传热的三种方式
热传递条件

热传递条件什么是热传递热传递是指能量由一个地方传递到另一个地方的过程。
在自然界中,热传递是一种常见且重要的现象,它影响着我们生活中的许多方面,例如温度调节、热加工和能源转换等。
热传递的三种方式热传递可以通过不同的方式发生,主要有三种方式:1.传导:传导是热量在物体之间通过直接碰撞传递的过程。
当物体的局部区域温度升高时,其分子内部的热运动增加,从而使得附近的分子也开始加速运动,并将热量传递给其他分子。
传导的速率与传递路径上的温度差、材料的热导率以及交叉面积等因素有关。
2.对流:对流是热量通过流体介质传递的过程。
当一个物体与流体接触时,流体会受到物体加热而产生密度变化,从而引起流体内部的对流运动。
通过对流,热量可以快速有效地传递。
对流的速率取决于流体的流速、温度差和流体的热扩散性等因素。
3.辐射:辐射是通过电磁波的传播来传递热量的。
所有物体都会发射辐射,其强度与物体的温度有关。
当辐射遇到其他物体时,一部分辐射能会被吸收,而另一部分会被反射或传递。
辐射的速率与温度差的四次方成正比。
热传递条件的影响因素热传递过程中的速率取决于多个因素,包括以下几点:•温度差:温度差是驱动热传递的主要因素,较大的温度差会导致更快的热传递速率。
•热导率:热导率是物质传导热量的能力。
具有较高热导率的材料,其传导速率较快。
•材料的特性:不同材料对热传递的响应不同。
例如,金属是很好的热导体,而绝缘材料则相对较差。
•流体性质:对于对流传热,流体的性质是重要因素。
流体的流速、粘性和密度等性质会影响对流传热速率。
热传递的应用热传递在我们的日常生活中有着广泛的应用。
以下是一些常见的应用场景:•空调和供暖系统:空调和供暖系统利用热传递原理来调节室内温度。
通过对流和传导,系统从一个地方吸收热量,然后将其传递到另一个地方,实现室内温度的调节。
•热交换器:热交换器是一种设备,用于在两个流体之间传递热量。
通过将热量传递给流体,热交换器可以在不同流体之间实现能量转换。
传热过程基础知识

传热过程基础知识传热过程是一个物体或系统与其周围环境之间热量交换的过程。
热量是指能量的转移,可以通过辐射、传导和对流三种方式传递。
首先,我们来看辐射传热。
辐射传热是指物体通过电磁波的传播而向周围环境传递热量。
辐射传热不需要介质的存在,它可以在真空中传输热量。
这是因为所有物体都会产生热辐射,用一个术语叫做黑体辐射。
黑体辐射的强度与物体的温度有关,温度越高,辐射的能量越多。
例如,太阳发出的光和热就是一种辐射传热。
传导传热是指物体之间的热量通过分子或原子之间的碰撞传递。
这种传热方式通常发生在固体物体中,因为固体物体的分子或原子之间是紧密排列的。
热传导通常发生在热端和冷端之间存在温度差的物体中。
当物体的一部分受热后,分子或原子的振动能量会传递给相邻的分子或原子,从而传递热量。
对流传热是指液体或气体中的热量通过流体的运动和对流传递给周围环境。
对流传热通常包括自然对流和强制对流两种方式。
自然对流是指流体受热而形成的密度梯度引起的自发流动。
如在锅中烧开水时,底部热水会上升,而冷水会下降,形成对流循环。
强制对流是指通过外力的作用,如风或泵浦,使流体产生对流流动。
例如,空调中的风扇可以通过强制对流将室内的热空气排出室外,从而降低室内温度。
除了以上三种传热方式,还存在相变传热和混相传热。
相变传热是指物体在相变过程中释放或吸收热量。
当物体发生相变时,其温度保持不变,所吸收或释放的热量用于相变过程。
例如,冰块融化时,吸收的热量被用于将冰转化为水。
混相传热是指不同相(如气相和液相)之间的热量转移。
这种传热方式通常发生在液滴蒸发和冷凝过程中。
传热过程的速率可以通过热传导、辐射和对流传热的传热系数来衡量。
传热系数是指单位时间内单位面积上热量的传递速率与温度差的比值。
热传导传热系数取决于物体的导热性质,如热导率。
辐射传热系数取决于物体的辐射性质,例如发射率和吸收率。
