10kV真空断路器常见故障的原因运行分析

合集下载

10kV 真空断路器常见故障分析及处理

10kV 真空断路器常见故障分析及处理

10kV 真空断路器常见故障分析及处理摘要:真空断路器目前在变电站、工矿企业、配电网络等多个行业中都有着广泛的应用,原因在于它能够利用真空作绝缘和灭弧介质,应用于配电网时能获得良好的绝缘灭弧性。

比起其他形式的断路器,该类断路器的使用寿命更长,且方便维修,能尽量少的占据空间面积,对配电网中的电器设备进行良好的保护。

但这种断路器并不完全是有利无害的,实际应用于工矿企业或变电站时,仍然会存在诸多问题,比如运行故障等。

下面对 10KV 真空断路器在应用中的常见故障以及故障处理措施作详细分析。

关键词:10KV;真空断路器;故障;原因;处理对策一、真空断路器的主要工作原理真空包内的屏敞保护层在真空包内有一层用紫铜片制成的屏敞层,主要作用是防止触头在燃弧过程中生产的大量金属蒸汽和液滴喷溅,污染绝缘外壳的内壁,造成管内绝缘强度下降,其次,可以改善管内电场分布,也可吸收电弧能量,冷凝电弧生成物,提高真空弧室开断电流能力。

真空灭弧室工作原理真空包内的真空灭弧室是利用高真空工作绝缘灭弧介质,靠密封在真空中的一对触头来实现电力电路的通断功能的一种电真空器件。

当其断开一定数值的电流时,动静触头在分离的瞬间,电流收缩到触头刚分离的一点上,出现电极间电阻剧烈增大和温度迅速提高,直至发生电极金属的蒸发,同时形成极高的电场强度,导致极强烈的发射和间隙击穿,产生真空电弧,当工频电流接近零时,同时也是触头开距的增大,真空电弧的等离子体很快向四周扩散,电弧电流过零后,触头间隙的介质迅速由导电体变为绝缘体,于是电流被分断。

由于灭弧室的静态压力极低,约 10-2 ~ 10-6pa,所以只需很小的触头间隙就可达到很高的电介质强度。

分闸过程中的高温产生了金属蒸气离子和电子组成的电弧等离子体,使电流将持续一段很短的时间。

由于触头上形螺旋槽,电流曲折路径效应形成的磁场作用在电弧上,使电弧以每秒 10~100 米的速度在触头表面旋转运行,直到电弧熄灭。

10kV真空断路器的运行及有效维护

10kV真空断路器的运行及有效维护

10kV真空断路器的运行及有效维护摘要:真空断路器具有非常明显的特点,所以在电力系统中的应用范围不断扩大,但是真空断路器由于无法实现手动合闸,所以必须要针对真空断路器存在的问题进行深入地分析,及时消除故障来保证真空断路器正常的运转效率,从而提高真空断路器运行的可靠性与稳定性,为电力系统的运行提供保障。

关键词:10kV;真空断路器;运行维护1、10kV真空断路器的常见故障1.1弹簧储能不到位当真空断路器合闸后,其储能开关才开始连接电机回路,进而对弹簧进行储能。

此过程中,导致弹簧储能不到位的原因为:储能齿轮受运行磨损影响,使设施驱动存在脱扣与打滑现象,造成了电机空转与弹簧储能不够。

此外,完成弹簧储能的主要设备——电机,因其工作时间过长出现的老化问题,也是导致储能达不到规范需求的原因。

1.2误动和拒动故障真空断路器在工作中会出现断相,当真空断路器与高压电动机相接通的时候会发生断相问题导致电动机缺相运行,甚至会产生烧毁的现象。

电动机缺相运行的原因可能是因为真空断路器的触头的材质比较软,而且采用的是对接方式,在进行很多次的分合闸操作后触头很可能会变形,使得真空断路器的行程发生改变,对该相接头的对接产生影响。

真空断路器的分闸和合闸产生失灵现象可能是因为操动机或者电器方面的故障。

分闸锁扣销子滑落或者脱落、分闸锁扣的扣住过量、分闸铁芯运行调控不合理这些都是操动机构的故障。

电器方面的故障主要有辅助开关接触的质量不好、分闸的电气压力不够、分闸线圈断线等,这些是真空断路器的分闸失灵产生的现象。

合闸失灵操动机构的故障主要是辅助开关的行程比较大、合闸时分闸的锁扣出现脱落和锁扣尺寸不合理。

它的电气方面的故障主要表现为合闸线圈发生断线和合闸电压不足等。

1.3断路器的分合闸操作失效首先断路器的分闸失灵主要故障根源在于操作机构的故障异常和电气故障,操作机构异常例如分闸锁扣销子扣合过量或脱落、分闸铁芯的形成调控不够合理;电气故障例如:辅助开关接触质量差、分闸线圈断路等现象。

