五年级:带余除法
五年级:带余除法

带余除法1.两数相除,商为15,余数为11,且被除数、除数、商、余数的和为309,求被除数?2.一个两位数去除251,得到的余数为41,求这个两位数?练习:已知被除数比除数多78,被除数除以除数,所得的商为6,余数为3,求被除数?3.有一个数列,第一个数是7,第二个数是11,从第三个数起,每个数恰好是前两个数的和,求第2009个数除以3的余数是多少?4.有一盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个,则这盒乒乓球至少有多少个?5.被6除余4,被8除余6,被10除余8的最小整数是多少?练习:(1)一筐苹果,每次4个4个取,6个6个取,9个9个取,最后都是少2个,这筐苹果最少有多少个?(2)一个自然数能被3、5、7整除,若用11去除这个数,则余1,这个数最小是多少?6.有一批书大约300到400本,包装成每包12本,剩下11本;包装成每包18本缺1本;包装成每包15本就有7包每包各多2本。
这批书有多少本?1.一个整数除以3余2,除以7余2,除以9余5,这个数最小是多少?3.一个自然数除以5整除,除以6余4,除以8余6,这个数最小是多少?练习:某数被3除余2,被5除余4,被7除余5,这个数最小是多少?(小升初试题一中)3.某次会议有不到200人参加,分房间住宿时,每5人一间又多3人,吃饭时每9人一桌又少1人,分组讨论时,每7人一组又多6人。
求参加会议的人数。
4. 用自然数n去除63、91、129、得到的三个余数之和为25,则n等于几?5. 一个整数除以7余1,除以6余2,除以9余5,求适合条件的最小数是多少?6.用1~9这9个数字组成3个三位数(每个数只能用一次),使其中最大的三位数被3除余2 ,并且尽可能的小,次大的三位数被3除余1,最小的三位数能被3整除。
则这3个三位数各是多少?(长青竞赛试题)作业1.一筐鸡蛋,每次3个3个取,4个4个取,7个7个取,最后都是少2个,这筐鸡蛋最少有多少个?2.一个自然数除以5余3,除以6余4,除以7 余1,这个自然数最小是多少?3.一个数除以9余1,除以8余3,除以7 余2,求适合条件的最小数。
小学五年级奥数题目及答案:带余除法

小学五年级奥数题目及答案:带余除法教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
带余除法
69、90和_5被某个正整数N除时,余数相同,试求N的值。
分析在解答此题之前,我们先来看下面的例子:_除以2余1,_除以2余1,即_和_被2除余数相同(余数都是1)。
但是_-_能被2整除.由此我们可以得到这样的结论:如果两个整数a和b,均被自然数m除,余数相同,那么这两个整数之差(大-小)一定能被m整除。
反之,如果两个整数之差恰被m整除,那么这两个整数被m除的余数一定相同。
解答:
∵三个整数被N除余数相同,
∴N|(90-69),即N|_,N|(_5-90),即N|35,
∴N是_和35的公约数。
∵要求N的值,
∴N是_和35的公约数。
∵_和35的公约数是7,
∴N是7。
小学五年级奥数题目及答案:带余除法.到电脑,方便收藏和打印:。
五年级奥数数论带余除法(A级)

带余除法的定义及性质1.定义:一般地,如果a 是整数,b 是整数(0b ≠),若有a b q r ÷= ,也就是a b q r =⨯+,0r b ≤<;我们称上面的除法算式为一个带余除法算式.这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数. 这个图能够让学生清晰的明白带余除法算式中4个量的关系.并且可以看出余数一定要比除数小. 2.余数的性质(1)被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; (2)余数小于除数.3.解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.【例 1】 某数被13除,商是9,余数是8,则某数等于__________.【巩固】一个三位数除以36,得余数8,这样的三位数中,最大的是__________.例题精讲 知识框架 带余除法【例2】除法算式208□□中,被除数最小等于__________.÷=【巩固】计算÷□△,结果是:商为10,余数为▲.如果▲的值是6,那么△的最小值是__________.【例3】71427和19的积被7除,余数是几?【巩固】在下面的空格中填上适当的数.【例4】1013除以一个两位数,余数是12.求出符合条件的所有的两位数.【巩固】一个两位数除310,余数是37,求这样的两位数.【例5】一个两位奇数除1477,余数是49,那么,这个两位奇数是多少?【巩固】大于35的所有数中,有多少个数除以7的余数和商相等?【例6】已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【巩固】写出全部除109后余数为4的两位数.【例7】甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.【巩固】用某自然数a去除1992,得到商是46,余数是r,求a和r.【例 8】当1991和1769除以某个自然数n,余数分别为2和1.那么,n最小是多少?【巩固】有三个自然数a,b,c,已知b除以a,得商3余3;c除以a,得商9余11.则c除以b,得到的余数是_________.【例9】有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【巩固】两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【例 10】 200022222 个除以13所得余数是_____.【巩固】19956666667 个的余数是多少?【随练1】 有一个三位数,其中个位上的数是百位上的数的3倍.且这个三位数除以5余4,除以11余3.这个三位数是__________。
小学五年级奥数(上)第四讲带余除法

