射影几何中仿射变换解初等几何题

射影几何中仿射变换解初等几何题
射影几何中仿射变换解初等几何题

利用仿射变换可以解决许多初等几何问题,下面给出它在以下几个方面的应用。 平行投影

平行投影是仿射变换中最基本、最简单的一类。因此平行投影变换具有仿射变换中的一切性质。解这类题的关键是选定平行投影方向,应用平行线段之比是仿射不变量。

例1 P 是ABC ?内任一点,连结AP 、BP 、CP 并延长分别交对边于D 、E 、F 。求证:

1=++CF

PF BE PE AD PD . [2]

C

图1

证明:如图1,分别沿AB 和AC 方向作平行投影。P →P '、P →P ''由仿射变换保简单比不变得,

DC DP BD D P AD PD '''==,所以BC

P P AD PD '

''=

, 同理 BC C P BE PE ''=,BC

BP CF PF '

=

, 所以

1''''''=++=++BC

BP BC C P BC P P CF PF BE PE AD PD . 例2 一直线截三角形的边或其延长线,所得的顶点到分点和分点到顶点的有向线段的比的乘积等于﹣1,其逆也真。(梅涅劳斯定理 )[3]

分析:如图2,本题要求证明当L 、M 、N 三点共线时,1-=??NB

AN

MA CM LC BL 。其逆命题亦成立 。

N

B

A

L'(L)

A'C B A

M

M

N

A'

L C

图2

(1)证明梅涅劳斯定理成立

由于要证明的三条线段分别处在三条直线上,不便于问题的证明,为此应用平行投影将其集中到一条直线上,自然采用原三角形的一边最简便。

如图2(a),以MN 为投影方向,将A 、N 、M 点平行投影到直线BC 上的A '、L 、L '点,则

1''-=??=??LB

L A LA CL LC BL NB AN MA CM LC BL .即原命题成立。 (2)证明逆命题成立

证明当BC 、CA 、AB 上三点L 、M 、N 满足1-=??NB

AN

MA CM LC BL 时,则L 、M 、N 三点共线。

设直线MN 交BC 于L ',如图2(b) ,由已知条件知,1''-=??NB

AN

MA CM C L BL , 所以L '与L 重合,故L 、M 、N 三点共线。 三角形仿射等价性

因为任一三角形可以经过平行投影变成正三角形。因此,如果我们要证明一个有关三角形的命题,只要这个命题的条件和结论都是图形的仿射性质,那么只要证明命题对正三角形成立,便可断言命题对任意三角形也成立。而正三角形是最特殊的三角形,它有很多特殊的性质可以利用,证明起来要容易得多。

例3 在ABC ?的中线AD 上任取一点P ,连接BP 、CP ,并延长BP 交AC 于E ,延长CP 交AB 于F ,求证:EF ∥BC . [4]

D 'C '

D

B

B'

图3

证明:如图3,作仿射变换T ,使得ABC ?对应正C B A '''?,由仿射性质可知,点D 、P 、

E 、

F 相应地对应D '、P '、E '、F ',且D A ''为正C B A '''?的中线。

在正C B A '''?中D A ''也是C B ''边上的高,且B '、P '、E '与C '、P '、F '关于D A ''对称,E '、F '到C B ''的距离相等,则F E ''∥C B '',

由于平行性是仿射不变性,因此,在ABC ?中EF ∥BC .

例4 证明G 为ABC ?重心的充要条件是:BGC AGC AGB S S S ???==.[4]

'

C

图4

证明:必要性,

如图4,作仿射变换T',使得ABC

?对应正C

B

A'

'

'

?,G'为正C

B

A'

'

'

?的重心,则G'也为内心,即G'到三边距离D

G'

'﹑E

G'

'﹑F

G'

'相等,故

C

G

B

C

G

A

B

G

A

S

S

S

'

'

'

?

'

'

'

?

'

'

'

?

=

=,则对应在ABC

?,

BGC

AGC

AGB

S

S

S

?

?

?

=

=.

充分性,

C

G

B

C

G

A

B

G

A

S

S

S

'

'

'

?

'

'

'

?

'

'

'

?

=

=,因为A

C

C

B

B

A''

=

'

='

',故G'到三边距离D

G'

'、E

G'

'、F

G'

'相等,即G'为正C

B

A'

'

'

?的内心,从而G'也是重心。

由于平行性是仿射性质,因此,命题对一般三角形也成立。故G为ABC

?的重心。

证明有关平行四边形仿射性质的实例

任一平行四边形均可以经过特殊平行投影变成正方形,因此,若想证明一个有关平行四边形的命题,只要这个命题的条件和结论都是图形的仿射性质,那么只要证明相应命题对正方形成立即可。

例5 平行四边形ABCD的一组邻边上有点E,F两个点,且EF∥AC.求证:AED

?

和CDF

?面积相等。[5]

证明:作仿射变换,使平行四边形ABCD对应正方形CD

B

A'

',则有E对应E',F对应F',如图5,

C

B

F'

A'B'

A

D

E

F

E'

图5

在正方形CD B A ''中,由F E ''∥C A ',故

C

A F E C

B F B B A E B ''

'=

'''='''', 因为C B B A '='',所以F B E B ''='',故F C E A '='', 因??

?

??'=''='∠='∠'

=''C B B A B DC B A D F C E A 90',所以F CD D E A '??''?, 又由于两个多边形面积之比为仿射不变量,故有1=='

?'

''???F CD D E A CDF AED S S S S , 所以C DF AED S S ??=.