10kV真空断路器常见故障分析及处理

10kV真空断路器常见故障分析及处理

当的纵向磁场
触 头 表 面 燃烧 , 并 维 持 低 的 电 弧 电 压 。 在 电 流 自然 过 零 时 , 残 留的 离 子 、 电子 和 金 属 蒸 汽 在 微 秒 级 的 时 间 内 就 可 复 合 或 聚 集 在触头表面和屏蔽罩上 , 使 真 空 灭 弧 室 断 口的 介 质 绝 缘 强 度 又 迅速恢复 , 从 而 熄 灭 电弧 , 达 到分 断 的 目的 。 在对 1 0 k V真空断路 器的检修 、 维 护 及试 验 工 作 中 , 我 们
合几次 , 称为 “ 跳跃 ” 现 象 。发 生 “ 跳跃 ” 现象 的原因是 : 掣 子 是 否有卡滞现象 , 或 掣 子 与 环 间隙 未 达 到 2± 0 . 5 m m 要 求 。 若 超
当电气值班员在 中控室进行远方电动 分闸操作 时, 断路器 不能正确断开 。其原 因有 : 分 闸操作 回路断线 ; 分 闸线 圈断线 ; 操作 电源 电压降低 ; 分闸顶杆变形 , 分闸时存在卡涩现象 ; 辅助
位; 合闸接触器线圈断线或其 接点被 卡住不 能动 作 ; 合 闸电压 太 低或合闸线 圈电阻大 、 功率低 等。处理则应 找出滚轮 复归不 好 的原因进行处理 。合 闸铁心顶 杆太 短则在合 闸铁 心底部 加
橡皮垫 ; 如 是 合 闸 接 触 器 线 圈 内部 断 线 则 更 换 线 圈 ; 对 接 触 器 接 点 应 调 整 合 闸 接触 器 的接 点 与 灭 弧 罩 之 间 的 间 隙 ; 检 查 和 调 整电源电压 , 使其不低于额定 电压的 8 0 %; 检 查 合 闸线 圈 的 直 流电阻 , 不 合 格 应 更 换 。机 构 在 运 行 时 , 有 时 会 发 现 机 构 合 闸 线圈通电后 , 合 闸铁 芯 没 有 达 到 合 闸 终 点 位 置 , 环 3没 能 被 掣

10KV真空断路器合闸故障分析

10KV真空断路器合闸故障分析

10KV真空断路器合闸故障分析摘要:近年来,某电网SF6开关合闸缺陷时有发生,容易造成开关合闸线圈或接触器烧毁,其一旦损坏,只能进行更换。

线圈及接触器烧毁后进行更换不仅成本高,费时费力,而且会延误给用户送电,影响用户正常生活生产,同时影响供电质量和用户满意度。

关键词:10KV;真空断路器;合闸故障引言高压断路器是用来接通和开断高压电路,它既能分合正常负荷电流,又能切断巨大的短路故障电流,迅速可靠地熄灭电弧,所以它是企业变电站中最重要的运行操作电气设备。

高压断路器的控制操作回路承担着高压断路器的基本手动、继电保护和自动装置自动分合闸任务,能够显示断路器合闸、分闸位置状态的红、绿灯信号,并且能够利用断路器控制操作手柄与断路器实际位置不对应的原理区分手动与自动操作的不同,并且跳闸、合闸线圈按照短时通电要求设计,以防止长时间大电流发热烧坏线圈,因此在合闸、分闸操作任务完成后,断路器的控制回路应该自动切断合、分闸回路,无论断路器是否带有机械闭锁装置,都应该具备防止高压断路器多次跳、合闸的电气防跳功能。

企业变电站的高压断路器一旦无法正常分合闸,将造成用户失电损失,因此加强高压断路器控制回路的运行维护及其重要。

1故障现象某区域电网所辖高压断路器在2020年合闸操作1500次以上,处理断路器拒合缺陷38次,其中停电处理的缺陷29次,包括更换合闸线圈13个、更换合闸接触器16个。

