材料力学扭转实验
材料力学实验报告扭转实验

材料力学实验报告扭转实验一、实验目的1、测定低碳钢和铸铁在扭转时的力学性能,包括扭转屈服极限、扭转强度极限等。
2、观察低碳钢和铸铁在扭转过程中的变形现象,分析其破坏形式和原因。
3、熟悉扭转试验机的工作原理和操作方法。
二、实验设备1、扭转试验机2、游标卡尺三、实验原理在扭转实验中,材料受到扭矩的作用,产生扭转变形。
扭矩与扭转角之间的关系可以通过试验机测量得到。
对于圆形截面的试件,其扭转时的应力分布为:表面最大切应力:$\tau_{max} =\frac{T}{W_p}$其中,$T$为扭矩,$W_p$为抗扭截面系数,对于实心圆截面,$W_p =\frac{\pi d^3}{16}$,$d$为试件的直径。
当材料达到屈服极限时,对应的扭矩为屈服扭矩$T_s$;当材料断裂时,对应的扭矩为极限扭矩$T_b$。
四、实验材料本次实验采用低碳钢和铸铁两种材料的圆柱形试件,其尺寸如下:低碳钢试件:直径$d_1 = 10mm$,标距$L_1 = 100mm$铸铁试件:直径$d_2 = 10mm$,标距$L_2 = 100mm$五、实验步骤1、测量试件的直径,在不同位置测量多次,取平均值。
2、安装试件,确保其中心线与试验机的轴线重合。
3、启动试验机,缓慢加载,观察扭矩和扭转角的变化。
4、当低碳钢试件出现屈服现象时,记录屈服扭矩$T_s$。
5、继续加载,直至试件断裂,记录极限扭矩$T_b$。
6、取下试件,观察其破坏形式。
六、实验结果及分析1、低碳钢试件屈服扭矩$T_s = 45 N·m$极限扭矩$T_b = 68 N·m$计算屈服应力:$\tau_s =\frac{T_s}{W_p} =\frac{45×16}{\pi×10^3} ≈ 226 MPa$计算强度极限:$\tau_b =\frac{T_b}{W_p} =\frac{68×16}{\pi×10^3} ≈ 358 MPa$低碳钢试件在扭转过程中,首先发生屈服,表现为沿横截面产生明显的塑性变形,形成屈服线。
扭转实验报告

扭转实验报告摘要:本文旨在探讨扭转实验的目的、原理、步骤及结果分析。
通过对不同材料和扭力条件下的扭转实验,我们将了解其对材料性能的影响,以期为材料的设计和工程应用提供参考。
一、引言扭转实验是一种常用的材料力学实验方法,用于研究材料的扭转性能。
在材料工程中,了解材料的扭转性能对于合理设计和选择材料至关重要。
扭转实验可以表征材料的剪切性能和变形行为,并提供了评估材料强度、刚性和可靠性的重要参数。
二、实验目的本次扭转实验的目的是研究不同材料在不同扭转条件下的性能差异。
通过测量扭转杆材料在不同扭力下的旋转角度和扭转应力,我们可以评估材料的剪切刚度和材料的扭转可用性。
三、实验原理扭转实验是通过施加一个扭力(或扭矩)来引起材料的扭转变形。
材料会在受到扭转作用时发生变形,并由此产生剪切应力和剪切应变。
扭转实验涉及到材料的弹性和塑性变形。
在弹性阶段,材料会在不断施加的扭转力下保持线性弹性行为,而在超过临界点后则发生可见的塑性变形。
实验步骤:1. 安装测力传感器并调整校准;2. 确保扭转装置及夹具的稳定性;3. 将待测试材料安装到扭转装置上并调节紧固螺丝;4. 施加扭力,并逐渐增大直到达到预定的目标扭力;5. 记录扭转杆的旋转角度和施加的扭力;6. 重复实验步骤以获得可靠的数据。
四、实验结果分析通过对不同材料在不同扭力条件下的扭转实验,我们得出了以下的结果分析:1. 材料A在扭转力逐渐增大的过程中,其旋转角度逐渐增加,但增幅逐渐减小。
这可能说明材料A在扭转过程中遇到了一定的变形限制。