例6 已知在平行四边形ABCD 中,E 为AB 的中点,F 在AD 上,DF AF 2

1

=,EF 交AC 于G ,求证:AC AG 5

1=

. [6]

E'

A'

'

B'

图6

证明:如图6,作仿射变换f ,使得,平行四边形ABCD 对应正方形D C B A '''',则由仿射性质可知,点E 、F 、G 分别对应E '、F '、G ',且E '是D A ''的中点,F D F A ''=

''2

1

. 在正方形D C B A ''''中,取D C ''的中点P ',过B '、D '、P '作F E ''的平行线,分别交C A ''于点H '、M '、N '。由平面几何知识易证,C A G A ''=

''5

1

, 由于简比是仿射不变量,所以在平行四边形ABCD 中,AC AG 5

1

=. 证明有关梯形仿射性质的实例

任一梯形均可以经过平行投影变成等腰梯形,若想证明一个有关梯形的命题,只要这个命题的条件和结论都是图形的仿射性质,那么只要证明相应命题对等腰梯形成立即可。

例7 在梯形ABCD 中,AD ∥BC ,M 、N 分别为AD 、BC 的中点,对角线AC 与BD 交于E 点,腰AB 与CD 交于F 点,求证:M 、N 、E 、F 四点共线。[7]

B'

C '

N

C

图7

证明:如图7,作仿射变换g ,使梯形ABCD 对应等腰梯形D C B A '''',则由仿射性质可知,点M 、N 、E 、F 依次对应M '、N '、E '、F ',其中M '、N '分别为D A ''与C B ''的中点。

在等腰梯形D C B A ''''中,由对称性可知,N M ''是对称轴,E '为对称直线C A ''与D B ''的交点,F '为对称直线B A ''与D C ''的交点,因此,E '、F '必在直线N M ''上,即E '、F '、M '、N '四点共线。

由于结合性是仿射不变量,所以在梯形ABCD 中M 、N 、E 、F 四点共线。 应用仿射变换求与椭圆有关的问题

圆和椭圆都是初等几何中常见的图形,圆比椭圆更特殊,它有很多很好的性质,与圆有关的定理举不胜举,但椭圆则不然,因其本身的定义要比圆复杂,椭圆的性质和定理就很少,解决一个与椭圆有关的问题要比解决一个与圆有关的相应的问题困难得多。在初等几何中,有很多有关椭圆的问题,

只能通过解析几何的方法来解决,这就给我们解题带来了不少麻烦。因此,我们自然期望有一种方法,使得处理有关椭圆的问题和处理有关圆问题一样容易,而由仿射变换性质可知,椭圆通过适当的仿射变换可变成圆。

例8 求椭圆122

22=+b

y a x 的面积。[8]

图8

解:设在笛氏直角坐标系下,椭圆12222=+b y a x 经过仿射变换???

??='='y b a y x

x ,其中

00

1≠=

?b

a ,椭圆的仿射图形为222a y x =+. 因为两个封闭图形面积之比为仿射不变量,所以要想利用仿射变换解题,必须构造面积之比。所以选定椭圆内的OAB ?,如图9所示,

)0,0(O 、),(b a A 、),0(b B 经过仿射变换,OAB ?对应图形B A O ''?,其中 A 与A '重合且),0(b B .

所以

2

2

2

121a a ab S S S S S B A O OAB

π=

=''??椭圆圆

椭圆即,故ab S π=椭圆. 例9 求椭圆12592

2=+y x 两点)225,

223(A 、)225,223(-B 和中心的连线以及椭圆弧''B A 所围成的面积OABO S . [9]

图9

解:如图9,作仿射变换???

?

??

?==y 5

4y x

3

4

x ''

,把椭圆15y 3x 2222=+变成圆2ˊ22ˊ16x =+y ,相应地把点

)225,223(

A 、)22

5,223(-B 分别变成)22,22(A '、)22,22(-'B , 在O '中,24''=B A ,又因为224222

'

'sin ==

=

R

B A α,所以4

π

α=, 圆O '中的扇形面积o p op S 21=ππ

α41642212=?=??R ,

又因

15165434''''=?=

OABO

O B A O S S ,所以π4

5

1615''''==O B A O OABO S S . 通过以上例题可以看出,我们不但能够求出圆的扇形面积,也能求出椭圆的扇形面积,

只要给出椭圆上的两点即可,这个结论在初等几何中是没有的。综上,椭圆的有关仿射性质的问题可转化为圆的问题来解决,为解题或证明带来极大的方便。

例10 平行于平行四边形ABCD 的对角线AC 作一直线与,AB BC 相交于,E F 。 求证:AED CDF S S ??=。

证明:如图1所示,设正方形''

'

'

A B C D 经过一个仿射变换T 得到ABCD ,即

正方形''''T

A B C D ABCD ??

图1

由于T 保持平行性,结合性,所以

''',,D E E F F D →→→

''F E //''

AC

而在正方形''''

A B C D 中

''''''A E D C D F ?

所以有

''''''A E D C D F S S =

因为两三角形的面积之比是仿射不变量,则有

''''''

=

A E D AED

CDF

C D F S S S S 所以 AED CDF S S ??=

德萨格定理的应用

德萨格定理是射影几何的理论基础,它的应用很广,许多定理以它为依据。

定义1 平面内不共线的三点与每两点的连线所组成的图形叫做三点形。平面内不共点的三直线与其每两直线的交点所组成的图形叫做三线性。

德萨格定理 如果两个三点形对应顶点连线交于一点,则对应边的交点在同一直线上。 德萨格定理的逆定理 如果两个三点形对应边的交点在同一直线上,则对应顶点的连线交于一点。

定义2 若两个三点形的对应顶点的连线共点,且对应边的交点共线,则两三点形构成透视关系。对应顶点连线的交点叫做透视中心,对应边交点所在的直线叫做透视轴。

例11 如图2所示,过三角形ABC 的三个顶点,任作三条直线,,AD BE CF ,分别与对边交于,,,F E D 且CF BE AD ,,共点.求证:若EF BC X ?=, FD CA Y ?=,

DE AB Z ?=,则Z Y X ,,三点共线。

证明 在三点形ABC 和DEF 中,因为对应顶点的连线CF BE AD ,,共点。有德萨格定理知,其对应边的交点共线,即有Z Y X ,,共线。

图2

点列中四点的交比

定义1 共线四点,,,A B C D 的交比定义为两个单比()ABC 与()ABD 的比,记为

()

(,)()

ABC AB CD ABD =

其中A ,B 两点称为基点,C ,D 两点称为分点。

根据交比的定义有()(,)()AC

ABC AC BD

BC AB CD AD ABD BC AD BD

?===

? 不相同的共线四点的交比与点的排列顺序有密切的关系。 定理1 两基点与分点交换,交比的值不变。即 (,)(,)CD AB AB CD =

定理2 只有两基点交换或只有两分点交换,交比的值与原来的交比值互为倒数。即 1

(,)(,)(,)

BA CD AB DC AB CD ==

定理3 交换(,)AB CD 中间两字母顺序或交换两端字母顺序所得的交比值与原来交比值和为常数1,即

(,)(,)1(,)AC BD DB CA AB CD ==- 定理 4 一直线上的无穷远点分其上的任何亮点的单比等于1.