对流传热系数取决于流体的流动性质,如流速和流体的粘度。
传热过程在许多实际应用中起着重要作用,如建筑物的供暖和空调、发动机的冷却、工业生产中的加热与冷却等。
传热

第一节
传热
概述
导热
一、热量传递的三种基本方式
根据传热的机理不同,热量传递的基本方式分为三种: 对流 热辐射
1、热传导(又称导热)
当物体内部或两个直接接触的物体存在着温差时,由于分 子、原子和自由电子等微观粒子的热运动而引起热量的传递。 热量由高温部分传到低温部分,或从高温物体传到与之相接 触的低温物体,直到各部分温度相等为止,这种热量传递过 程称为导热。
ΔT=T1 –Tn+1
5、保温层的临界半径
t1----保温层内表面温度;tf----环境温度 r1、r2----分别为保温层内外壁半径; λ---为保温材料的导热系数 α---为对流传热系数;L---为管长
t1 t2
r1 r2
t1 t f r2 1 1 R1 R2 ln 2L r1 2Lr2
2、导热系数
dT A dx
(1)、固体的导热系数
大多数固体的导热系数与温度大致呈线性关系。 λ=λ0(1+αλt)
αλ-------温度系数
(2)液体的导热系数
液态金属:液态金属导热系数比一般液体高 液态金属导热系数随温度升高而降低。 其他液体:水的导热系数最大,除水和甘油等几种液体外,大多数 液体λ随温度升高略有减少,纯液体λ比混合液体一般要大一些。
第二节
一、热传导方程 1、傅立叶定律
热传导
T φ T2 x
dT A dx dT q dx
dT dx
T1
T
T+dT
dx
δ
温度梯度,表示热流方向温度变化的强度,温度梯 度越大,说明热流方向单位长度上的温差越大。
负号 表示热流方向与温度梯度方向相反,热量是沿温度 降低的方向传递.
传热学面试真题答案解析

传热学面试真题答案解析热传递是的基本概念之一,它在自然界和工程中无处不在。
热传递涉及热量从高温区域传递到低温区域的过程。
在的学习和研究中,面试题是常见的考核手段之一。
在本文中,我们将针对一些经典的面试题进行解答和分析,帮助读者更好地理解热传递的原理和应用。
面试题一:什么是传热?传热的三种方式是什么?传热是指热量从一个物体或物质传递到另一个物体或物质的过程。
传热的三种方式是导热、对流和辐射。
导热是通过物质内部的分子(原子)振动传递能量的方式,比如热勺在火上受热时,导热会让整个勺子加热。
对流是通过流体的流动来传递热量,比如水壶上的热水会形成对流环流,从底部热传递到整个水体。
辐射是指热量通过电磁辐射,以波动形式传递的方式,比如太阳辐射热量到地面。
面试题二:什么是热传导?如何计算热传导?热传导是指固体或液体内部的热量传递过程,通过热量在物质内部传递。
热传导根据傅里叶热传导定律进行计算,该定律表明,热量沿某一方向传导的速率与传导区域的温度梯度成正比,并与材料的热导率和截面积成反比。
热传导的计算公式为:q = -k * A * (dT/dx)其中,q为单位时间内通过截面积A传递的热量,k为材料的热导率,dT/dx为温度梯度。
面试题三:什么是对流?如何计算对流传热?对流是指通过流体的流动来传递热量的过程。
可以分为自然对流和强制对流两种形式。
自然对流是指由温差产生的密度差驱动流体的流动,比如空气受热后上升形成对流环流。
强制对流是通过外部力量(如泵、风扇等)使流体流动来传递热量。
对流传热的计算一般使用牛顿冷却定律,该定律表明,传热速率等于温度差与传热面积、流体流速和传热系数的乘积。
传热速率 = h * A * (T1-T2)其中,h为传热系数,A为传热面积,T1为高温一侧的温度,T2为低温一侧的温度。
面试题四:什么是辐射传热?如何计算辐射传热?辐射传热是通过电磁辐射传递热量的过程,热量以波动的形式传递。
辐射传热的计算可以使用斯特藩-玻尔兹曼定律,该定律表明,单位时间内通过面积A的辐射热量与温度的四次方成正比。
建筑物理重点知识

