任意波形发生器的电路设计与实现
基于DDS技术的任意波形发生器的设计

基于DDS技术的任意波形发生器的设计1.设计思路信号发生器广泛应用于电子电路、自动控制和科学试验等领域。
是一种为电子测量和计量工作提供符合严格技术要求的电信号设备,也是应用最广泛的电子仪器之一,几乎所有的电参量的测量都需要用到信号发生器。
本设计研究的信号发生器的基本思路是:基于DDS芯片AD9850基础的任意波形发生器。
系统是基于AD9850芯片产生的波形。
它是由相位累加器、正弦查询表、D/A转换器组成的集成芯片。
其中相位累加器的位数N=32位,寻址RAM用14位,舍去18位,采用高速10位数模转换,DDS的时钟频率为125MHz,输出信号频率分辨率可达0.0291Hz;系统的微处理器采用8051,外围电路主要是接口电路、调幅电路、滤波电路和积分电路的设计。
同时还包括键盘接口。
系统的软件主要是启动和初始化8051,然后处理键盘输入的频率控制字和相位控制字,并将其转换为32位的二进制数的控制字,最后并行递交给AD9850并启动AD9850,让它实现从正弦查询表中取数产生波形再输出。
2.方案设计2.1 DDS的基本原理1971年,美国学者J. Tierncy, C. M. Rader和B. Gold提出了以全数字技术,从相位概念出发直接合成所需波形的一种新的频率合成原理。
限于当时的技术和器件水平,它的性能指标尚不能与已有的技术相比,故未受到重视。
近20年间,随着技术和器件水平的提高,一种新的频率合成技术——直接数字合成频率合成(DDS)得到了飞速的发展,它以有别于其它频率合成方法的优越性能和特点成为现代频率合成技术中的佼佼者。
DDS基本原理图如图1所示,DDS由相位累加器,只读存储器,数模转换器DAC及低通滤波器组成。
以合成正弦波为例,幅值表ROM中存有正弦波的幅值码,相位累加器在时钟f c的触发下,对频率控制字K进行累加,相位累加器输出的相位序列(即相码)作为地址去寻址ROM,得到一系列离散的幅度编码(即幅码)。
任意波形发生器的一种快速设计与实现

理
∞
En i e r g g n e i ,S e z e i e st n h n h n Un v r i y,S e z e 1 0 0 h n h n 5 8 6 ,Ch n ) i a
Ab ta t s r c :An a b ta y wa e o m e e a o r i r v f r g n r t r( r AW G)i e i n d a d i l me t d o GA— a e OP n s d sg e n mp e n e n FP b sd S Cad Ma lb p a f r t ie td g t ls n h ss DDS t c n q e ,wh r r i a y wa eo m a a a e g n r t d ta lto ms wi dr c i i y t e i ( h a ) e h iu s e e a b t r v f r d t r e e a e r
V0 7 NO 0 Oc .2 0 L2 .1 t 01
仪 器 设 备 研 制 与应 用
任 意 波形 发 生器 的一 种 快 速 设 计 与 实现
龚向 东 ,刘春平 。 黄 虹宾 。 , 。
(.深圳 大 学 电子 科 学与 技 术 学 院 , 东 深 圳 58 6程 学 院 , 1 广 1 00 2
c i.B hp yDDS mo uea d e sn OteRAM ,t ewa eom aaaeo t utdt A ic io f hp,wih d l d rs ig t h h v fr d t r u p te OaD/ crut f c i t
高速任意波形发生器的设计

p o o a o h e e ao a e n d gtl f q e c y t e i t c n q e h a d r ic i o l u i n ot r r p s l fr t e g n r tr b s d o i i r u n y s n h ss e h iu . e h r wa e c ru t f al n t a d s f a e r s wa e d sg o e i n fr MCU ae d s u s d i eal h r p s li c a a trs c o ta y w v fr ,ae y s r d wa e r d t r ic ce t f s d a eo m s fl —t e v f m aa, i i e o o s l l cr a i u t n O o i e e e t c l r i a d S n,a d tu f ih p a t a au s mp i cc n h so g rc i l l e . h c v