定理 5 已知两个不同的普通点(),(),()A a B b P a tb +为直线AB 上一点,且

()ABP λ=,则

3

3

b t

a λ=- 。 推论 1 若共线四点为12(),(),(),()A a B

b C a t b D a t b =+,则 1

2

(,)t AB CD t =

其中

1212()0t t t t -≠

推论 2 若共线四点,,,A B C D 的坐标分别为1234,,,a t b a t b a t b a t b ++++, 则

13242314()()

(,)()()

t t t t AB CD t t t t --=

--

其中1234,,,t t t t 互不相等。

在共线四点的交比中,交比值为-1的情况十分重要,若(,)1AB CD =-,则称,C D 调和分离,A B ,或称,A B 与,C D 调和共轭。交比值-1叫做调和比。

例12设(1,1,1),(1,1,1),(1,0,1)A B D -为共线三点,且(,)2AB CD =,求点C 的坐标。 解 设 12,C A t B D A t B =+=+

代入坐标可得

21t =

由1

2

(,)2t AB CD t =

=得 12t =

所以2C A B =+,即点C 坐标为(3,1,3)-

线束中四条直线的交比的应用

定义 1 若,,,a b c d 为线束S 中的四条直线,则

),sin(),sin()

,sin(),sin()()(),(d a c b d b c a abd abc cd ab =

=

叫做,,,a b c d 的交比,其中,a b 叫基线,,c d 叫做分线。

定理1 若线束S 中的四条直线,,,a b c d 被任意一直线s 截于,,,A B C D 四点,则 (,)(,)AB CD ab cd =

与点列交比像是,可以得到线束交比的性质,共点四直线的交比也有24个交比值,分为六类,每类中四个交比值相等.

定理2 若12,,,a b a t b a t b ++为四条不同的普通共点直线(1,2,3,4)i l i =的齐次坐标,则

1

12342

(,)t l l l l t =

1212()0t t t t -≠

定理3 交比经中心射影后不变,即交比为射影性质。

例13 ABC ?中ABC ∠的内、外角分线,AM AN 交BC 于,M N 。求证:

BM BN

MC CN

=.。 证明 如图3,记直线,,,AB AC AM AN ,分别为,,,a b c d 则

1

),sin(),sin()

,sin(),sin(),(-=??=

d a c b d b c a cd ab

由定理1得

(,)(,)ab cd BC MN =

所以

1

),(-=??=

BN CM CN

BM MN BC

CN BN MC BM = 得证。

中考数学压轴题分类汇编:图形变换

中考数学分类汇:几何综合——图形变换 某课外学习小组在一次学习研讨中,得到了如下两个命题: ①如图1,在正三角形△ABC 中,M 、N 分别是AC 、AB 上的点,BM 与CN 相交于点O ,若∠BON =60o,则BM =CN ; ②如图2,在正方形ABCD 中,M 、N 分别是CD 、AD 上的点,BM 与CN 相交于点O ,若∠BON =90o,则BM =CN ; 然后运用类比的思想提出了如下命题: ③如图3,在正五边形ABCDE 中,M 、N 分别是CD 、DE 上的点,BM 与CN 相交于点O ,若∠BON =108o,则BM =CN 。 任务要求: (1)请你从①、②、③三个命题中选择一个进行证明;(说明:选①做对得4分,选②做对得3分,选③做对得5分) (2)请你继续完成下列探索: ①请在图3中画出一条与CN 相等的线段DH ,使点H 在正五边形的边上,且与CN 相交所成的一个角是108o,这样的线段有几条?(不必写出画法,不要求证明) ②如图4,在正五边形ABCDE 中,M 、N 分别是DE 、EA 上的点,BM 与CN 相交于点O ,若∠BON =108o,请问结论BM =CN 是否还成立?若成立,请给予证明;若不成立,请说明理由。 [解] (1)以下答案供参考: (1) 如选命题① 证明:在图1中,∵∠BON=60°∴∠1+∠2=60° ∵∠3+∠2=60°,∴∠1=∠3 又∵BC=CA ,∠BCM=∠CAN=60°∴ΔBCM ≌ΔCAN ∴BM=CN (2)如选命题② 证明:在图2中,∵∵∠BON=90°∴∠1+∠2=90° ∵∠3+∠2=90°,∴∠1=∠3 又∵BC=CD ,∠BCM=∠CDN=90°∴ΔBCM ≌ΔCDN ∴BM=CN (3)如选命题③ 证明;在图3中,∵∠BON=108°∴∠1+∠2=108° ∵∠2+∠3=108°∴∠1=∠3 又∵BC=CD ,∠BCM=∠CDN=108° ∴ΔBCM ≌ΔCDN O C M N A 图1 A C M N O D 图2 图4 N M O E D C B A

专题22 几何三大变换问题之旋转(中心对称)问题(原卷版解析版)-1.doc

2016中考数学预测押题--专题22 几何三大变换问题之旋转(中心对称)问题 轴对称、平移、旋转是平面几何的三大变换。旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。旋转由旋转中心、旋转的方向和角度决定。经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上;旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。 把一个图形绕着某一定点旋转一个角度360°/n(n为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。 特别地,中心对称也是旋转对称的一种的特别形式。把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。 在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。 中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。 原创模拟预测题1.如图,直线l:y=+y轴交于点A,将直线l绕点A顺时针旋转75o后,所得直线的解析式为【】

A .y = B .y x =+ C .y x =-+ D .y x =- 【答案】B 。 【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。 故选B 。 原创模拟预测题2. 根据要求,解答下列问题: (1)已知直线l 1的函数表达式为y x 1=+,直接写出:①过原点且与l 1垂直的直线l 2的函数表达式;②过点(1,0)且与l 1垂直的直线l 2的函数表达式; (2)如图,过点(1,0)的直线l 4向上的方向与x 轴的正方向所成的角为600,①求直线l 4的函数表达式;②把直线l 4绕点(1,0)按逆时针方向旋转900得到的直线l 5,求直线l 5的函数表达式; (3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x 55 =-垂直的直线l 6的函数表达式。

射影几何

南京师范大学 毕业设计(论文) (2009 届) 题目:漫谈射影几何的几种子几何及其关系 学院:数学科学学院 专业:数学与应用数学 姓名:刘峰 学号:0 6 0 5 0 2 1 0 指导教师:杨明升 南京师范大学教务处制