对29次因设备烧毁造成的缺陷的原因进行分析和统计可见,误操作与开关机械故障占故障原因的86.2%。

2020年我单位保护专业针对这个问题进行了技术上研究,提出了解决方法并修改了部分变电所断路器合闸回路接线,降低了合闸线圈的烧毁率。

但在实际运行中发现,改动后的合闸回路在工作中极易引起合闸接触器长时间带电而导致其烧毁。

因此,再次提出对此回路的改进方法,彻底杜绝此类事件发生。

2合闸回路线圈烧坏原因分析真空断路器本体内部合闸线圈的设计要求是短时通电即可完成操作机构的弹簧储能释放实现手动合闸。

10kV真空断路器常见故障分析及处理技术

10kV真空断路器常见故障分析及处理技术

10kV真空断路器常见故障分析及处理技术摘要:随着经济和电力行业的快速发展,真空断路器在变电系统中占据着重要地位,实现对变电设备和系统的有效保护。

为有效保障变电系统的正常运行,有必要加强对真空断路器故障的原因分析,并采取有效的解决途径处理真空断路器故障,以减少变电系统故障,提高变电系统运行质量和稳定性。

关键词:10kV;真空断路器;故障的处理引言现在真空断路器在电器工程的应用越来越广泛,作为一种新型的开关,10kV的真空断路器能够保障电网的正常运行,使一些变电站和配电网络的变电运行工作进行得更加顺利。

但是真空的断路器通常会出现一些漏气机构卡阻和真空泡慢性的问题,这些问题会影响真空断路器的正常使用。

文章对真空断路器的常见故障做出了分析,并提出一些处理方法。

1真空断路器本体故障和处理的方法1.1真空断路器分闸失灵分闸操作回路断线;分闸线圈断线;操作电源电压降低;分闸线圈短路,分闸能力降低;分闸顶杆变形,分闸时存在卡涩现象等。

如果分闸失灵发生在事故时,将导致事故的扩大。

所以运行人员若发现分合闸指示灯不亮,应及时检查分合闸回路是否断线;检修人员在停电检修时应注意测量分闸线圈的电阻,检查分闸顶杆是否变形;如果分闸顶杆的材质为铜质应更换为钢质;必须进行低电压分合闸试验,以保证断路器性能可靠。

1.2真空度降低10kV的真空断路器本体的发生的常见故障是真空泡真空度低。

真空断路器在真空泡内开端电流并且进行灭弧,但是真空断路器它本身并没有定性和定量检测真空度特性的装置,使得真空度降低。

真空度降低的故障是一种隐性的故障,在进行检修和运行测试时比较难发觉,但是真空泡真度低的危险程度远远大于一些显性的故障,当真空度很低甚至使得断路器不能进行正常工作的时候就会产生断口燃烧或者爆炸等十分严重的后果。

真空泡真度降低的原因有很多种,比如真空泡的材质可能会存在问题,会使得真空泡产生一些漏气或者制造的工艺不精良,导致真空泡存在一些缺点,进而影响了它的真空度。

10kV配电线路故障原因及运行维护检修措施

10kV配电线路故障原因及运行维护检修措施

10kV配电线路故障原因及运行维护检修措施10kV配电线路是城市或乡村的主要电力配送系统之一,它承担着将高压电力输送到终端用户的重要任务。

由于各种原因,10kV配电线路可能会出现故障,导致停电或安全事故。

对于10kV配电线路的故障原因及运行维护检修措施的了解和掌握,对于保障电网运行安全和电力供应的稳定性至关重要。

一、10kV配电线路故障原因1. 天气原因天气原因是导致10kV配电线路故障的重要因素之一。

强风、暴雨、冰雪等极端天气可能导致电力设备的断线、短路,甚至设备损坏,进而引发停电事件。

2. 设备老化10kV配电线路中的电力设备经过长期运行,随着使用年限的延长,设备的性能可能会逐渐下降,导致设备老化、绝缘性能下降、接触电阻增加等现象,从而增加线路故障的风险。