2. 材料B在扭转力较小的情况下表现出较大的旋转角度,然而随着扭转力的增大,其旋转角度增加的速率逐渐减缓。
这可能表明材料B在低扭转力下具有良好的弹性变形能力,但在高扭转力下,其可能出现较大的塑性变形。
3. 材料C在整个扭转实验过程中,其旋转角度和扭力之间的关系呈现出近线性的趋势。
这表明材料C在不同扭转力下的变形行为较为稳定。
根据以上实验结果分析,我们可以得出一些初步结论:1. 材料的旋转角度和扭力之间存在一定的关系,不同材料的关系可能不同;2. 材料的弹性和塑性变形能力会对扭转实验的结果产生影响;3. 不同材料在扭转实验中呈现出不同的性能特点,可以根据实际需要选择合适的材料。
材料力学扭转实验报告

材料力学扭转实验报告材料力学扭转实验报告引言材料力学是研究材料在外力作用下的变形和破坏规律的学科,扭转实验是其中的重要实验之一。
本报告旨在介绍材料力学扭转实验的原理、方法、实验装置以及实验结果的分析与讨论。
实验原理扭转实验是通过施加一个力矩来引起材料的扭转变形,从而研究材料的力学性能。
在扭转实验中,材料会发生剪切应变,而剪切应力与剪切应变之间的关系可以通过剪切模量来描述。
剪切模量是材料的一项重要力学参数,它反映了材料抵抗剪切变形的能力。
实验方法本次实验采用了经典的圆柱体扭转实验方法。
首先,选择一根具有一定长度的圆柱体样品,将其固定在扭转实验机上。
然后,通过扭转实验机施加一个力矩,使样品发生扭转变形。
同时,通过测量扭转角度和施加力矩的大小,可以得到材料的剪切模量。
实验装置本次实验所用的扭转实验装置包括扭转实验机、样品夹具、测量仪器等。
扭转实验机是用来施加力矩的设备,样品夹具用于固定样品,并保证其能够自由扭转。
测量仪器包括扭转角度测量仪和力矩测量仪,用于测量样品的扭转角度和施加的力矩。
实验结果分析与讨论通过实验测量得到的扭转角度和施加的力矩数据可以用来计算材料的剪切模量。
根据材料力学的理论知识,剪切模量可以通过以下公式计算:G = (L * T) / (J * θ)其中,G表示剪切模量,L表示样品的长度,T表示施加的力矩,J表示样品的截面转动惯量,θ表示样品的扭转角度。
通过对实验数据的处理和计算,可以得到材料的剪切模量。
进一步地,可以通过对不同材料进行扭转实验,比较其剪切模量的大小,从而分析不同材料的力学性能。
结论通过本次材料力学扭转实验,我们了解了扭转实验的原理和方法,并通过实验装置和测量仪器进行了实验。
通过对实验数据的分析和计算,我们得到了材料的剪切模量,并通过比较不同材料的剪切模量,进一步了解了材料的力学性能。
这对于我们深入了解材料的性质和应用具有重要意义。
总结材料力学扭转实验是研究材料力学性能的重要实验之一。
扭转实验原理及目的

扭转实验原理及目的
扭转实验是一种经典的科学实验方法,通常用于探究物体在外力作用下的扭转行为以及相关的物理规律。
其原理基于扭转力矩和物体转动惯量之间的关系。
在扭转实验中,首先需要准备一个具有一定长度的杆状物体或轴,称为扭转杆。
扭转杆的一端固定,另一端可自由转动。
接着,在扭转杆上加上一个或多个力矩传感器,以测量施加到扭转杆上的力矩大小。
在实验中,可以改变施加到扭转杆上的力矩大小,记录下对应的扭转角度。
根据牛顿第二定律和扭转杆的几何形状特征,可以推导出扭转力矩与扭转角度之间的数学关系。
具体来说,扭转力矩正比于扭转角度,并且与扭转杆的几何形状参数有关,如杆长、横截面形状等。
扭转实验的目的包括但不限于以下几个方面:
1. 研究材料的机械性质:由于不同材料的力学性质不同,进行扭转实验可以研究不同材料的扭转刚度、弹性模量等参数,深入了解材料的性质。