建筑物理重点知识一、概述建筑物理是研究建筑环境中物理现象的一门学科,主要包括建筑热学、建筑光学和建筑声学等方面的知识。
这些知识对于建筑设计、施工和运行管理等方面都具有重要的指导意义。
二、建筑热学重点知识1. 传热方式:导热、对流、辐射是三种主要的传热方式。
导热是指物体内部或不同物体之间直接的热传递;对流是指气体或液体的流动过程中热量的传递;辐射是指物体通过电磁波传递能量的过程。
2. 传热系数:传热系数是表示材料传热性能的一个重要参数,它反映了材料在单位时间内通过单位面积传递的热量。
对于建筑物的围护结构,传热系数越大,说明材料的保温性能越差。
3. 隔热设计:在建筑设计过程中,为了减少室内外的热量传递,需要进行隔热设计。
常见的隔热设计方法包括设置隔热层、采用高反射材料等。
三、建筑光学重点知识1. 光的性质:光具有直线传播、反射、折射等性质。
在建筑设计过程中,光的性质对室内光线分布、采光效果等具有重要影响。
2. 光的反射和折射:在建筑设计过程中,利用光的反射和折射可以创造出丰富的光影效果。
例如,利用镜面反射可以增强室内的光线效果,利用玻璃的折射可以创造出梦幻般的光影效果。
3. 采光设计:在建筑设计过程中,合理的采光设计可以提高室内光线的质量和舒适度。
常见的采光设计方法包括设置天窗、利用窗户等。
四、建筑声学重点知识1. 声音的传播:声音是通过空气、固体和液体等介质传播的。
在建筑设计过程中,需要考虑声音的传播方式和传播距离,以避免噪音干扰和回声等问题。
2. 吸声材料:吸声材料可以吸收声音的能量,减少声音的反射和传播。
在建筑设计过程中,可以利用吸声材料来改善室内音质和减少噪音干扰。
3. 隔声设计:在建筑设计过程中,为了减少室内外的声音传递,需要进行隔声设计。
常见的隔声设计方法包括设置隔声墙、采用隔声门窗等。
五、总结建筑物理是建筑设计过程中不可或缺的一门学科,它涉及到建筑环境的各个方面。
掌握建筑物理的重点知识,对于提高建筑设计的质量和舒适度具有重要意义。
热量传递的三种方式

热量传递的三种方式热量传递是物体之间通过热量而产生的能量交换过程。
这个过程对于地球上的一切生命都至关重要,它决定了物体的温度以及热量的分布。
热量传递可以通过三种方式实现:传导、对流和辐射。
首先,我们来介绍传导。
传导是指热量通过直接物质接触来传递的过程。
当两个物体处于不同的温度时,它们之间会发生热量流动。
传导的速度取决于物体的性质,以及温度差异的大小。
传导速度较慢的物体被称为热传导性良好的物体,如金属。
这是因为金属内部的电子能够自由移动,从而更好地传递热量。
相比之下,非金属物体的传导速度较慢,如木材和塑料。
其次是对流。
对流是指热量通过流体(气体或液体)的流动来传递的过程。
当流体的温度变化时,流体的密度也会变化,从而引起流体的运动。
这种运动导致了热量的传递。
对流的速度取决于流体的性质以及温度差异的大小。
对流的一个常见例子是水的对流。
当在一个锅中加热水时,底层的水会变热并向上升,而上层的冷水则下沉。
这种对流现象导致了锅中的水被均匀加热。
最后是辐射。
辐射是指热量通过电磁辐射来传递的过程。
电磁辐射是一种以光速传播的电磁波。
当热物体发射辐射时,会向周围的物体传递热量。
和传导或者对流不同,辐射不需要介质来传播热量。
辐射的速度不受物质性质或者温度差异的影响。
因此,辐射是唯一一种可以在真空中传递热量的方式。
太阳能就是通过辐射传递到地球上的热量的一个重要例子。
虽然传导、对流和辐射是热量传递的三种方式,但它们常常同时存在于真实的物体中。
例如,当我们触摸到热的金属物体时,传导是最主要的传热方式。
金属通过对我们的手进行热传导,使我们感受到热量。
而当我们游泳时,热量通过对流传递到水中。
水中的热量通过对流扩散到我们的身体,使我们感到温暖。
另外,当我们暴露在太阳光下时,辐射是主要的传热方式。
太阳的光线以辐射的形式传递到地球,从而感受到热量。