3. 设备缺陷10kV配电线路中的电力设备可能存在制造缺陷或安装缺陷,这些缺陷可能随着时间的推移逐渐显现,并最终导致设备的故障和线路停电。

4. 外力破坏外力破坏是指外部因素(如施工、交通事故等)对10kV配电线路设备的非正常作用,可能导致设备的损坏、断线等故障现象。

5. 人为原因10kV配电线路的运行与维护需要人员进行操作和管理,如果操作不当或管理不善,可能引发线路故障。

过载操作、误操作、维护不到位等可能导致设备故障。

1. 定期检查对10kV配电线路中的主要设备进行定期检查,包括检查导线、绝缘子、变压器、避雷器、开关设备等,确保设备的正常运行。

2. 清洁维护对10kV配电线路中的设备进行定期清洁和维护,去除设备表面的杂物和灰尘,确保设备的绝缘性能和导电性能。

3. 防护措施加强10kV配电线路设备的防护措施,包括做好防雷、防风、防水等工作,确保设备在极端天气条件下的安全运行。

4. 线路勘察对10kV配电线路进行定期勘察,及时发现线路附近的外部危险因素,并及时处理,以减少外力破坏导致的故障事件。

5. 停电检修对10kV配电线路设备进行停电检修,并在安全措施下对设备进行维护、维修和更换,确保设备的正常运行。

10kV真空断路器拒动故障分析与解决方案

10kV真空断路器拒动故障分析与解决方案

10kV真空断路器拒动故障分析与解决方案摘要:本文以某110KV变电站项目为例,对10kV真空断路器拒动故障分析与解决方案进行相关探讨。

关键词:110KV变电站;真空断路器;解决方案1断路器机构动作原理1.1机构合闸操作原理该站10KV开关操作机构示意图如图1所示。

储能电机(2)得电带动储能轴(1)旋转合闸弹簧被拉长储能,储能到位后滚子(4)靠在储能保持掣子(6)上,合闸电磁铁(12)得电后铁心顶出,铁心冲击合闸脱扣板(9)使得储能保持轴(7)逆时针转动,储能保持解除,合闸弹簧释放能量带动机构合闸。

图1 10KV开关操作机构示意图1.2手车底盘联锁原理10KV开关手车连锁机构示意图如图2所示。

当手车处于试验位置或者工作位置时,联锁板(11)处于图1状态,联锁板(11)与连锁销分离脱开,此时断路器可以可靠合闸;当手车在摇进摇出的过程中,联锁板(11)处于图(2)状态,联锁板(11)勾住联锁销(10),储能保持掣子(6)不能解除保持,断路器不能完成合闸操作。

图2 10KV开关手车连锁机构示意图2合闸电磁铁烧毁原因分析及整改方案2.1原因分析断路器出厂试验时,因合闸扣接量偏大低电压合闸困难将储能保持擎子(6)向逆时针方向调整,扣接量调小,满足低电压合闸要求。

低电压试验后做手车摇进摇出操作(见图2)。

手车在摇进摇出的过程中,连接底盘车的联锁弯板(11)在底盘车的作用下向上抬起,联锁弯板(11)勾住联锁板(8)上的联锁销(10),正常情况应有间隙,因为调整合闸扣接量的原因,在调整过程中未注意该处间隙,使得联锁弯板(11)勾住联锁板(8)上的联锁销(10),无间隙直接摩擦,手车到工作位置或试验位置后联锁弯板(11)未能勾住联锁板(8)上的联锁销(10)可靠复位,电动合闸时,储能保持掣子(6)未能可靠解除保持完成合闸动作,线圈长期通电造成合闸线圈烧毁。

出厂时未发现连锁卡滞问题。

2.2整改方案调整合闸脱扣板(9)和联锁弯板(8)角度,使得手车在摇进摇出过程中联锁弯板(11)的挂钩处与联锁销子有适当间隙,手车摇到工作位置或试验位置时联锁弯板(11)可以可靠复位,向住联锁板(8)上的联锁销(10)断路器可以可靠合闸。

10kV配电线路故障原因分析及运行维护检修措施

10kV配电线路故障原因分析及运行维护检修措施

10kV配电线路故障原因分析及运行维护检修措施一、引言10kV配电线路是城市和乡村供电系统中的重要组成部分,其安全稳定运行关系到人民群众的生活和生产,因此对于配电线路的故障原因分析及运行维护检修措施至关重要。