漫谈射影几何的几种子几何及其关系 刘峰 数学与应用数学(师范)06050210 一.摘要 射影几何学是研究图形的射影性质,即它们经过射影变换不变的性质. 射影几何集中表现了投影和截影的思想,论述了同一射影下,一个物体的不同截景所形成的几何图形的共同性质,以及同一物体在不同射影下的几何图形的共同性质,一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊地位,通过它可以把其他一些几何联系起来. 概括的说,射影几何学是几何学的一个重要分支学科,它是专门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的科学. 这门”诞生于艺术的科学”,今天成了最美的数学分支之一. 二.关键词 射影几何,摄影仿射几何,摄影欧氏几何,仿射几何,欧氏几何,射影变换,仿射变换,正交变换,射影变换群,仿射变换群,正交变换群,克莱因变换群. 三.射影几何(projective geometry)的发展简况 十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前. 这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件. 这门几何学就是射影几何学. 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影. 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形. 那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来. 在这个过程中,被描绘下来

几何翻折变换(折叠问题)(答案参考)

专题:几何翻折变换(折叠问题) 1、已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t. (Ⅰ)如图①,当∠BOP=300时,求点P的坐标; (Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m; (Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可). 2、如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合. (1)求证:△ABG≌△C′DG; (2)求tan∠ABG的值; (3)求EF的长.

3、如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点. (1)求抛物线解析式及点D坐标; (2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标; (3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.

【答案】 1、解:(Ⅰ)根据题意,∠OBP=90°,OB=6。 在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t。 ∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=23t2=-23(舍去).∴点P的坐标为(23,6)。(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的, ∴△OB′P≌△OBP,△QC′P≌△QCP。∴∠OPB′=∠OPB,∠QPC′=∠QPC。 ∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°。 ∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ。 又∵∠OBP=∠C=90°,∴△OBP∽△PCQ。∴OB BP PC CQ =。 由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11-t,CQ=6-m. ∴ 6t 11t6m = -- 。∴2 111 m t t6 66 =-+(0<t<11)。 (Ⅲ)点P 1113 - ,6 11+13 ,6)。 2、(1)证明:∵△BDC′由△BDC翻折而成, ∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。 在△ABG≌△C′DG中,∵∠BAG=∠C,AB= C′D,∠ABG=∠AD C′,∴△ABG≌△C′DG(ASA)。(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。 设AG=x,则GB=8﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=7 4 。 ∴ 7 AG7 4 tan ABG AB624∠===。 (3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=1 2 AD=4。 ∵tan∠ABG=tan∠ADE=7 24 。∴EH=HD× 7 24 =4× 77 = 246 。

几何的变换压轴题(含答案)

图形的变换压轴题 1.如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E=30°. (1)操作发现 如图2,固定△ABC ,使△DEC 绕点C 旋转.当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是 ; ②设△BDC 的面积为1S ,△AEC 的面积为2S ,则1S 与2S 的数量关系是 . (2)猜想论证 当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中1S 与2S 的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高DM 和AN ,请你证明小明的猜想. (3)拓展探究 已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE ∥AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使DCF BDE S S =,请求出相应的 BF 的长. 【答案】(1)DE AC ①; 12S S =②.(2)证明见解析;(3)BF . 【解析】(1)DE AC ①; 12S S =②. (2)证明: 90DCE ACB ∠=∠=?, 180DCM ACE ∴∠+∠=?. 又180ACN ACE ∠+∠=?, ACN DCM ∴∠=∠. 又 90CNA CMD ∠=∠=?, AC CD =, ANC DMC ∴≌. AN DM ∴=. 又 CE CB =, 12S S ∴=. (3)如图,延长CD 交AB 于点P ,

则有 ∠ABD =30°,PD =2,由BD =CD =4可得∠BCD =30°, ∴∠BPD =90°,BP = 同理可求DE =BE ,故BDE S = , 当DCF BDE S S =时, 1423DCF S PF = ??=,∴3 PF =, ∴BF =,即BF . 2.已知,正方形ABCD 的边长为4,点E 是对角线BD 延长线上一点,AE=BD .将△ABE 绕点 A 顺时针旋转α度(0°<α<360°)得到△A B ′E ′,点B 、E 的对应点分别为B ′、E ′. (1)如图1,当α=30°时,求证:B ′C=DE ; (2)连接B ′E 、DE ′,当B ′E=DE ′时,请用图2求α的值; (3)如图3,点P 为AB 的中点,点Q 为线段B ′E ′上任意一点,试探究,在此旋转过程中,线段PQ 长度的取值范围为 . 【答案】(1)证明见解析(2)45°(3) ≤PQ≤4 +2

2013中考压轴题选讲专题7:几何三大变换问题(排版+答案)

2012年中考数学压轴题分类解析 专题7:几何三大变换相关问题 授课老师:黄立宗 典型例题选讲: 例题1:(2012福建龙岩13分)矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对 应点A′落在线段BC上,再打开得到折痕EF. (1)当A′与B重合时(如图1),EF= ;当折痕EF过点D时(如图2),求线段EF的长; (2)观察图3和图4,设BA′=x,①当x的取值范围是时,四边形AEA′F是菱形;②在①的 条件下,利用图4证明四边形AEA′F是菱形. 例题2:(2012辽宁丹东)已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段 BD、CE交于点M.(1)如图1,若AB=AC,AD=AE ①问线段BD与CE有怎样的数量关系?并说明理由;②求∠BMC的大小(用α表示); (2)如图2,若AB= BC=kAC,AD =ED=kAE 则线段BD与CE的数量关系为,∠BMC= (用α表示); (3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接 EC并延长交BD于点M.则∠BMC= (用α表示). 例题3:(2012福建福州)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点. (1) 求抛物线的解析式; (2) 将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D

的坐标; (3) 如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB 的点P的坐标(点P、O、D分别与点N、O、B对应). 例题4:(2012广西贵港12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0)。 (1)求该抛物线的解析式; (2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式; (3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线 OP与该抛物线交点的个数。 巩固练习 1、(2012黑龙江大庆)在直角坐标系中,C(2,3),C′(-4,3), C″(2,1),D(-4,1),A(0,a),B(a,O)( a 0). (1)结合坐标系用坐标填空. 点C与C′关于点对称; 点C与C″关于点对称; 点C与D关于点对称