总结起来,热量可以通过传导、对流和辐射这三种方式来传递。
这些方式各具特点,应用广泛,对于维持地球上的物质的温度分布以及生命的存在都起到了至关重要的作用。
热量传递的三种基本方式导热(热传导)、对流(热对流)和热辐射。

一. 大空间自然对流换热的实验关联式 工程中广泛使用的是下面的关联式:
l / d 60
层流
湍流
二. 横掠管束换热实验关联式
• 外掠管束在换热器 中最为常见。 • 通常管子有叉排和 顺排两种排列方式。 顺叉排换热的比较: 叉排换热强、阻力 损失大并难于清洗。 影响管束换热的因 Pr 素除 Re 、 数外,还 有:叉排或顺排; 管间距;管束排数 等。
后排管受前排管尾流的扰动作用对平均表面传热系数的影 响直到10排以上的管子才能消失。 这种情况下,先给出不考虑排数影响的关联式,再采用管 束排数的因素作为修正系数。 气体横掠10排以上管束的实验关联式为
(5) 流体的热物理性质:
3 密度 [kg m ] 热导率 [ W (m C) ] 2 比热容 c [J (kg C) ] 动力粘度 [ N s m ] 运动粘度 [m 2 s] 体胀系数 [1 K ]
1 v 1 v T p T p
Nu c Re n Nu c Re n Pr m Nu c(Gr Pr)n
式中,c、n、m 等需由实验数据确定,通常由图解法和 最小二乘法确定
④常见准则数的定义、物理意义和表达式,及其各量的 物理意义
⑤模化试验应遵循的准则数方程 强制对流:
Nu f (Re, Pr); Nu x f ( x ' , Re, Pr)
导热热阻:平壁,圆筒壁
q
t w1 t w 2 t w1 t w 2
t r t R
t
t w1
dt
dx
Φ
A
Q
0
tw2
R A
r
热量传递的三种基本方式

热量传递的三种基本方式热量传递是在物质中传递热能的过程。
在自然界中,热量会通过不同的方式在物体之间传递,从而调节温度和能量分布。
本文将介绍热量传递的三种基本方式:传导、对流和辐射。
1. 传导传导是热量通过直接接触的方式从一个物体传递到另一个物体的过程。
在传导中,热量从高温区域传递到低温区域,直到两个物体的温度达到平衡。
这种传递是通过物质内部分子间的碰撞和能量传递实现的。
导热性能是一个物质传导热量的重要性能指标。
导热性能取决于物质的热传导系数、形状和温度梯度等因素。
例如,金属具有良好的导热性能,因此常被用于传导热量的材料。
相比之下,绝缘材料的导热性能较差,能够阻碍热量的传递。
2. 对流对流是热量通过流体介质传递的方式。
在对流中,热量通过流体流动的方式从一个区域传递到另一个区域。
流体可以是气体或液体,其流动可以通过自然对流或强迫对流两种方式进行。
自然对流是指由于温度差异引起的流体流动。
当一个区域的温度升高,流体会膨胀变得轻,然后上升;而在另一个区域,流体则会冷却并变得密,然后下沉。
这样的循环运动将热量从热源传递到周围环境。
强迫对流是通过外部的力或设备施加到流体上,使其流动来传递热量。
例如,在散热器中,通过电风扇引导空气流动,加速热量的传递。
这种对流的传热速度通常比自然对流更快。
3. 辐射辐射是通过电磁波的传播而传递热量的方式。
辐射无需介质,可以在真空中传播。
在辐射中,热量以电磁波的形式从高温物体传递到低温物体,不需要任何介质来传递能量。
光和红外线是最常见的热辐射形式。
热辐射的传热能力受到物体的表面特性和温度的影响。
黑体是一种理想化的物体,它对所有入射辐射都能完全吸收,并能以相同的速率发射出辐射。
斯蒂芬-波尔兹曼定律描述了黑体辐射能量与其温度的关系,即辐射功率与温度的四次方成正比。
根据这个定律,温度越高的物体辐射的能量越多。
总结热量传递的三种基本方式分别是传导、对流和辐射。
传导通过物质内部的分子碰撞传递热量,对流通过流体介质的流动传递热量,而辐射则是通过电磁波的传播来传递热量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章传热