补充作业
• 1、某年的十月份有5个星期二,4个星期三, 这年的十月一日是星期几? • 解:十月份有31天,31÷7=4……3,由题 意知,这一月的31日是星期二,有五天的 是星期日、星期一,星期二,所以这一年 的十月一日是星期日。
• 2、某年的二月份有5个星期一,4个星期二, 二月一是星期几? • 分析:如果是平年,二月份有28天,28÷7 =4。都是4天,由题意知,这一年是闰年, 有29天,29÷7=4……1,因此,二月一是 星期一。
如果余数比这几个除数都小b,那么n比 这几个除数的公倍数小b。
综合运用(二) 同余规律的应用
• 例5、一个数除以3余2,除以5余3 ,除以7 余2,求符合条件的最小数 • 解:符合条件除以3 余2,除以7余2的最小 数是[3,7]+2=23, • 而且23÷5=4……3 • 所以,符合条件的数是23
带余除法的一些简单规律(1)
• • • • • • • • 1、我们看下面的算式: 也可以说: 15÷6=2… …3 要想保持余 (15+6)÷6= 3… …3 数不变,被 (15+6×2)÷6= 4… …3 除数要加上 (15+6×3)÷6= 5… …3 除数的倍数 (15+6×7)÷6= 9… …3 我们发现这样的规律:规律(一) 被除数加上除数的倍数后,结果的余数不变 .
• 例1、一个数除以26,商为15,余数是12,求这个数 • 解:∵被除数=除数×商+余数 ∴被除数=26×15+12= 390+12=402 • 例2、127除以一个数,商和余数分别是6和7,求这个 数 • 解: ∵被除数=除数×商+余数,即127=除数×6+7 • ∴ 127=除数× 6+7 • 除数× 6=127-7=120 • 除数=
人教版小学数学经典例题 带余除法 (含解析答案)

1. 能够根据除法性质调整余数进行解题2. 能够利用余数性质进行相应估算3. 学会多位数的除法计算4. 根据简单操作进行找规律计算带余除法的定义及性质 1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
知识点拨教学目标带余除法这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
2、余数的性质⑴被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵余数小于除数.3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.例题精讲除法公式的应用【例 1】某数被13除,商是9,余数是8,则某数等于。
【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第2题,5分【解析】125【答案】125【例 2】一个三位数除以36,得余数8,这样的三位数中,最大的是__________。
【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第3题【解析】因为最大的三位数为999,999362727÷=,所以满足题意的三位数最大为:36278980⨯+=【答案】980。
五年级奥数-带余除法

带余除法【基本形式:)⋅⋅⋅⋅⋅⋅<÷】a<=c0(,bbdd例1、被除数、除数、商与余数之和是1100,已知余数是9,商是18,求被除数和除数。
巩固1、用一个两位数除961,余数为36,求这个两位数。
巩固2、两个数相除,商为8,余数为16,被除数、除数与商的和是555,求除数。
例2、求444……4被6除的余数。
100个6巩固3、求111……11被41除所得的余数。
2002个1【余数的性质】1、a与b的和(或差)除以c的余数,等于a,b分别除以c的余数的和(或差);2、a与b的乘积除以c的余数,等于a,b分别除以c的余数之积。
如:82÷6=13…4,56÷6=9…2可得:(82+56)÷6=24…0,(4+2)÷6=1…0;(82-56)÷6=4…2,4-2=2;(82×56)÷6=765...2,(4×2)÷6=1 (2)例3、求437×309×1993被7除的余数。
巩固4、求16×941×1611被7除的余数。
【同余问题】一、定义:两个自然数a,b,同除以自然数m,所得的余数相同,称作a 与b 对于模m 同余,记作a ≡b(mod m)。
如:17÷5=3…2;32÷5=6…2,即17与32对于模5同余,记作17≡32(mod 5).二、性质:1、传递性:若a ≡b(mod m),b ≡c(mod m)⇒a ≡c(mod m);2、可乘性:若a ≡b(mod m)⇒ac ≡bc(mod m);若a ≡b(mod m),c ≡d(mod m)⇒ac ≡bd(mod m);3、乘方性:若a ≡b(mod m)⇒n n b a ≡(mod m)例4、判定47和68,47和37对于模7是否同余。
例5、求2080123378115++除以11的余数。
小学五年级奥数题带余数的除法【五篇】