本文将对10kV配电线路的故障原因进行分析,并提出运行维护检修的具体措施,以确保配电线路的安全稳定运行。

二、10kV配电线路故障原因分析1. 天气因素恶劣的天气条件是导致10kV配电线路故障的常见原因之一。

强风、雷电和大雨可能导致树木倒下、电杆倒塌、设备损坏等情况,从而引发电路短路或断路故障。

2. 落雷在雷电活跃的季节,落雷也是10kV配电线路故障的常见原因。

如果配电线路未设置良好的防雷设施或未进行及时维护,就会对线路设备造成损坏,甚至引发火灾等严重后果。

3. 设备老化设备老化是10kV配电线路故障的另一个重要原因。

随着设备的使用年限增长,设备的绝缘能力可能会下降,从而增加线路发生故障的概率。

设备的机械部件也可能因长期使用而出现磨损,导致设备的运行不稳定。

4. 人为因素人为因素也是导致10kV配电线路故障的一个重要原因。

未经授权的人员在不合适的情况下施工、擅自改动电缆或引线、未按规定操作设备等都可能造成线路故障。

5. 缺乏定期维护对于10kV配电线路来说,缺乏定期维护也是导致故障的一个常见原因。

设备长期使用或者长时间没有得到维护,会导致线路设备的老化、松动、腐蚀等问题,从而增加线路故障的概率。

三、运行维护检修措施1. 定期巡视对于10kV配电线路来说,定期巡视是保障线路安全稳定运行的重要手段。

电力供应企业应该进行定期的巡线工作,及时发现和解决可能存在的问题,防止故障的发生。

2. 设备防雷对于雷电活跃的地区,配电线路的设备应该进行防雷处理。

在电力设备上安装防雷设施,防止雷电对设备的损害,从而保障线路的安全运行。

3. 设备维护对于10kV配电线路的设备,应该进行定期的维护和检修,及时发现并解决设备的故障隐患。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10kV真空断路器常见故障的原因运行分析摘要:对张家口供电企业日前运行的几种10 kV真空断路器常见故障的原因进行了深入地分析,针对性地提出了改进建议。

要害词:真空断路器;故障;运行真空断路器以其结构简单、机电寿命长、维护量小、无火灾危害和适宜频繁操作等优异特性在中压系统中得到广泛应用。

张家口供电企业自1996年10 kV开关无油化改造以来,至今已全部更换为真空断路器,型号有ZN28A12、ZN2812T、ZN1210T、ZN6312(VS1)。

日前存在以下问题:a. 真空灭弧室的损坏。

b. SN1010II 型断路器改造为ZN28A12型后,辅助开关转换不到位或操纵回路断线。

c. VS1型断路器(ZN63A和ZN63C)操纵回路断线,开关合不上闸。

d. ZN1210T型断路器出现拒合故障。

1真空灭弧室的运行分析1.1运行分析真空灭弧室是真空断路器的核心部件,它主要由动静触头、屏蔽罩、波纹管、波壳及上下法兰组成。

真空断路器开断时,在动静触头分断的瞬间要产生电弧,而真空断路器的灭弧介质正是真空。

因此,灭弧室的真空度在使用寿命中必需保持在必定水平之上,灭弧室真空度与试验电压曲线图见图1。

试验证实,在高真空状态下,当真空度达到10-2Pa以下时,真空间隙的击穿电压不再随真空度的继续提高而升高。

通常情况下真空灭弧室内真空度在10-5~10-7 Pa之间。

这对于确保熄弧和开关的可靠工作有重要意义。

真空灭弧室内的真空度可用磁控真空度测试仪测量。

以往测试中多采纳最简便的间接测量真空灭弧室真空度的方法,即工频耐压法。

它是将灭弧室的触头分开,使触头间达到额定开距,然后按技术数据(断口间42 kV/min)进行1 min工频电压试验,能够承受试验电压的灭弧室证实其内部保持有足够的真空度。