1、传热过程有哪三种基本方式?答:(1)间接换热,(2)直接换热,(3)蓄热式换热。
2、传热按机理分为哪几种?答:(1)热传导,(2)热对流,(3)热辐射。
3、物体的导热系数与哪些主要因素有关?答:与物体材料的组成、结构、温度、湿度、压强及聚集状态等因素有关。
4、流体流动对传热的贡献主要表现在哪儿?答:流体在垂直于传热方向上的流动,可以增加传热方向上的温度梯度,尤其是湍流时,使得传热方向上的温度梯度仅存在于流动边界层内,故温度梯度数值有很大的增加,根据傅立叶热传导定律可知,在温度梯度方向上的传热速率有了很大增加。
流体在平行于传热方向上的同向流动对于传热的作用是明显的,流体的质点运动携带了热量,使得传热速率可有很大增加。
5、自然对流中的加热面与冷却面的位置应如何放才有利于充分传热?答:将加热面水平方向置于底部,加热面水平方向置于顶部,有利于自然环流。
6、液体沸腾的必要条件有哪两个?答:(1)达到一定的过热度,(2)有利于形成较多的气泡核心。
7、工业沸腾装置应在什么沸腾状态下操作?为什么?答:应在什么核状沸腾状态下操作,因为此状态下,对流传热系数大,操作状态安全稳定。
8、沸腾给热的强化可以从哪两方面着手?答:(1)加热表面,易于形成更多的汽化核心,(2)沸腾液体,在液体中加入少量的添加剂改变沸腾液体的表面张力。
9、蒸汽冷凝时为什么要定期排放不凝性气体?答:在冷凝液膜表面上的不凝性气体膜,导热系数很小,热阻值大,直接影响蒸汽冷凝传热速率,故应定期排放不凝性气体。
10、为什么低温时热辐射往往可以忽略,而高温时热辐射则往往成为主要的传热方式?答:根据斯蒂芬-波尔茨曼定律,物体对外辐射能量的总能力E与其绝对温度的4次方成正比,故在物体处于低温时热辐射往往可以忽略,而高温时热辐射则往往成为主要的传热方式。
11、影响辐射传热的主要因素有哪些?答:(1)高温物体绝对温度的4次方与低温物体绝对温度的4次方之差,(2)高温物体的黑度值及低温物体的黑度值,(3)高温物体与低温物体的位置关系。
12、为什么有相变时的对流给热系数大于无相变时的对流给热系数?答:(1)核状沸腾状态时,加热壁的温度t w已经达到了一定的过热度,与壁面相接触的液体很容易汽化,很多的气泡很自然容易上浮,这样刚与壁面相接触的液体又发生汽化。
在壁面与相接触的液体之间的传热,热阻值很小,则表现为对流给热系数很大;(2)蒸汽冷凝时,蒸汽与被加热壁面之间的传热,热阻就是由冷凝液的膜中产生,膜很薄,故热阻值很小,则表现为对流给热系数很大。
无相变时的对流传热热阻发生在层流底层中,由于在一般情况下层流底层比冷凝液的膜厚许多,故其热阻值大许多,对流给热系数小许多。
13、有两把外形相同的茶壶,一把为陶瓷的,一把为银制的。
将刚烧开的水同时充满两壶,陶壶中水温下降比银壶中的快,为什么?答:因为两壶置于空气中,首先主要以热辐射的方式对外界空气散热。
陶瓷材料的黑度数值大,银材料的黑度数值小,故在水温降低的初始阶段,陶瓷壶对外辐射传热速率更快,则水温降得更快。
但是,在水温降低到较小的数值后,则会出现相反的状态,因为辐射传热速率均已经很小了,则应考虑通过壶壁材料的热传导速率了。
银材料的导热系数较陶瓷材料的要大,而银壶的壁厚较陶瓷壶的要薄,故导热热阻小,热传导速率更快。
14、若串联传热过程中存在着某个控制步骤,其含义是什么?答:说明在这个步骤中热阻值最大,并且比其他步骤中的热阻值大许多。
15、传热基本方程式推导得出对数平均推动力的前提条件有哪些?答:(1)定常态换热,两种流体的热容流率不变,(2)逆流换热,(3)无热损失。
16、一列管换热器,油走管程并达到充分湍流。
用133o C的饱和蒸汽可将油从40o C加热至80o C 。
若欲增加50%的油处理量,有人建议采用并联或串联同样一台换热器的方法,以保持油的出口温度不低于80o C ,这个方案是否可行?答:(1)换热器中的总传热系数K约等于油侧的对流传热系数。