2. 确定物体的转动惯量:通过扭转实验可以测量得到物体的转动惯量,这对于物体的旋转运动、惯性特性等的研究具有重要意义。
3. 验证物理定律或模型:扭转实验中,可以将得到的实验数据
与理论模型进行对比,从而验证相关的物理定律或模型的准确性和适用范围。
总之,扭转实验通过测量扭转力矩和扭转角度之间的关系,可以研究物体的转动行为和相关物理规律,具有重要的科学意义和应用价值。
扭转实验的实验报告

扭转实验的实验报告篇一:低碳钢和铸铁的扭转实验报告一、试验目的扭转试验报告1、测定低碳钢的剪切屈服极限τs。
和剪切强度极限近似值τb。
2、测定铸铁的剪切强度极限τb。
3、观察并分析两种材料在扭转时的变形和破坏现象。
二、设备和仪器1、材料扭转试验机2、游标卡尺三、试验原理1、低碳钢试样对试样缓慢加载,试验机的绘图装置自动绘制出T-φ曲线(见图1)。
最初材料处于图1 低碳钢是扭转试验弹性状态,截面上应力线性分布,T-φ图直线上升。
到A点,试样横截面边缘处剪应力达到剪切屈服极限τs。
以后,由屈服产生的塑性区不断向中心扩展,T-φ图呈曲线上升。
至B点,曲线趋于平坦,这时载荷度盘指针停止不动或摆动。
这不动或摆动的最小值就是屈服扭矩Ts。
再以后材料强化,T-φ图上升,至C点试样断裂。
在试验全过程中,试样直径不变。
断口是横截面(见图2a),这是由于低碳钢抗剪能力小于抗拉能力,而横截面上剪应力最大之故。
图2 低碳钢和铸铁的扭转端口形状据屈服扭矩?s?3Ts (2-1)4Wp按式2-1可计算出剪切屈服极限τs。
据最大扭矩Tb可得:?b?3Tb(2-2)4Wp按式2-2可计算出剪切强度极限近似值τb。
说明:(1)公式(2-1)是假定横截面上剪应力均达到τs后推导出来的。
公式(2-2)形式上与公式(2-1)虽然完全相同,但它是将由塑性理论推导出的Nadai公式略去了一项后得到的,而略去的这一项不一定是高阶小量,所以是近似的。
(2)国标GB10128-88规定τs和τb均按弹性扭转公式计算,这样得到的结果可以用来比较不同材料的扭转性能,但与实际应力不符。
II、铸铁试样铸铁的曲线如图3所示。
呈曲线形状,变形很小就突然破裂,有爆裂声。
断裂面粗糙,是与轴线约成45°角的螺旋面(见图1-3-2b)。
这是由于铸铁抗拉能力小于抗剪能力,而这面上拉应力最大之故。
据断裂前的最大扭矩Tb按弹性扭转公式1-3-3可计算抗扭强度τb。
材料力学实验-扭转

材料力学实验-扭转扭转实验是材料力学实验中比较常见的实验之一,它是用来研究材料在扭转载荷作用下的性能及力学性质的实验。
在此实验中,通常需要制作一个实验样品,并通过试验测量夹持在两端的样品在扭力作用下的变形量及强度等参数。
下面我们将针对扭转实验的步骤、实验原理、实验装备及注意事项等方面进行详细介绍。
一、实验步骤1、制备试样。
在扭转实验中,常用的试样选择是圆棒,通常需要通过车床等机器加工加工成指定的直径和长度,注意要做好表面的处理和清洁,以保证试样表面无瑕疵、光滑等。
2、安装实验装置。
扭转实验的装置通常由电机、夹具、扭矩传感器、转角传感器等组成,需要将这些部件安装好,并将试样夹持在夹具两端,并调整好实验设备的参数及灵敏度,以确保实验设备的正常运转及测量精度。
3、进行实验。
在实验开始前,需要先进行一些预处理,如:校准设备、检查夹具固定度、检查电路连接等。
实验进行时,需要控制外加载荷及试样的转角,并及时记录实验数据等,直到试样达到所需的扭矩、载荷或损坏为止。
4、数据处理。
在实验结束后,需要对实验数据进行处理,并根据实验结果进行分析、比较及对比等操作,从而得出实验所要得到的结论及性能指标等。