图形的几何变换

《计算机图形学》上机实习报告(一)——基本图形的生成 一、实习目的和要求 1、目的 深入学习三种基本几何变换的原理和方法,以及错切、镜像变换同上的类同性, 同时,在掌握基本几何变换的基础上理解组合变换的实现机制,掌握几何变换 的共同特点; 通过程序的编写和运行,学习基本几何变换在程序上的实现方法,这就要求掌 握结构体、一维数组的基本性质和使用方法; 进一步锻炼使用WIN-TC的熟练程度。 2、要求 实现平移变换、比例变换、旋转变换三种基本几何变换; 实现镜像变换、错切变换; 二、运行环境 本次上机在WIN-TC 中进行。 三、直线的生成——用Bresenham算法实现 1、算法基本原理 图形的几何变换一般是指对图形的几何信息经过变换后产生新的图形,图形几何变换既可以看作是坐标系不动而图形变动,变动后的图形在坐标系中的坐标值发生变化;出可以看作图形不动而坐标系变动,变动后的图形在新坐标系下具有新的坐标值。这两种情况本质上都是一样的,都是图形由新的坐标值表示,因此是新产生的图形。图形几何变换包括比例变换、对称变换、错切变换、旋转变换、平移变换及其复合变换。图形上所有的点在几何变换前后的坐标关系一般用解析几何方法可以求得,但这些几何关系用矩阵方法表示,运算更为方便。 图形基本几何变换是指比例变换、对称变换、错切变换、旋转变换和平移变换等。变换通过矩阵运算均可以表示为表示几何图形的点阵的一维矩阵和表示变换的三维矩阵相乘的形式,即P’=P·T,具体如下: 平移变换

比例变换 旋转变换 对称变换 对称于x轴对称于y轴对称于原点 对称于y=x 对称于y=-x 错切变换 沿x轴方向关于y的错切 沿y轴方向关于x的错切 2、对程序中变量的说明 3、源程序 4、运行结果 5、个人总结

射影几何的诞生与发展

射影几何的诞生与发展 一从透视学到射影几何 1.在文艺复兴时期,描绘现实世界成为绘画的重要目标,这就使画家们在将三维现实世界绘制到二维的画布上时,面临这样的问题: (1)一个物体的同一投影的两个截影有什么共同的性质? (2)从两个光源分别对两个物体投影到同一个物影上,那么两个物体间具有什么关系? 2.由于绘画、制图的刺激而导致了富有文艺复兴特色的学科---透视学的兴起(文艺复兴时期:普遍认为发端于14世纪的意大利,以后扩展到西欧,16世纪大道鼎盛),从而诞生了射影几何学。意大利人布努雷契(1377-1446)是第一个认真研究透视法并试图运用几何方法进行绘画的艺术家。 3.数学透视法的天才阿尔贝蒂(1401-1472)的《论绘画》一书(1511)则是早期数学透视法的代表作,成为射影几何学发展的起点。 4.对于透视法产生的问题给予数学上解答的第一人是德沙格(1591-1661)法国陆军军官,后来成为工程师和建筑师,都是靠自学的。1639年发表《试论锥面截一平面所得结果的初稿》,这部著作充满了创造性的思想,引入了无穷远点、无穷远直线、德沙格定理、交比不变性定理、对合调和点组关系的不变性、极点极带理论等。 5.数学家帕斯卡(1623-1662)16岁就开始研究投射与取景法,1640年完成著作《圆锥曲线论》,不久失传,1779年被重新发现,他最突出的成就是所谓的帕斯卡定理,即圆锥曲线的内接六边形的对边交点共线 6.画家拉伊尔(1640-1718)在《圆锥曲线》(1685)这本射影几何专著中最突出的地方在于极点理论方面的创新。 7.德沙格等人把这种投影分析法和所获得的结果视为欧几里得几何的一部分,从而在17世纪人们对二者不加区别,但这一方法诱发了一些新的思想和观点: 1)一个数学对象从一个形状连续变化到另一形状 2)变换与变换不变性 3)几何新方法------仅关心几何图形的相交与结构关系,不涉及度量 二射影几何的繁荣 1.在19世纪以前,射影几何一直是在欧氏几何的框架下被研究的,并且由于18世纪解析几何、微积分的发展洪流而被人遗忘,到

上海市北初级中学数学几何模型压轴题单元测试卷附答案

上海市北初级中学数学几何模型压轴题单元测试卷附答案 一、初三数学旋转易错题压轴题(难) 1.在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE. (1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE; (2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由. (3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由. 【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析 【解析】 【分析】 (1)利用直角三角形斜边的中线等于斜边的一半,即可; (2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半; (3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可; 【详解】 解:(1)证明:如图: ∵∠ACB=∠AEF=90°, ∴△FCB和△BEF都为直角三角形. ∵点P是BF的中点, ∴CP=1 2BF,EP= 1 2 BF, ∴PC=PE. (2)PC=PE理由如下: 如图2,延长CP,EF交于点H,

∵∠ACB=∠AEF=90°, ∴EH//CB, ∴∠CBP=∠PFH,∠H=∠BCP, ∵点P是BF的中点, ∴PF=PB, ∴△CBP≌△HFP(AAS), ∴PC=PH, ∵∠AEF=90°, ∴在Rt△CEH中,EP=1 2 CH, ∴PC=PE. (3)(2)中的结论,仍然成立,即PC=PE,理由如下: 如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD, ∵∠DAF=∠EAF,∠FDA=∠FEA=90°, 在△DAF和△EAF中, DAF, , , EAF FDA FEA AF AF ∠=∠ ? ? ∠=∠ ? ?= ? ∴△DAF≌△EAF(AAS), ∴AD=AE, 在△DAP≌△EAP中, , , , AD AE DAP EAP AP AP = ? ? ∠=∠ ? ?= ? ∴△DAP≌△EAP (SAS), ∴PD=PF, ∵FD⊥AC,BC⊥AC,PM⊥AC, ∴FD//BC//PM, ∴DM FP MC PB =,