Ke r s r i ay wa e r g n r tr ii lf q e c y te i ;w v fr e ea o i u t i e i ut d s n; y wo d :ab t r v f m e e ao ;d gt e u n y s n h s r o a r s a eo i g n r tr c r i;F l rc r i e i n c t c g
基于FPGA的任意波形发生器设计与实现

采用“激励—响应”方法进行系统参数测量时,需要产生已知的激励信号输入到被测系统,系统对激励信号输出相应的响应信号,通过对该响应的测定和分析找出被测系统的输入—输出关系,从而定义系统的性能。由此我们可以看出,高质量激励信号的产生是系统参数测量中一个重要的环节,标准理想的输入激励是整个测试系统正确工作的基础,它从根本上影响测量系统的性能。
传统的信号发生器一般基于模拟技术。它首先生成一定频率的正弦信号,然后再对这个正弦信号进行处理,从而输出其他波形信号(例如通过比较器可以输出方波信号,对方波信号通过积分器可以生成三角波信号等)。这种方法的关键在于如何生成特定频率的正弦信号。早期的信号发生器大都采用谐振法,后来出现采用锁相环等频率合成技术的信号发生器。但基于模拟技术的传统信号发生器能生成的信号类型比较有限,一般只能生成正弦波、方波、三角波等少数的规则波形信号。如果需要生成较复杂的波形信号,电路的复杂度及设计难度都将大大增加。
任意波形发生器是现代电子测试领域应用最为广泛的通用仪器之一,它的功能远比函数发生器强,可以产生各种理想及非理想的波形信号,对存在的各种波形都可以模拟,广泛应用于测试、通信、雷达、导航、宇航等领域。
1.2任意波形发生器的功能
任意波形发生器既具有其他信号源的信号生成能力,又可以通过各种编辑手段生成任意的波形采样数据,方便地合成其他信号源所不能生成的任意波形,从而满足测试和仿真实验的要求。任意波形发生器的主要功能[3]包括:
1.3国内外发展现状
采用可变时钟和计数器寻址波形存储器的任意波形发生器在一段时期内曾得到广泛的应用,其取样时钟频率较高且可调节,但其对硬件要求比较高,需要高性能的锁相环和截止频率可调的低通滤波器(或者多个低通滤波器),且频率分辨率低,频率切换速度较慢,已经逐步退出市场。
波形发生器的设计实验报告

波形发生器的设计实验报告波形发生器是一种用于产生各种波形信号的仪器或设备。
它常常被用于电子实验、通信系统测试、音频设备校准等领域。
本文将介绍波形发生器的设计实验,并探讨其原理和应用。
波形发生器的设计实验主要包括以下几个方面:电路设计、元件选择、参数调整和信号输出。
首先,我们需要设计一个合适的电路来产生所需的波形。
常见的波形包括正弦波、方波、三角波等。
根据不同的波形要求,我们可以选择适当的电路结构和元件组成。
例如,正弦波可以通过RC电路或LC电路实现,方波可以通过比较器电路和计数器电路实现,三角波可以通过积分电路实现。
在元件选择方面,我们需要根据设计要求来选择合适的电阻、电容、电感等元件。
这些元件的数值和质量对波形发生器的性能和稳定性起着重要的影响。
因此,我们需要仔细考虑每个元件的参数,并选择合适的品牌和型号。
参数调整是波形发生器设计实验中的关键步骤之一。
我们需要根据设计要求来调整电路中各个元件的数值和工作状态,以确保所产生的波形符合要求。
参数调整需要依靠实验数据和仪器测量结果来进行,同时也需要运用一定的电路分析和计算方法。
信号输出是波形发生器设计实验的最终目标。
在设计过程中,我们需要确保所产生的波形信号能够正确输出,并具有稳定性和准确性。
为了实现这一目标,我们可以使用示波器等仪器来对输出信号进行检测和分析,并根据需要进行调整和优化。
波形发生器具有广泛的应用领域。
在电子实验中,波形发生器常常被用于产生各种测试信号,用于测试和验证电路的性能和功能。
在通信系统测试中,波形发生器可以产生各种模拟信号,用于测试和校准通信设备。
在音频设备校准中,波形发生器可以产生各种音频信号,用于校准音频设备的频率响应和失真特性。
波形发生器的设计实验是一个涉及电路设计、元件选择、参数调整和信号输出的复杂过程。
在实验中,我们需要仔细考虑每个步骤的要求,并根据实际情况进行调整和优化。
通过合理的设计和实验验证,我们可以获得稳定、准确的波形信号,满足各种应用需求。
任意波形发生器设计

任意波形发生器设计一、设计目标和需求分析在进行任意波形发生器设计之前,首先需要明确设计目标和需求。