二、实验原理扭转实验主要基于材料疲劳和塑性变形的原理,通过在试样两端施加扭矩和转角,在作用下可产生应变和变形等变量,并可通过实验数据加以测量及计算,进一步分析材料力学性质的好坏。
在扭转实验中,主要涉及到的参数有:扭转角度、扭转力矩、扭转角速度、应变及变形等参数,通过对这些参数的测量及分析,可以得出试样在扭转载荷作用下的抗扭强度及剪切模量等指标,这些指标是评估材料性能及强度的重要依据。
三、实验装备扭转实验需要用到的主要装备包括:电机、夹具、扭矩传感器、转角传感器、实验数据采集器等,下面我们将针对这些装备分别进行介绍。
1、电机:扭转实验的电机通常配备较高功率的电机,以保证能够提供足够的扭矩。
2、夹具:夹具是用来夹持试样的装置,要求夹具具有高度的稳定度并能够确保试样在扭转载荷下的平衡。
材料力学实验资料——电测法

实验三 扭转实验一、实验目的1.测定低碳钢扭转时的强度性能指标:扭转屈服应力s τ和抗扭强度b τ。
2.测定灰铸铁扭转时的强度性能指标:抗扭强度b τ。
3.绘制低碳钢和灰铸铁的扭转图,比较低碳钢和灰铸铁的扭转破坏形式。
二、实验设备和仪器1.扭转试验机2.游标卡尺三、实验试样按冶金部标准采用圆形截面试件,两端成扁圆形。
如图1所示。
ldr图1 扭转试件图圆形截面试样的直径mm 10=d ,标距d l 5=或d l 10=,平行部分的长度为mm 20+l 。
若采用其它直径的试样,其平行部分的长度应为标距加上两倍直径。
试样头部的形状和尺寸应适合扭转试验机的夹头夹持。
由于扭转试验时,试样表面的切应力最大,试样表面的缺陷将敏感地影响试验结果,所以,对扭转试样的表面粗糙度的要求要比拉伸试样的高。
对扭转试样的加工技术要求参见国家标准GB10128—88。
四、实验原理与方法1.测定低碳钢扭转时的强度性能指标试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。
随着外力偶矩的增加,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩es M ,低碳钢的扭转屈服应力为1lpess 43W M =τ (1)式中:16/3p d W π=为试样在标距内的抗扭截面系数。
在测出屈服扭矩s T 后,改用电动加载,直到试样被扭断为止。
测矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩eb M ,低碳钢的抗扭强度为pebb 43W M =τ (2) 对上述两公式的来源说明如下:低碳钢试样在扭转变形过程中,利用扭转试验机上的自动绘图装置绘出的ϕ-e M 图如图12所示。
当达到图中A 点时,e M 与ϕ成正比的关系开始破坏,这时,试样表面处的切应力达到了材料的扭转屈服应力s τ,如能测得此时相应的外力偶矩ep M ,如图13a 所示,则扭转屈服应力为pep s W M =τ (3)经过A 点后,横截面上出现了一个环状的塑性区,如图2b 所示。
扭转破坏实验实验报告

扭转破坏实验实验报告篇一:扭转实验报告一、实验目的和要求1、测定低碳钢的剪切屈服点?s、剪切强度?b,观察扭矩-转角曲线(t??曲线)。
2、观察低碳钢试样扭转破坏断口形貌。
3、测定低碳钢的剪切弹性模量g。
4、验证圆截面杆扭转变形的胡克定律(??tl/gip)。
5、依据低碳钢的弹性模量,大概计算出低碳钢材料的泊松比。
二、试验设备和仪器1、微机控制扭转试验机。
2、游标卡尺。
3、装夹工具。
三、实验原理和方法遵照国家标准(gb/t10128-1998)采用圆截面试样的扭转试验,可以测定各种工程材料在纯剪切情况下的力学性能。
如材料的剪切屈服强度点?s和抗剪强度?b等。