中考数学专题 几何三大变换问题之对称

2004-2013年浙江11市中考数学选择填空解答压轴题分类解析汇编 专题13:几何三大变换问题之对称 一、选择题 1.(2004年浙江绍兴4分)如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD等于【】 A.108°B.144°C.126°D.129° 【答案】C。 【考点】矩形的性质,折叠对称的性质。 【分析】展开如图:五角星的每个角的度数是: 0 180 36 5 。 ∵∠COD=3600÷10=360,∠ODC=360÷2=180, ∴∠OCD=1800-360-180=1260。故选C。 2.(2004年浙江湖州3分)小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是【】 A. B. C. D. 【答案】D。 【考点】剪纸问题,折叠对称的性质,正方形的性质。 【分析】按照图中的顺序向右下对折,向左下对折,从上方角剪去一个等腰直角三角形,展开得:剪去的为一正方形,且顶点在原正方形的对角线上。故选D。 3.(2007年浙江绍兴4分)如图的方格纸中,左边图形到右边图形的变换是【】

A.向右平移7格 B.以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称 C.绕AB的中点旋转1800,再以AB为对称轴作轴对称 D.以AB为对称轴作轴对称,再向右平移7格 【答案】D。 【考点】轴对称和平移变换。 【分析】观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格。故选D。 4.(2008年浙江台州4分)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移, 我们把这样的图形变换叫做滑动对称变换 .......在自然界和日常生活中,大量地存在这种图形变换(如图1).结 合轴对称变换和平移变换的有关性质,你认为在滑动对称变换 ......过程中,两个对应三角形(如图2)的对应点所具有的性质是【】 A.对应点连线与对称轴垂直B.对应点连线被对称轴平分 C.对应点连线被对称轴垂直平分D.对应点连线互相平行 【答案】B。 【考点】新定义,轴对称变换和平移变换的性质。 【分析】观察图形,因为进行了平移,所以有垂直的一定不正确,A、C是错误的; 对应点连线是不可能平行的,D是错误的; 由对应点的位置关系可得:对应点连线被对称轴平分。故选B。 5.(2011年浙江温州4分)如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,

计算机图形学-图形的几何变换

贵州大学实验报告 学院:计算机科学与技术专业:软件工程班级:软件132 姓名常伟学号1308060226 实验地点一教704 实验时间2016.5.9 指导教师李智实验成绩 实验项目名称试验四、图形的几何变换 实验目的1.掌握矢量运算。 2.熟练使用齐次坐标。 3.掌握采用齐次坐标进行几何变换。 实验要求1.理解几何图形变换的原理,编程实现图形的几何变换。 2.编程界面友好,实现变换的所有方式,包括平移、缩放、旋转、对称、错切以及基本变换基础上的组合变换。 3.几何变换使用矩阵进行运算。

实验原理 二维齐次坐标变换的矩阵的形式是 ? ? ? ? ? ? ? ? ? ? i h g f e d c b a 这个矩阵的每一个元素都是有特殊含义的。其中,? ? ? ? ? ? e d b a 可以对图形进行缩放、旋 转、对称和错切等变换;? ? ? ? ? ? f c 是对图形进行平移变换;[]h g是对图形作投影变换;[]i 则是对图形进行缩放变换。 下面给出几个基本变换的矩阵运算。 1.平移变换 ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? 1 ) , ( 1 1 1 1 1 1 ' ' y x T y x y x t t t t t t y x y x y x y x 2.缩放变换 ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? 1 ) , ( 1 1 1 1 ' ' y x s s S y s x s y x s s y x y x y x y x 3.旋转矩阵 ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? + - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?- = ? ? ? ? ? ? ? ? ? ? 1 ) ( 1 cos sin sin cos 1 1 cos sin sin cos 1 ' ' y x R y x y x y x y x θ θ θ θ θ θ θ θ θ 4.对称矩阵 ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? 1 1 1 1 ' ' ey dx by ax y x e d b a y x 对称变换其实只是a、b、d、e取0、1等特殊值产生的一些特殊效果。 5.错切变换 ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 ' ' y dx by x y x d b y x

计算机图形学--图形几何变换实现

实验五 图形几何变换的实现 班级:信计二班 学号: :解川 分数: 一、实验目的 为了掌握理解二维、三维的数学知识、变换原理、变换种类、变换方法;进一步理解采用齐次坐标进行二维、三维变换的必要性;利用VC++语言实现二维、三维图形的基本变换与复合变换。 二、实验容 (1) 理解采用齐次坐标进行图形变换的必要性——变换的连续性,使复合变换 得以实现。 (2) 掌握二维、三维图形基本变换的原理及数学公式。 (3) 利用VC++语言实现二维、三维图形的基本变换、复合变换,在评不上显 示变换过程或变换结果。 三、实验步骤 (1) 预习教材关于二维、三维图形变换的原理与方法。 (2) 使用VC++语言实现某一种或几种基本变换。 (3) 调试、编译、运行程序。 四、原理分析 源程序分别实现了对二维图形进行的平移变换—基本变换;对三维图形进行的绕某一个坐标轴旋转变换以及相对于立方体中心的比例变换—复合变换。 三维几何变换: (1) 比例变换: []1111z y x =[]1z y x T 3D =[]1z y x ????? ?? ?? ???s n m l r j i h q f e d p c b q 局部比例变换: s T =? ? ??? ???? ???1000000000000j e a 其中a 、b 、j 分别为在x 、y 、z 方向的比例系数。

整体比例变换: s T =? ? ??? ???? ???s 000010000100001其中s 为在xyz 方向的等比例系数。S>1时,整体缩小;s<1时,整体放大。 (2) 旋转变换: 旋转变换的角度方向为(沿坐标轴的反方向看去,各轴按逆时针方向旋转) 绕z 轴旋转: RZ T =?? ??? ???? ???-100 010000cos sin 00sin cos θθθθ 绕x 轴旋转: RX T =??????? ?? ???-10 00 0cos sin 00sin cos 000 01 θθθθ 绕y 轴旋转: RY T =????? ???? ???-10 0cos 0sin 00100sin 0cos θθθθ 程序代码: /*三维图形(立方体)旋转变换、比例变换*/ #include #include #include #include #include #include #define ZOOM_IN 0.9 #define ZOOM_OUT 1.1

几何图形变换中考数学压轴题整顿

几何图形变换压轴题中考整理 1(黑龙江省哈尔滨市)已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图l,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD; (2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是____________________________________; (3)在(2)的条件下,若AG=2 5,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别 3,求线段PQ的长. 与线段BM、线段BN相交于P、Q两点,若NG= 2 (湖北省随州市)如图①,已知△ABC是等腰三直角角形,∠BAC=90°,点D是BC 的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论. (2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由. (3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.