根据实际应用需求,我们需要设计一种具有以下特点的任意波形发生器:1.多种波形形状:能够产生包括正弦波、方波、三角波、锯齿波等多种波形形状的输出信号。
2.高精度输出:能够提供稳定、精确的波形输出,满足对波形频率、幅度、相位等参数的要求。
3.宽频率范围:能够在较宽的频率范围内产生波形信号,适应不同应用场景的需求。
4.灵活性和操作便捷:具备灵活的参数调节和操作界面,方便用户配置所需波形信号。
二、电路设计和构成基于以上需求,我们可以采用数字/模拟混合电路来设计任意波形发生器。
整体电路结构包括信号发生器、波形调节电路、滤波器、放大器和输出接口等几大部分。
1.信号发生器:信号发生器是生成基本信号的核心部分。
可以采用数字逻辑电路,通过编程控制产生不同形状的基本波形,例如正弦波、方波、三角波、锯齿波等。
可以使用存储器来存储基本波形的采样点,并通过数字模拟转换器(DAC)将数字信号转换为模拟信号。
2.波形调节电路:波形调节电路用于调整波形的频率、幅度和相位等参数。
通过调整振荡电路中的电阻、电容或电感等元件,实现对基本波形的变换和调节。
可以设计多种电路模块来完成这一任务,例如可变电容二极管电路、可调电阻电路等。
3.滤波器:滤波器用于对产生的波形信号进行滤波处理,除去高频或低频的杂散分量,保留所需频率范围内的信号。
可以采用各种类型的滤波器电路,例如RC滤波器、有源滤波器或数字滤波器等。
4.放大器:放大器用于增强波形信号的幅度,确保输出的信号具备足够的驱动能力,可以驱动接收端电路。
可以采用运放等放大电路,根据需要选择合适的增益。
5.输出接口:输出接口用于将产生的波形信号输出给外部设备。
可以设计多种类型的输出接口,例如模拟输出接口(BNC接口)、数字输出接口(USB接口)等,方便用户接入不同类型的设备。
三、实现方法和关键技术在设计任意波形发生器时,需要考虑以下关键技术和实现方法:1.数字信号处理技术:通过数字信号处理技术,实现对基本波形的生成、存储和输出。
任意波形发生器设计报告.

2008级计算机科学与技术专业微机接口课程设计报告2010-2011学年第一学期项目名称:任意波形发生器姓名:_ 学号:成绩:姓名:学号:成绩:指导教师:一、设计:1、设计说明:利用实验仪上的数模转换器DAC0832,将程序中的一组波形的数据转换为电压的变化曲线,并用示波器测量模数转换器的输出端,观察生成的波形2、设计目标:设计一个简易波形发生器,要求该系统能通过开关或按钮有选择性的输出正弦波、三角波、方波、及阶梯波等四种波形,并且这四种波形的频率均可通过输入电位器在一定范围内调节3、实验电路图:4、设计内容: (1)主程序(2)子程序:方波程序、正弦波程序、锯齿波、三角波、键盘扫描与处理 各模块的流程图如下:A 、 主程序和键盘扫描流程:B 、 三角波、方波、正弦波、锯齿波解析如下:三角波的产生较为简单,因为它的上升沿遵循数据加1的规律。
下降沿则按数据减1的规律产生。
所以在波形的上升沿只要判断上一次的数据是否为最大值FFH ,如果不是最大值,将原数据加1输出;而在波形的下降沿只要判断上一次数据是否为0,如果不是0,则将原数据减1即可 方波只有两个值,可以采用两个极端值0和FFH正弦波使用查表法产生查表法是事先将正弦波的数据计算出来,列表放在程序中,运行时直接调取数据锯齿波与三角波类似,只是下降时直接降至0即可。
各流程图如下:延时N主程序处理流程 键盘扫描流程二、程序模块代码: .model small .stack;***********定义8255有关参数****************** addrA EQU 200h addrB EQU 201h addrC EQU 202h CTRL EQU 203h addrDA EQU 208h;*******************定义8279有关的参数*******************方波流程三角波流程锯齿波流程Z8279 EQU 212H ; 8279的控制口地址D8279 EQU 210H ; 8279的数据口地址LEDMOD EQU 00 ;左边输入,八位显示外部译码八位显示(8279的控制字)LEDFEQ EQU 38H ;8279 扫描频率;*************以上参数写在主程序开头*****************.codestart:mov al,90h ;方式0,A口输入,B、C口输出mov dx,CTRLout dx,almov ax,csmov ds,axcall CSH8279 ;调用子程序CSH8279call SMXS ;调用子程序SMXSs:call KeyPress;调用子程序keyscanmov di,offset KeyNummov si,offset XSDATAmov al,[di] ;波形号mov [si+6],almov al,[di+1] ;暂存值mov [si],almov al,[di+2] ;幅度mov [si+3],alcall SMXSmov di,offset KeyNummov al,[di]cmp al,1jne C1call A1 ;跳转到方波jmp s ;无条件跳转sC1:cmp al,2jne C2call A2 ;跳转到锯齿波jmp sC2:cmp al,3jne C3call A3 ;跳转到三角波jmp sC3:cmp al,4jne C4call A4 ;跳转到正弦波C4:jmp smov ah,4chint 21hKeyNum DB 0,0,0 ;波形参数,第一个为波形号,第二个为暂存值,第三个为幅度参数DMBIAO DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,77H,7CH,39H DB 5EH,79H,71H,00h ;段码表,1亮,0灭,可以根据需要再设计显示字符;段中已有的显示字符是0--F和全灭。
DDS任意波形发生器的设计与实现

DDS任意波形发生器的设计与实现DDS任意波形发生器的设计与实现近年来,随着电子技术的飞速发展,任意波形发生器在信号发生、测试、测量等领域扮演着重要的角色。
而Direct Digital Synthesis(DDS)任意波形发生器作为一种数字信号处理技术,由于其高精度、低失真、灵活性强等优点,成为了目前最为常用的任意波形发生器技术之一。
DDS任意波形发生器工作原理基于数字信号处理与相位累加器。
其主要组成部分包括振荡器、相位累加器、数字控制模块和DAC(数模转换器)模块。
其中,相位累加器用于产生一个累加的相位值,该相位值会被数字控制模块处理后再输入DAC模块进行数模转换,并输出到外部电路。
而该外部电路连接到输出端口,可以控制输出的幅值以及频率,从而生成所需的任意波形。
在DDS任意波形发生器的设计与实现过程中,需要考虑多个关键因素。
首先,选择合适的振荡器型号以及参考时钟。
振荡器的质量和稳定性直接影响到输出信号的频率稳定性。
而参考时钟的准确性则决定了相位累加器的性能。
其次,在相位累加器的设计中,需要合理选择累加的相位步进值以及相位累加位数。
过大的步进值可能导致相位分辨率降低,而过小的步进值会增加累加器的位数,增加系统的复杂度。
另外,数字控制模块的设计需要考虑到输入的频率、相位和幅度的变化。
最后,需要合理选择DAC模块以及输出电路,以确保输出信号的质量和稳定性。
在实际实现过程中,可以使用FPGA(Field-Programmable Gate Array)作为主要硬件实现平台,并利用VHDL(VHSIC Hardware Description Language)进行硬件描述,从而构建DDS任意波形发生器。
FPGA的高度灵活性使得其适用于DDS任意波形发生器的实现,并且其可重构的特点使得系统可以根据需要进行扩展和改进。
在软件方面,可以使用C语言编写相应的控制程序,以实现对DDS任意波形发生器的控制和调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
改进DDS技术的FPGA数字调制器研究与实现-压电与声光2009,31(6)
提出了一种基于改进直接数字频率合成(DDS) 技术的现场可编程门阵列(FPGA)数字调制器设计与实现方法.该方法首先对DDS技术进行改进,然后再利用这种改进的DDS技术在Matlab/ DSP Builder环境下建立现场可编程门阵列(FPGA)数字调制器的设计模型.通过对二元频移键控(BFSK) 的仿真实验表明,使用这种改进DDS技术的FPGA数字调制器实现方法建立的模型进行算法级和寄存器传输级(RTL)仿真,不仅能验证模型的正确性和有效性,且还简化系统的硬件电路,节省系统资源,提高系统的可靠性与灵活性,最终达到成本低,修改方便,快速产生多种模式数字调制信号的目的.
7.期刊论文徐鑫.凌小峰.宫新保.Xu Xin.Ling Xiaofeng.Gong Xinbao宽带噪声调频信号产生系统的数字化硬件
实现-航天电子对抗2009,25(5)
宽带高精度的噪声调频信号在现代电子干扰系统中应用广泛.传统的模拟或半数字化的噪声调频信号产生方式容易受到温度等环境因素的影响,已无法满足现代电子战中对噪声调频信号的要求.提出了一种新型的噪声调频信号产生方式,基于现场可编程门阵列FPGA的全数字化实现架构,通过直接数字频率合成DDS技术实现.FPGA的时序分析结果表明,该系统主频到达了250MHz以上.对硬件实现电路的测试结果表明,该系统能够产生带宽超过300MHz、带宽调整精度5kHz以内的噪声调频信号.