小学五年级奥数题带余数的除法【五篇】导读:本文小学五年级奥数题带余数的除法【五篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】一个两位数去除251,得到的余数是41.求这个两位数。
分析这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。
解:∵被除数÷除数=商…余数,即被除数=除数×商+余数,∴251=除数×商+41,251-41=除数×商,∴210=除数×商。
∵210=2×3×5×7,∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70大于余数41.所以除数是42或70.即要求的两位数是42或70。
【第二篇】用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少? 解:∵被除数=除数×商+余数,即被除数=除数×40+16。
由题意可知:被除数+除数=933-40-16=877,∴(除数×40+16)+除数=877,∴除数×41=877-16,除数=861÷41,除数=21,∴被除数=21×40+16=856。
答:被除数是856,除数是21。
【第三篇】某年的十月里有5个星期六,4个星期日,问这年的10月1日是星期几? 解:十月份共有31天,每周共有7天,∵31=7×4+3,∴根据题意可知:有5天的星期数必然是星期四、星期五和星期六。
∴这年的10月1日是星期四【第四篇】3月18日是星期日,从3月17日作为第一天开始往回数(即3月16日(第二天),15日(第三天),…)的第1993天是星期几? 解:每周有7天,1993÷7=284(周)…5(天),从星期日往回数5天是星期二,所以第1993天必是星期二. 【第五篇】一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数。
小学五年级奥数—数论之同余问题

一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a同余于b,模m。
由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理:在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:++++=例如:检验算式12341898189226789671789028899231234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带余除法
1.两数相除,商为15,余数为11,且被除数、除数、商、余数的和为309,
求被除数?
2.一个两位数去除251,得到的余数为41,求这个两位数?
练习:已知被除数比除数多78,被除数除以除数,所得的商为6,余数为3,求被除数?
3.有一个数列,第一个数是7,第二个数是11,从第三个数起,每个数恰好是前两个数的和,求第2009个数除以3的余数是多少?
4.有一盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个,则这盒乒乓球至少有多少个?
5.被6除余4,被8除余6,被10除余8的最小整数是多少?
练习:
(1)一筐苹果,每次4个4个取,6个6个取,9个9个取,最后都是少2个,这筐苹果最少有多少个?
(2)一个自然数能被3、5、7整除,若用11去除这个数,则余1,这个数最小是多少?
6.有一批书大约300到400本,包装成每包12本,剩下11本;包装成每包18本缺1本;包装成每包15本就有7包每包各多2本。
这批书有多少本?
1.一个整数除以3余2,除以7余2,除以9余5,这个数最小是多少?
3.一个自然数除以5整除,除以6余4,除以8余6,这个数最小是多少?
练习:某数被3除余2,被5除余4,被7除余5,这个数最小是多少?(小升初试题一中)
3.某次会议有不到200人参加,分房间住宿时,每5人一间又多3人,吃饭时每9人一桌又少1人,分组讨论时,每7人一组又多6人。
求参加会议的人数。
4. 用自然数n去除63、91、129、得到的三个余数之和为25,则n等于几?
5. 一个整数除以7余1,除以6余2,除以9余5,求适合条件的最小数是多少?
6.用1~9这9个数字组成3个三位数(每个数只能用一次),使其中最大的三位数被3除余2 ,并且尽可能的小,次大的三位数被3除余1,最小的三位数能被3整除。
则这3个三位数各是多少?(长青竞赛试题)
作业
1.一筐鸡蛋,每次3个3个取,4个4个取,7个7个取,最后都是少2
个,这筐鸡蛋最少有多少个?
2.一个自然数除以5余3,除以6余4,除以7 余1,这个自然数最小是
多少?
3.一个数除以9余1,除以8余3,除以7 余2,求适合条件的最小数。
4.一个数除以5余4,除以6余3,除以9余6,这个数最小是多少?
5.有一个整数,用它去除82、165、240都有余数,且三个余数的和是13,
求这个整数是多少。
6.有一筐鸡蛋,当两个两个取、三个三个取、四个四个取、五个五个取时,
筐里最后都是剩下一个鸡蛋;当七个七个取出时,筐里最后一个也不剩。
已知筐里的鸡蛋不足400个,则筐里原来共有鸡蛋多少个?。