3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测 量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长 线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 3.在△ABC 中,点P 为BC 的中点. (1)如图1,求证:AP < 2 1 (AB +BC ); (2)延长AB 到D ,使得BD =AC ,延长AC 到E ,使得CE =AB ,连结DE . ①如图2,连结BE ,若∠BAC =60°,请你探究线段BE 与线段AP 之间的数量关系.写出你的结论,并加以证明; ②请在图3中证明:BC ≥ 2 1 DE . 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13- 1 A ( G ) B ( E ) C O D ( F )

中考数学 专题 几何三大变换问题之轴对称(折叠)问题(含解析)

专题20 几何三大变换问题之轴对称(折叠)问题 轴对称、平移、旋转是平面几何的三大变换。由一个平面图形变为另一个平面图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换。轴对称具有这样的重要性质: (1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。中考压轴题中轴对称 (折叠)问题,包括有关三角形的轴对称性问题;有关四边形的轴对称性问题;有关圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题。 一. 有关三角形的轴对称性问题 1. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,连接EF ,交AD 于点G ,求证:AD ⊥EF . 2. 如图,在Rt △ABC 中,∠C=900 ,∠B=300 , BC=,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为等腰三角形时,BD 的长为 。 F D C E A B

【考点】翻折问题,轴对称的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理,等腰三角形的判定,分类思想的应用。 二. 有关四边形的轴对称性问题 3.如图①是3×3菱形格,将其中两个格子涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕菱形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】 A.4种 B.5种 C.6种 D.7种 【答案】B。 【考点】利用旋转的轴对称设计图案。 【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案: 得到的不同图案有:

图像的几何变换的两种实现(旋转、平移、放大、缩小)

面向对象程序设计 学号:2 学生所在学院:信息工程学院 学生姓名:邵丽群 任课教师:熊邦书 教师所在学院:信息工程学院

2013级 实现图像的几何变换 电子信息工程 信息工程学院 摘要:几何变换是最常见的图像处理手段,通过对变形的图像进行几何校正,可以得出准确的图像。常用的几何变换功能包括图像的平移、图像的镜像变换、图像的转置、图像的缩放、图像的旋转等等。目前数字图像处理的应用越来越广泛,已经渗透到工业、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。作为数字图像处理的一个重要部分,本文接受的工作是如何Visual C++编程工具设计一个完整的应用程序,实现经典的图像几何变换功能。程序大概分为两大部分:读写BMP图像,和数字图像的几何变换。即首先用Visual C++创建一个单文档应用程序框架,在实现任意BMP图像的读写,打印,以及剪贴板操作的基础上,完成经典的图像几何变换功能。图像几何变换的Visual C++编程实现,为校内课题的实现提供了一个实例。 关键字:图像处理;几何变换(图像的平移、缩放、转置、旋转和镜像变换);BMP图像;Visual C++

一、引言 图像几何变换是指用数学建模的方法来描述图像位置、大小、形状等变化的方法。在实际场景拍摄到的一幅图像,如果画面过大或过小,都需要进行缩小或放大。如果拍摄时景物与摄像头不成相互平行关系的时候,会发生一些几何畸变,例如会把一个正方形拍摄成一个梯形等。这就需要进行一定的畸变校正。在进行目标物的匹配时,需要对图像进行旋转、平移等处理。在进行三维景物显示时,需要进行三维到二维平面的投影建模。因此,图像几何变换是图像处理及分析的基础。 图像几何变换是计算机图像处理领域中的一个重要组成部分,也是值得深讨的一个重要课题。在图像几何变换中主要包括图像的放缩、图像的旋转、图像的移动、图像的镜像、图像的块操作等内容,几何变换不改变图像的像素值,只改变像素所在的几何位置。从广义上说,图像是自然界景物的客观反映,是人类认识世界和人类本身的重要源泉。图像对我们并不陌生。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有75%来自视觉系统,也就是从图像中获得的。所以对数字图像的处理便显得尤为重要了。 本文主要深讨了图像的几何变换(主要包括图像的平移、转置、缩放、旋转、镜像等)理论,并在此基础上用Visual C++实现的过程。 1.3.2研究方法 方法一: 利用Windows 本身就提供了一个API函数SetWorldTransForm来实现图片旋转、位移及其他变形,这个函数是对一个设备上下文DC进行操作,通过坐标转换来实现各种功能的。 方法二: 通过图像进行平移、旋转、转置、镜像、缩放后重新计算各点新像素完成几何变换。自定义一个图像处理的Cdibapi类,把一般处理图像时要用到的函数实现封装在这个类中,该类用于实现DIB对象的绘制,DIB对象调色板的创建,DIB对象的读取与存储,图像线性变换,图像灰度拉伸等。然后把在视类中实现图像平移,图像镜像,图像转置,图像缩放及图像旋转的函数调用和实现。

几何三大变换(习题及答案)

几何三大变换(习题) ?例题示范 例1:如图,四边形ABCD 是边长为9 的正方形纸片,将该纸片折叠,使点B 落在CD 边上的点B′处,点A 的对应点为A′,折痕为MN.若B′C=3,则AM 的长为. 【思路分析】 要求AM 的长,设AM=x,则MD=9-x. 思路一:考虑利用折叠为全等变换转条件,得AM=A′M=x, A′B′=AB=9.观察图形,∠A′=∠D=90°,△MA′B′和△MDB′都是 直角三角形,MB′是其公共斜边,则MB′可分别在两个直角三角形中借助勾股定理表达,列方程. 思路一思路二 思路二:MN 是对称轴,考虑利用对称轴上的点到对应点的距离相等转条件,得MB=MB′.观察图形,∠A=∠D=90°,MB,MB′ 可分别放到Rt△ABM 和Rt△DB′M 中借助勾股定理表达,列方程. 例2:如图,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD 的面积为24,则AC 的长为. 【思路分析】 已知四边形ABCD 的面积,要求AC 的长,考虑借助AC 表达四 边形ABCD 的面积.四边形ABCD 为不规则四边形,考虑割补法或转化法求面积.分析题目中条件AB=AD,存在等线段共端点的 结构,且隐含∠B+∠D=180°,故考虑通过构造旋转解决问题,可把△ABC 绕点A 逆时针旋转90°.