模拟器数字中频系统的设计.
本文链接:/Thesis_Y1082136.aspx
授权使用:西安电子科技大学(xadzkj),授权号:35cdf58c-47a8-4816-aecd-9ea601121985
下载时间:2011年3月14日
8.期刊论文潘婷婷.胡仁杰.王慧.PAN Ting-ting.HU Ren-jie.WANG Hui一种任意波形发生器的设计-电工电气
2009(6)
提出了一种任意波形发生器Байду номын сангаасAWG)的设计方法,基于现场可编程门阵列(FPGA)的任意波形发生器采用直接数字频率合成(DDS)技术,用硬件描述语言Verilog HDL编程实现.采用该方法设计的任意波形发生器输出的波形具有平滑、稳定度高、频率稳定度和分辨率高等众多优点.
4.期刊论文黄武.陈爽用FPGA实现直接数字频率合成-安徽电子信息职业技术学院学报2004,3(2)
用FPGA实现直接数字频率合成在成本和灵活性方面比购买专用DDS更具优势,本文介绍了利用XILINX的FPGA器件(2S100-TQ144)实现直接数字频率合成器的工作原理、设计思路及电路实现方法.并对DDS的杂散来源作出定性分析,给出了实验结果.
3.学位论文郭军朝直接数字频率合成研究及其FPGA实现2004
本文首先介绍了直接数字频率合成技术(DDS)的基本原理、体系结构及工作过程,然后针对其关键部分进行了优化,即采用函数近似法对存储表结构(LUT)进行了优化,使存贮位数大大缩小,并提出了一种杂散抑制技术的运用,即相位抖动技术。在对直接数字频率合成(DDS)方法产生的信号进行理论分析的过程中,用matlab进行编程仿真作出了详细的频谱分析验证。本文详细的介绍了本次设计的具体实现过程和方法,将现场可编程逻辑器件(FPGA)和 DDS技术相结合,具体的体现了基于VHDL语言的灵活设计和修改方式是对传统频率合成实现方法的一次重要改进。文章最后给出了实现代码、仿真结果,经过验证,本设计能够达到其预期性能指标。
10.期刊论文朱宇虹.张其善.常青.Zhu Yuhong.Zhang Qishan.Chang Qin GPS信号模拟器中sine存储表的设计和实
现-北京航空航天大学学报2005,31(12)
结合Sunderland算法和泰勒多项式原理,给出了直接数字频率合成(DDS)中相位至幅度映射表的压缩算法的数学模型,分析了压缩效率.用快速傅里叶变换来分析杂散水平,利用matlab计算工具对整个算法进行了建模、优化和验证,仿真表明映射表采用该算法设计的DDS数字载波部分的最大杂散约为-90 dB,且有良好的压缩效率.该算法实现结构简单,没有乘法运算.在Xilinx公司的现场可编程门阵列(FPGA)中进行了实现,已成功地应用于一个实际GPS信号
安装完成的硬件电路如图4—26。
图4—26安装完成的硬件电路
接下来的工作是硬件调试。第一步调电源,通过检查电路无误后即可加电调试,确保该电源输出正负12伏及正负5伏后,再相继调试FPGA部分和单片机部分,首先要检查芯片引脚电压,特别是电源和地,然后试一试是否可下载程序。最后检查D/A电路和放大及滤波电路。然后将编好的FPGA的内容下载到FPGA 芯片中,插上单片机仿真器,调试波形发生器。当系统各个部分都能正常工作完成相应功能以后,再调试与上位机通信,是否可产生任意波形。调试完成后就基本达到了设计要求了。
本文介绍了利用FPGA器件实现直接数字频率合成的两种控制电路方案,即采用相位累加器和比例乘法器实现控制.介绍了它们工作原理和设计实现.控制电路设计采用VHDL语言和原理图相结合的形式,在FPGA芯片EPFIOK片内实现.由此控制电路组成的直接数字频率合成与单片机相结合,可以方便、灵活和准确地实现信号发生器.