此种检测方式只能判定灭弧室的优劣,没有真空压力测试数据,不能确定灭弧室真空度的大小,因此效果差、效率低,有时会造成误断。

1.2缺陷案例a. 2000年6月,采纳工频耐压法测量柳树屯501开关C相真空度时,当电压升至20 kV时,灭弧室内发生持续放电,击穿,表明真空度已严峻降低。

真空灭弧室规格为ZMD10/3150,陶瓷管,开断电流40 kA。

b. 2001- 06- 13,使用ZK1真空度测试仪测试柳树屯545开关A相真空度为6.2×10-1 Pa,数值超标。

随后对其做断口耐压试验,电压升至28 kV时,真空灭弧室中间接封处放电,重复2次试验,结果相同。

该灭弧室规格为ZMD10/2500,陶瓷管,电流2 500 A,开断电流31.5 kA。

开关1997年11月运行。

c. 2001- 07-14,测试沙城501开关A相真空度为2×10-4Pa,合格。

随后对其做断口耐压试验,发现电压升不起来,重复2次试验,结果相同。

拆下真空灭弧室后摇摆,闻声内部有金属撞击声。

该灭弧室规格为ZMD10/1250,陶瓷管,电流2 500 A,开断电流为31.5 kA。

开关2000年11月投运。

1.3缺陷分析DL/T 4032000《12~40.5 kV高压真空断路器订货技术条件》中明确规定:真空灭弧室伴同真空断路器出厂时的真空灭弧室内部气体压强不得大于1.33×10-3Pa,其上应标明编号及出厂年月。

灭弧室内部处于不高于10-3 Pa的高真空状态,而在触头分离时形成的断口就是产生真空电弧和进行熄弧过程的弧腔。

柳树屯501开关C相、545开关A相真空度下降的主要原因是密封处出现微观漏孔使得外部空气中的气体分子逐渐进入灭弧室内引起压力增大,随时间推移呈上升趋势,形成慢性漏气。

沙城501开关A相灭弧室损坏的原因是,在真空灭弧室中,为使断口具有足够的耐压,已装有屏蔽罩,屏蔽罩由不锈钢制成,固定在2个氧化铝瓷绝缘筒中间接缝处,这就是常见的陶瓷外壳真空灭弧室中间封接式内屏蔽结构,用于汲取弧腔中在开断电流时真空电弧的金属蒸汽,使之沉淀并附着在罩内,而不是飞溅到内壁上,幸免由此降低灭弧室的绝缘强度。

它的合理安排还起着改善断口电场分布的作用,提高断口耐压和绝缘恢复强度。

因此屏蔽罩的松动有可能是断口耐压不合格的原因。

上述真空灭弧室在短期运行内之所以损坏与出厂工艺有关,还有待进一步商榷。

2ZN28A12型断路器的运行分析自1999年以来,ZN28A12型断路器是悬挂式结构,主要应用在GG1A柜无油化改造中。

采纳ZN28A12型真空断路器代替SN1010II型少油断路器,原则上不更换操作机构,只对机构做相应调整。

通过近几年的运行实践,在无油化改造中只更换断路器不更换操作机构,机构的传动部分做相应的改动后,配用真空断路器,会存在以下缺陷:a. 由于少油断路器与真空断路器的行程不同,需对机构的水平、垂直拉杆做相应改动,减少水平拉杆的转动角度,缩小垂直拉杆的长度,以满足真空断路器行程。

真空断路器行程很小,在旧机构上进行上述改动,其精度很难把握,稍有偏差即会引起断路器拒动。

b. 水平拉杆转角改变后,辅助开关需做相应调整。

但原辅助开关是按照原水平拉杆的转角设计的,因此调整起来非常困难,极易出现不到位或过位进入死点的现象,辅助开关不能可靠转换,影响到断路器的动作和三遥的正确性。

2001年侯家庙545开关拒动,辅助开关转换不到位,造成主变跳闸事故足以证实这一点。

c. 由于原机构已使用必定时间,机构本身也存在磨损等缺陷。

由于上述3种原因,建议更换侯家庙现有机构,今后对GG1A型开关柜进行无油化改造的同时,对其机构做更换处理,并加强对辅助开关的检修,确保10 kV母线的供电可靠性和安全性。

3JYN212型手车开关的运行分析柳树屯JYN212型手车开关由ZN2810断路器、CD17I操作机构和手车等组成,1997年投入运行。

2001年因为547断路器电源侧A相的隔离插头(动触头)与母线端的插入铜排(静触头)未压紧或交叉压入,接触不良发热氧化,接触电阻增大造成弧光短路,主变502开关庇护先后2次动作跳闸事故。

该手车开关的制造工艺、互换性均很差。

上下插头距离与静触头上下距离不统一(547开关A相367 mm,B相370 mm,C相375 mm;静触头上下距离在370~380 mm之间),铜排与开关连接处孔距调整裕度很小(检修时已无法调节),造成了隔离插头插入后形成上翘姿态。

由于导体的温度由环温开始上升,经过一段时间达到稳定温度(一般不超过+70 ℃,当导体接触面处于镀锡的覆盖层时可提高到+85 ℃)。

此升温的过程是按指数曲线变化的,由于接触电阻的增大,在长时间运行后,又进一步加剧发热,形成了恶性循环。

高温使铜排焊锡首先熔化,插头触点与铜排接触处出现微小间隙从而打火,每1次打火高温会熔化一部分焊锡,间隙不断增大,使该处接触电阻更大,温升更高,继而形成电弧,最终将100 mm×10 mm 铜排烧断。