1

?巩固练习 1.如图,将边长为2 的等边三角形ABC 沿BC 方向平移1 个单 位得到△DEF,则四边形ABFD 的周长为. 第1 题图第2 题图 2.如图,已知△ABC 的面积为8,将△ABC 沿BC 方向平移到 △A′B′C′的位置,使点B′和点 C 重合,连接AC′,交A′C 于点D,则△CAC′的面积为. 3.如图,在6 4 的方格纸中,格点三角形甲经过旋转后得到格点 三角形乙,则其旋转中心是() A.格点M B.格点N C.格点P D.格点Q 第3 题图第4 题图 4.如图,已知OA⊥OB,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD=45°,将△CDE 绕点 C 逆时针旋转75°,点 E 的 对应点N 恰好落在OA 上,则OC 的值为.CD 5.如图,E 是正方形ABCD 内一点,连接 AE,BE,CE,将△ABE 绕点B 顺时针 旋转90°至△CBE′的位置.若AE=1, BE=2,CE=3,则∠BE′C= . 6.如图,在□ABCD 中,∠A=70°,将该 平行四边形折叠,使点C,D 分别落 在点E,F 处,折痕为MN.若点E, F 均在直线AB 上,则∠AMF= .

计算机图形学 图形几何变换的实现

计算机图形学图形几何变换的实现

————————————————————————————————作者:————————————————————————————————日期:

实验五图形几何变换的实现 班级08信计2 学号89姓名徐阳分数 一、实验目的和要求: 1、掌握理解二维、三维变换的数学知识、变换原理、变换种类、变换方法;进一步理解采用齐次坐标进行二维、三维变换的必要性;利用Turboc实现二维、三维图形的基本变换和复合变换。 二、实验内容: 1、理解采用齐次坐标进行图形变换的必要性——变换的连续性,使复合变换得以实现。 2、掌握二维、三维图形基本变换(平移、缩放、对称、旋转、错切)的原理及数学公式。 3、利用Turboc实现二维、三维图形的基本变换、复合变换,在屏幕上显示变换过程或变换结果。 三、实验结果分析: 程序代码如下: /*二维图形(直线)平移变换*/ #include #include #include main() {int x0,y0,x1,y1,i,j; int a[3][3]; char key; for(i=0;i<3;i++) for(j=0;j<3;j++) a[i][j]=0; for(i=0;i<3;i++) a[i][i]=1; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode," "); cleardevice(); x0=250;y0=120;x1=350;y1=220; line(x0,y0,x1,y1); for( ; ;) {outtextxy(100,400,"<-:left->:right^:up v:down Esc->exit"); key=getch();

射影几何学

射影几何学 射影几何是研究图形的射影性质,即它们经过射影变换后,依然保持不变的图形性质的几何学分支学科。一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊的地位,通过它可以把其他一些几何学联系起来。 发展简况 十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前。这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件。这门几何学就是射影几何学。 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影。早在公元前200年左右,阿波罗尼奥斯就曾把二次曲线作为正圆锥面的截线来研究。在4世纪帕普斯的著作中,出现了帕普斯定理。 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形。那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来。在这个过程中,被描绘下来的像中的各个元素的相对大小和位置关系,有的变化了,有的却保持不变。这样就促使了数学家对图形在中心投影下的性质进行研究,因而就逐渐产生了许多过去没有的新的概念和理论,形成了射影几何这门学科。 射影几何真正成为独立的学科、成为几何学的一个重要分支,主要是在十七世纪。在17世纪初期,开普勒最早引进了无穷远点概念。稍后,为这门学科建立而做出了重要贡献的是两位法国数学家——笛沙格和帕斯卡。

笛沙格是一个自学成才的数学家,他年轻的时候当过陆军军官,后来钻研工程技术,成了一名工程师和建筑师,他很不赞成为理论而搞理论,决心用新的方法来证明圆锥曲线的定理。1639年,他出版了主要著作《试论圆锥曲线和平面的相交所得结果的初稿》,书中他引入了许多几何学的新概念。他的朋友笛卡尔、帕斯卡、费尔马都很推崇他的著作,费尔马甚至认为他是圆锥曲线理论的真正奠基人。 迪沙格在他的著作中,把直线看作是具有无穷大半径的圆,而曲线的切线被看作是割线的极限,这些概念都是射影几何学的基础。用他的名字命名的迪沙格定理:“如果两个三角形对应顶点连线共点,那么对应边的交点共线,反之也成立”,就是射影几何的基本定理。 帕斯卡也为射影几何学的早期工作做出了重要的贡献,1641年,他发现了一条定理:“内接于二次曲线的六边形的三双对边的交点共线。”这条定理叫做帕斯卡六边形定理,也是射影几何学中的一条重要定理。1658年,他写了《圆锥曲线论》一书,书中很多定理都是射影几何方面的内容。迪沙格和他是朋友,曾经敦促他搞透视学方面的研究,并且建议他要把圆锥曲线的许多性质简化成少数几个基本命题作为目标。帕斯卡接受了这些建议。后来他写了许多有关射影几何方面的小册子。 不过迪沙格和帕斯卡的这些定理,只涉及关联性质而不涉及度量性质(长度、角度、面积)。但他们在证明中却用到了长度概念,而不是用严格的射影方法,他们也没有意识到,自己的研究方向会导致产生一个新的几何体系射影几何。他们所用的是综合法,随着解析几何和微积分的创立,综合法让位于解析法,射影几何的探讨也中断了。 射影几何的主要奠基人是19世纪的彭赛列。他是画法几何的创始人蒙日的学生。蒙日带动了他的许多学生用综合法研究几何。由于迪沙格和帕斯卡等的工作被长期忽视了,前人的许多工作他们不了解,不得不重新再做。 1822年,彭赛列发表了射影几何的第一部系统著作。他是认识到射影几何是一个新的数学分支的第一个数学家。他通过几何方法引进无穷远虚圆点,研究了配极对应并用它来确立对偶原理。稍后,施泰纳研究了利用简单图形产生较复杂图形的方法,线素二次曲线概念也是他引进的。为了摆脱坐标系对度量概念的依赖,施陶特通过几何作图来建立直线上的点坐标系,进而使交比也不依赖于长度概念。由于忽视了连续公理的必要性,他建立坐标系的做法还不完善,但却迈出了决定性的一步。 另—方面,运用解析法来研究射影几何也有长足进展。首先是莫比乌斯创建一种齐次坐标系,把变换分为全等,相似,仿射,直射等类型,给出线束中四条线交比的度量公式等。接着,普吕克引进丁另一种齐次坐标系,得到了平面上无穷远线的方程,无穷远圆点的坐标。他还引进了线坐

相关文档
最新文档