6.学位论文潘志浪基于FPGA的DDS信号源的设计2007
频率合成技术广泛应用于通信、航空航天、仪器仪表等领域,目前,常用的频率合成技术有直接频率合成、锁相频率合成和直接数字频率合成(DDS)等。其中DDS是一种新的频率合成方法,是频率合成的一次革命。全数字化的DDS技术由于具有频率分辨率高、频率切换速度快、相位噪声低和频率稳定度高等优点而成为现代频率合成技术中的佼佼者。随着数字集成电路、微电子技术和EDA技术的深入研究,DDS技术得到了飞速的发展。
2.期刊论文梁宁利.吴毅强基于FPGA的直接数字频率合成技术研究-电脑知识与技术2009,5(21)
介绍了直接数字频率合成(DDS)技术的设计原理、方法及结论.重点介绍DDS技术在FPGA中的实现方法,采用该方法设计的DDS系统可以很容易地嵌入到其他系统中而不用外接专用DDs芯片,使电路具有结构简单、可编程控制等特点.
现场可编程门阵列(FPGA)设计灵活、速度快,在数字专用集成电路的设计中得到了广泛的应用。本论文主要讨论了如何利用FPGA来实现一个DDS系统,该DDS系统的硬件结构是以FPGA为核心实现的,使用Altera公司的Cyclone系列FPGA。
文章首先介绍了频率合成器的发展,阐述了基于FPGA实现DDS技术的意义;然后介绍了DDS的基本理论;接着介绍了FPGA的基础知识如结构特点、开发流程、使用工具等;随后介绍了利用FPGA实现直接数字频率合成(DDS)的原理、电路结构、优化方法等。重点介绍DDS技术在FPGA中的实现方法,给出了部分VHDL源程序。采用该方法设计的DDS系统可以很容易地嵌入到其他系统中而不用外接专用DDS芯片,具有高性能、高性价比,电路结构简单等特点;接着对输出信号频谱进行了分析,特别是对信号的相位截断误差和幅度量化误差进行了详细的讨论,由此得出了改善系统性能的几种方法;最后给出硬件实物照片和测试结果,并对此作了一定的分析。
图6-1正弦波(5EJZ)图6-2方波(2姗Z)
图6-3三角波(5姐z)图6-4锯齿波(1HtE)
任意波形发生器的电路设计与实现
作者:周登荣
学位授予单位:电子科技大学
1.期刊论文付扬.FU YANG基于FPGA直接数字频率合成两种控制电路设计-微计算机信息2007,23(11)
电子科技大学
硕士学位论文
任意波形发生器的电路设计与实现
姓名:周登荣
申请学位级别:硕士
专业:电路与系统
指导教师:唐广
20070520
电子科技大学硕士学位论文
证电源工作正常,先将焊上电源芯片,并按设计值焊上外围器件,然后加电,检查各个电源的输出电压是否正常,当所有电源输出正常后,才能焊接其它芯片。电源检查完以后先焊接主芯片,即FPGA芯片,将FPGA芯片和其外围电路焊接完以后首先检查其工作是否正常。
9.期刊论文蒋礼.黎辉勇.王福亮.JIANG Li.LI Hui-yong.WANG Fu-liang基于FPGA的引线键合超声电源的研究-
压电与声光2009,31(3)
为进一步提高热超声引线键合超声电源的自动频率跟踪速度及精度,提出了基于现场可编程门阵列(FPGA)的超声电源设计方案.利用FPGA并行执行的特点,移位乘法器的流水线功能及数字增量式比例、积分及微分(PID)控制算法,缩短了回路控制时间,提高了自动频率跟踪的速度.采用高精度的直接数字频率合成(DDS)和数字锁相环技术,实现了高频率跟踪精度.实验表明,在空载及给定负载状态下,超声变幅杆从失谐状态到谐振状态仅需0.6~1.1 ms;频率跟踪误差不超过士50 Hz.
电子科技大学硕士学位论文
第六章系统性能测试及误差分析
6.1输出波形测试
系统测试所用主要仪器如表6一l。
表6-1主要测试仪器
仪器名称型号生产厂数量
计数器CAl640P-02中科泰电子仪器有限公司l 双踪示波器TD82012Tektronix1频率计删8021—4MCE1该波形发生器产生波形测试结果如下。输出正弦波如图6-1,方波如图6-2,三角波如图6—3,锯齿波如图6-4。
DDS是把一系列数字量化形式的信号通过D/A转换形成模拟量形式的信号的合成技术。主要是利用高速存储器作查寻表,然后通过高速D/A转换产生已经用数字形式存入的正弦波(或其它任意波形)。一个典型的DDS系统应包括以下三个部分:相位累加器可以时钟的控制下完成相位的累加;相位一幅度码转换电路一般由ROM实现;D/A转换电路,将数字形式的幅度码转换成模拟信号。