经过2次事故可以看出,547开关柜都是由触头发热引起弧光短路致使母线失电,20010918在停电前,分别对547柜及邻近柜体表面进行了测温,电抗器柜、546柜均为36 ℃,而547柜为100 ℃,温度偏高。

经过分析认为,547柜内发热的原因是隔离插头接触不良,接触电阻增大。

动、静隔离触头的技术参数见表1。

通过以上参数,就柳树屯开关的隔离插头做一比较发现:3a. 柳树屯所使用的隔离插头为不复位触头,即动、静触头对同一水平面的摆动量不得超出±2 mm,而现有触头的摆动量达到6~10 mm。

加之母排的调整量小,造成了触头插入后形成上翘姿态或插不到位,触头上触指片接触面不足,接触压力变小,接触电阻增大。

b. 柳树屯所使用隔离插头的触指片数不够。

由GB 11022-1999《高压开关设备和操纵设备标准的共用技术要求》可知,隔离插头的额定电流和热稳定电流要求与断路器的额定电流和热稳定电流同意。

也就是说柳树屯547开关的隔离插头的额定电流应为1 250 A,热稳定电流为31.5 kA,从隔离插头的技术参数中可知,1 250 A隔离插头的触指片为24片或28片,柳树屯现用隔离插头的触指片数只为20片。

c. 连接板表面不应采纳镀锡,而采纳全镀银,这在工艺技术条件中有所规定。

通过以上比较可以得出以下结论:柳树屯547开关的隔离触头的接触不良是造成柜体发热并产生弧光短路的直接原因。

在今后的设备选型时,应特殊加强对制造工艺的要求和其它辅助设备的技术要求。

2004年初又发现547C相触头发热,导致隔弧罩成纤维粉状。

2004年上半年对所有JYN10型手车开关的隔离触头进行更换和大修,全部采纳自动复位触头,表面镀银,片数由原来20片增加到24片,增大了接触面,触头上下摆动量不超过±4 mm,插入为22 mm,增加了触头的接触压力,降低了接触电阻值,连接板带弯度,可调整裕度大,增加其抗弯。

到日前为止,运行良好。

为了更直观、更清楚、更安全地看到隔离插头的插进位置,将柳树屯JYN10型手车开关面板改造成品字形布局的3个可视窗,当手车推入后,利用照明设备可直观地窥视、检查触头的插进位置和接触状态,以进一步判定触头的运行状况,给安全操作手车提供诸多便利。

4ZN1210T型断路器的运行分析宣西站在2001年10 kV开关无油化改造中采纳了ZN12-10T型断路器。

该断路器整体为V型悬挂式结构,真空灭弧室采纳材料为铬铜合金的杯状触头,具有结构简单、开断能力强、截流水平高、操作功能齐全等特点。

2001年冬季,环境温度达到30 ℃时,运行在宣西变电站的ZN12-10T 型断路器出现拒合故障。

经厂家处理将绝缘拉杆缩短,接触行程由原来(6±1)mm 调整到(4±1)mm,故障消除。

众所周知,开关的接触行程,也称为超行程,是指开关在合闸操作中,触头接触以后继续运动的距离,即开关在分闸操作中,触头从合闸终止位置运动到刚分离位置的距离。

真空断路器在机构研制中的要害问题之一是触头熔焊及灭弧室机械损伤。

影响真空断路器触头熔焊的因素主要有触头材料、触头外形、触头压力和与触头相联的机构传动刚度等。

至今为止计算真空断路器电动力的公式未统一,计算很困难,一般都以增大触头弹簧终压力来解决熔焊问题。

有资料显示,国外10 kV产品一般将超行程定为3~4 mm,国内亦如此,但国产35 kV真空断路器超行程为6 mm,其目的是增加触头终压力,为增大刚分速度把有稍微熔焊的触头强行拉开。

有资料通过大量数学计算和试验证实,增大超程并不是解决熔焊的好方法,在相同触头终压力条件下,触头弹簧刚度增加会使触头在相同电动力作用下触头间分离距离减小,故增大触头弹簧刚度是解决熔焊的好方法。

相关文档
最新文档