圆截面试样必须按上述国家标准制成(如图1-1所示)。
试验两端的夹持段铣削为平面,这样可以有效地防止试验时试样在试验机卡头中打滑。
图1-1试验机软件的绘图系统可绘制扭矩-扭转角曲线,简称扭转曲线(图1-2中的曲线)。
图3-2 从图1-2可以看到,低碳钢试样的扭转试验曲线由弹性阶段(oa段)、屈服阶段(ab段)和强化阶段(cd段)构成,但屈服阶段和强化阶段均不像拉伸试验曲线中那么明显。
由于强化阶段的过程很长,图中只绘出其开始阶段和最后阶段,破坏时试验段的扭转角可达10?以上。
从扭转试验机上可以读取试样的屈服扭矩破坏扭矩由算材料的剪切屈服强度抗剪强度式中:试样截面的抗扭截面系数。
ts和tb。
和?s?3ts/4wt计?s和?b,wt??d0/16为3?s?3ts/4wt计算材料的剪切屈服强度?s和抗剪强度?b,式中:wt??d0/163为试样截面的抗扭截面系数。
当圆截面试样横截面的最外层切应力达到剪切屈服点?s时,占横截面绝大部分的内层切应力仍低于弹性极限,因而此时试样仍表现为弹性行为,没有明显的屈服现象。
当扭矩继续增加使横截面大部分区域的切应力均达到剪切屈服点?s时,试样会表现出明显的屈服现象,此时的扭矩比真实的屈服扭矩ts要大一些,对于破坏扭矩也会有同样的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1-2 扭转实验
一、实验目的
1、测定低碳钢的剪切屈服点τs,抗扭强度τb。
2、测定铜棒的抗扭强度τb。
3、比较低碳钢和铜棒在扭转时的变形和破坏特征。
二、设备及试样
1、伺服电机控制扭转试验机(自行改造)。
2、0.02mm游标卡尺。
3、低碳钢φ10圆试件一根,画有两圈圆周线和一根轴向线。
4、铜棒铁φ10圆试件一根。
三、实验原理及方法
塑性材料试样安装在伺服电机驱动的扭转试验机上,以6-10º/min的主动夹头旋转速度对试样施加扭力矩,在计算机的显示屏上即可得到扭转曲线(扭矩-夹头转角图线),如下图为低碳钢的部分扭转曲线。
试样变形先是弹性性的,在弹性阶段,扭矩与扭转角成线性关系。
弹性变形到一定程度试样会出现屈服。
扭转曲线
扭矩首次下降前的最大扭矩为上屈服扭矩T su;
屈服段中最小扭矩为下屈服扭矩T sl,通常把下
屈服扭矩对应的应力值作为材料的屈服极限τs,
即:τs=τsl= T sl/W。
当试样扭断时,得到最大
扭矩T b,则其抗扭强度为τb= T b/W
式中W为抗扭截面模量,对实心圆截面有
W=πd03/16。
铸铁为脆性材料,无屈服现象,扭矩
-夹头转角图线如左图,故当其扭转试样
破断时,测得最大扭矩T b,则其抗扭强
度为:τb= T b/W
四、实验步骤
1、测量试样原始尺寸分别在标距两端
及中部三个位置上测量的直径,用最小直
径计算抗扭截面模量。
2、安装试样并保持试样轴线与扭转试验机转动中心一致。
3、低碳钢扭转破坏试验,观察线弹性阶段、屈服阶段的力学现象,记录上、下屈服点扭矩值,试样扭断后,记录最大扭矩值,观察断口特征。
4、铜棒扭转破坏试验,试样扭断后,记录最大扭矩值,观察断口特征。
五、实验数据处理
1、试样直径的测量与测量工具的精度一致。
2、抗扭截面模量取4位有效数字。
3、力学性能指标数值的修约要求同拉伸实验。
六、思考题
1、低碳钢扭转时圆周线和轴向线如何变化?与扭转平面假设是否相符?
2、如用木材或竹材制成纤维平行于轴线的圆截面试样,受扭时它们将按怎样的方式破坏?
3、根据低碳钢和铜棒的破口特征,分析两种材料扭转破坏的原因?
1、比较低碳钢拉伸和扭转实验,从进入塑性变形阶段到破坏的全过程,两者变形有何明显
的区别?。