代入原式满足等式.以下各题不再写检验步骤,请教师强调学生答案要检验.(2)2541.x x x -=-=,(3)16277730.x x x x +-=+-==,,(4)13465219471974123 4.x x x x x x x x -+=-+-=--==,,-=,,(5)511154104101104()410.35236333333x x x x x x x x x x ⎡⎤⎡⎤⨯⨯-=⨯-=-=-===⎢⎥⎢⎥⎣⎦⎣⎦,,,,, (6)312633263.x x x x x +=+-==()-,,请教师强调学生在解答时要注意:移项变号、同类放在等式一边、(4)中去括号时每一项都要发生相应变化、(6)中每一项都同时扩大6倍、(5)中可以先简化运算的一定要先化简。

(完整word版)六年级奥数题列方程解应用题

(完整word版)六年级奥数题列方程解应用题

列方程解应用题训练1.一个分数约分后将是54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是94.那么原分数是 .2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克.6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的101,照此类推,第i 班取走树苗100 i 棵又取走剩下树苗的101.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵?有几个班?每个班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里?1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a ⨯5a +182=(14a -13)⨯(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a ⨯5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)⨯11=(x +11)⨯10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯x x 解得x =4200(千克). 6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30⨯[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ⨯40%+(300-x )⨯10%=300⨯30%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x .由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3⨯(2x )+4⨯(3x )=10(工时).即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2⨯(3x )+10⨯(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6⨯(1998-x )-18⨯x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得20⨯30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵. 13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千米,骑马行x千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

六年级奥数题列方程解应用题

六年级奥数题列方程解应用题

列方程解应用题训练1.一个分数约分后将是54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是94.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克.6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的101,照此类推,第i 班取走树苗100 i 棵又取走剩下树苗的101.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵?有几个班?每个班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里? 1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a ⨯5a +182=(14a -13)⨯(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a ⨯5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)⨯11=(x +11)⨯10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯x x 解得x =4200(千克).6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30⨯[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ⨯40%+(300-x )⨯10%=300⨯30%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x . 由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3⨯(2x )+4⨯(3x )=10(工时).即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2⨯(3x )+10⨯(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6⨯(1998-x )-18⨯x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得20⨯30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵.13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x千米,骑马行x 千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

六年级奥数第7讲:列方程解应用题

六年级奥数第7讲:列方程解应用题

六年级奥数第6讲:列方程解应用题[例1] 同时点燃两支粗细不同、长度相同的蚊香。

粗蚊香燃完要3小时,细蚊香燃完要2小时。

问:点燃多少小时后,细蚊香的长度是粗蚊香的12?点拨:原来两支蚊香同样长,单位“1”相同。

粗蚊香能点3小时,每小时点这支蚊香的13;细蚊香能点2小时,每小时点这支蚊香的12。

如果设点燃了x小时,那么粗蚊香点燃了13x,剩下(1-13x),细蚊香点燃了12x,剩下(1- 12x)。

等量关系为:细蚊香剩下的长度=粗蚊香剩下的长度×12。

解答:解:设点燃x小时后,细蚊香的长度是粗蚊香的12。

1- 12x =12×(1-13x)1- 12x =12-16x1 2 x -16x =1 -1213x =12x = 3 2答:点燃32小时后,细蚊香的长度是粗蚊香的12。

[试一试1] 同时点燃两支粗细不同、长度相同的蜡烛。

粗蜡烛燃完要2小时,细蜡烛燃完要1小时。

问:点燃多少小时后,细蜡烛的长度是粗蜡烛的12?(答案:x =23)[例2] 有一个水池,第一次放出全部水的25,第二次放出40立方米水,第三次又放出剩下水的25,池里还剩下56立方米水。

全池蓄水为多少立方米?点拨:如果用x立方米表示全池的蓄水量,那么第一次放出全部的水应为2 5 x立方米,第二次放出的水是40立方米水,第三次放出的水应是剩下的水(x - 25x -40)的25。

等量关系为:第一次放水量+第二次放水量 + 第三次放水量 + 剩余水量 = 全池蓄水量。

解答:解:设全池蓄水为x立方米。

2 5 x + 40 + (x -25x -40)×25+ 56 = xx - 25x -25x +425x = 80925x = 80x = 2000 9答:全池蓄水为20009立方米。

[试一试2] 粮站运来一批大米,第一天卖出这批大米的13,第二天卖出16吨,第三天又卖出剩下大米的58,这时还剩12吨。

粮站运来多少吨大米?(答案:x =72)[例3]有两箱苹果,第一箱苹果的个数比第二箱个数的45少3个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数题列方程解应用题精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】
列方程解应用题训练
1.一个分数约分后将是
54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是9
4.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .
3,□,□,□,□,□,□180
3.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.
4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.
5.粮店中的大米占粮食总量的
73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克.
6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .
7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.
8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.
9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.
10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.
11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?
12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的
101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的10
1,照此类推,第i 班取走树苗100?i 棵又取走剩下树苗的10
1.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵?有几个班?每个班取走树苗多少棵?
13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了3
1的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.
14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下
鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里? 1.
335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335
268675674=⨯⨯. 2. 12
设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由
24+13x =180,解得 x =12.
3. 630
设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程
14a ?5a +182=(14a -13)?(5a +13)
70a 2+182=70a 2+117a -169
解得a =3,所以原长方形的面积为14a ?5a =70a 2=630(平方厘米)
4. 55
设成本是x 元.根据题意可列方程(x +5)?11=(x +11)?10,解得x =55(元).
5. 4200
设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯
x x 解得x =4200(千克).
6. 42
设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程
)5(60
20)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30?[(55-15)?(55-5)]=24(千米/小)
7. 200
浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.
设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ?40%+(300-
x )?10%=300?30%,解得x =200(克).
8. 20
设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x .
由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3?(2x )+4?(3x )=10(工时). 即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:
2?(3x )+10?(2x )+14x =40x =20(工时).
9. 7
设共损坏x 套茶具,依题意,得1.6?(1998-x )-18?x =3059.6,解得x =7.
10. 600
设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(3
1400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).
11. 设甲出发后x 分钟开始减速的,依题意,得 20?
30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.
12. 设这批树苗有x 棵,则第一班取走树苗(100+
)10100-x 棵,第二班取走 树苗10)1010100(200200-+
--+x x 棵.依题意,得
10
)10100100(20020010100100-+
--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为9900
8100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵. 13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504040504545+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).
14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千米,
骑马行x 千米,依题意,得
12
45112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

相关文档
最新文档