若串联同样一台换热器,在每台换热器中的总传热系数K是原来的1.50.8倍,换热面积A是原来的2倍,若保持油的出口温度不低于80o C ,串联换热器的平均传热温度差与原来相同,故串联换热器的换热速率是原来的
⨯倍。
而流量增加后换热负荷是原来的1.5倍,故这个方案可行。
(2)若并联同样一台换5.18.0=
.2
766
2
热器,每台换热器中油的流速是原来的25.1倍,每台换热器中的总传热系数K 是原来的794.025.18.0=⎪⎭⎫ ⎝⎛,
换热面积A 是原来的2倍,若保持油的出口温度不低于80o C ,串联换热器的平均传热温度差与原来相同,故并联换热器的换热速率是原来的588.12794.0=⨯倍,仍然略大于所要求的换热负荷增加的比值,故这个方案亦可行。
从上述两种的压降来考虑,并联换热器的压降会更小。
17、为什么一般情况下,逆流总是优于并流?并流适用于哪些情况?答:(1)在同样的T 1 、T 2 、t 1 、t 2四个数值时,计算所得到的平均传热温度差值,逆流时的大于并流时的。
平均传热温度差值大,完成同样的换热量所需要的换热面积小,节省换热设备费用。
(2)逆流换热时,热流体的出口温度T 2可以比冷流体的出口温度t 2更低,若是以流体被加热为目的,可以节省加热剂的需要量;若是以流体被冷却为目的,可以节省冷却剂的需要量。
当然,流体之间进行充分的换热,这意味着换热面积的增加。
(3)并流换热适用于对于冷流体的加热需要严格控制温升的情况。
18、解决非定态换热问题的基本方程是哪几个?答:(1)假设任何时刻的热流密度q 与加热面位置无关,)(t T K q -=,(2)总传热系数K 与加热面位置、加热时间无关,K 的表达式同定态传热时的表达式,(3)在τd 时间段内作热量衡算,τAd t T K dt mC p )(-= 。
19、在换热器设计计算时,为什么要限制8.0 ψ?答:为了保证较大的传热温度差,以节省换热面积。
第7章 蒸发
1、蒸发操作不同于一般换热过程的主要点有哪些?答:(1)浓溶液在沸腾汽化过程中,常在加热表面上析出溶质而形垢层,使传热过程恶化。
(2)溶液的性质(如热敏性、粘性)往往对蒸发器的结构设计提出特殊的要求。
(3)溶剂汽化需要大量热量,是大量耗热的过程。
2、提高蒸发器内液体循环速度的意义在哪?降低单程汽化率的目的是什么?答:提高蒸发器内液体循环的速度有利于增加该流体侧的对流传热系数,从而增加总传热系数,提高蒸发器的生产强度。
降低单程汽化率的目的是避免溶液粘度过度增加及结垢,而影响正常的液体循环,影响传热速率,从而影响生产强度指标。
3、为什么要尽可能扩大管内沸腾时的气液环状流动的区域?答:尽可能多地与加热管相接触,获得热量,增加蒸发量。
4、提高蒸发器生产强度的途径有哪些?答:蒸发器生产强度的表达式为t K A
Q U ∆==,提高蒸发器生产强度的途径有:(1)提高蒸发器内液体循环速度,增加该流体侧的对流传热系数,从而增加总传热系数,
(2)避免溶液粘度过度增加及结垢,(3)提高加热的温度差,多效蒸发的效数不宜太多,减小效与效之间温度差的损失。
5、试分析比较单效蒸发器的间歇蒸发和连续蒸发的生产能力的大小。
设原料液浓度、温度,完成液浓度,加热蒸汽压强及冷凝器操作压强均相等。
答:(1)单效蒸发器的间歇蒸发将原料一次性投放入蒸发器中,受热后液体循环速度大,传热系数大,(2)在蒸发初期溶液的浓度低,沸点温度低,传热温度差大,故应是间歇蒸发的生产能力更大。
6、多效蒸发的效数受哪些限制?答:(1)效数愈多,效与效之间温度差的损失愈多,生产强度愈低,(2)效数愈多,设备费用愈多,经济性变差。
7、试比较单效与多效蒸发之优缺点?答:(1)单效蒸发的生产强度大,设备费用低。
但是,生产能力小,生蒸汽利用的经济性差。
(2)多效蒸发生蒸汽利用的经济性高,生产能力大。
但是,生产强度小,设备费用高。