小学数学职称论文-浅谈分数应用题的解题方法和技巧
浅谈分数应用题的教学技巧

浅谈分数应用题的教学技巧
分数应用题是小学数学中比较重要的一个环节,也是很多学生容易犯错的一个考点。
正确的教学技巧能够帮助教师更好地引导学生理解和掌握分数应用题的解题方法,以下是浅谈分数应用题的教学技巧。
一、提前给学生解决疑惑
在开始讲解分数应用题之前,教师需要先介绍分数的相关概念,例如:分数的大小比较、分数的整数部分和分数线的含义等等。
然后,教师需要通过提问的方式,清楚地了解学生对分数的掌握情况,以此来帮助学生更好地掌握分数应用题的解题方法。
二、注重应用场景
在教学分数应用题时,应该注重展示和说明应用场景和实际的问题。
例如:如果要将一个量分为4等份,那么每份应该是多少?这样的实际问题可以帮助学生更好地理解与运用分数的问题。
三、详细讲解解题技巧
教师应当详细讲解解题的技巧,帮学生正确理解解题思路。
例如:将分数化为通分数进行比较、将分数分解为整数部分和分数部分来计算等等。
教师可以演示一些典型的应用场景,通过样例来帮助学生理解并掌握解题技巧。
四、注重方法总结
在讲解完分数应用题之后,教师应当对解题技巧进行总结和概括,将解题思路做一个简洁的总结。
这样有助于学生形成较为全面和清晰的思路,确保他们在以后的学习和考试中能够成功地解决分数应用题。
总之,教学分数应用题应该注意细节,善于发掘学生的疑点,并加以解决,同时要通过生动的实例和可视化的解释帮助学生理解,注重总结和概括,使学生能够掌握分数应用题的解题方法,提高整体的数学应用能力。
例谈分数应用题解题策略

例谈分数应用题解题策略标签:数学教学;分数应用题;解题策略在小学数学分数应用题的教学中,怎样给学生讲授解题方法一直困扰着任课教师。
其主要表现为解题方法单一,教学效果不明显;学生学得枯燥,学习效果不佳。
如何破解这些问题一直是广大小学数学教育工作者的一道难题。
笔者通过多年的教学经验积累,归纳总结出了分数应用题教学中的解题方法,包括“拼凑法”、“转化法”和“等量代换法”等。
下面,就此详细进行阐述。
一、采用“拼凑法”解答分数应用题拼凑法在解分数应用题时非常有用,这种方法往往可以将不能整除的数量关系转化为可以整除的关系,使问题简化。
在一些分数应用题中,往往会出现数量不能被整除的情况,而执意相除则得到不符合实际的情况。
比如个人、辆车等等。
这些数量关系都不符合逻辑,不能直接简单相除,要想办法拼凑成可以整除的数量关系再计算。
例1 欢欢家有3个孩子,年龄从大到小分别是欢欢、乐乐和笑笑。
一次,欢欢爸爸去商店买回来了17颗糖,并告诉他们,欢欢分总数的,乐乐分总数的,笑笑分总数的,而且不能将糖果切开来分,这可把三兄弟难坏了,小朋友,你动动脑筋,为他们分一分好吗?这道题如果用一般的思维,真不好解,因为3、6、9都不是17的约数,不能整除,那怎么做呢,我们不妨采取拼凑的方法,假设向邻居借了1颗糖,加到买回来的糖果里,总数变为18颗,此时,分配就变得很容易了:欢欢:18×=6(颗)乐乐:18×=3(颗)笑笑:18×=8(颗)剩余的1颗还给邻居。
二、采用“转化法”解答分数应用题分数应用题中的分数关系往往可以转化为较为简单的整数运算,利用整数之间的数量关系进行解答。
例 2 某手机专卖店库存有手机若干部,第一个月卖出全部的,第二个月卖出剩下的,第三个月比第一个月少卖,还剩50部,这批手机共多少部?本例题切入点在于将第一、二、三个月卖出的量全部转化为其占总数的几分之几,从而找出数量之间的对应逻辑关系。
解法如下:第一个月卖出占总数的量:1×=第二个月卖出占总数的量:(1×)×=第三个月卖出占总数的量:×(1-)=剩余数量与其所占总数的量:=1500(部),可知这批手机共1500部。
浅谈分数应用题的教学技巧

浅谈分数应用题的教学技巧分数是数学中一个相对较难的概念,很多学生在学习过程中会遇到困难。
特别是在分数的应用题中,更是需要学生具备丰富的逻辑思维和计算能力。
教师在教学分数应用题时需要有一定的技巧和方法,来帮助学生更好地理解和掌握知识。
本文将就浅谈分数应用题的教学技巧进行讨论。
一、引导学生建立正确的数学思维在教学分数应用题时,教师首先要引导学生建立正确的数学思维。
分数是数学中的一个重要概念,学生需要通过分数应用题的练习和实践,逐渐建立起对分数的认识和理解。
教师可以从实际生活中的例子出发,引导学生思考分数的意义和作用,让学生逐渐明白分数在生活中的实际应用,并建立起正确的数学思维。
教师还可以通过启发式问题、讨论等教学方法,激发学生的思维,引导学生自主学习和发现问题的解决方法,培养学生分析问题和解决问题的能力。
通过这种方式,学生可以更好地理解分数的概念和应用,培养学生的逻辑思维和数学能力。
二、注重分数应用题的教学实践分数应用题的教学在于实践,通过大量的练习和实际运用,学生才能更好地掌握知识。
教师在教学分数应用题时应注重教学实践,让学生进行大量的练习和应用,巩固所学知识。
教师可以设计一些有趣的分数应用题,让学生在实际问题中应用所学的知识,提高学生的学习积极性。
可以设计购物、比赛、分配物品等实际场景,让学生通过计算和分析,理解分数的概念和应用。
教师还可以根据学生的不同水平和学习需求,设计不同难度的分数应用题,鼓励学生自主学习和探索,提高学生的学习兴趣和能力。
三、培养学生的问题解决能力在教学分数应用题时,教师还应培养学生的问题解决能力。
分数应用题通常涉及到一些复杂的问题,需要学生通过综合分析和计算,解决问题。
教师在教学过程中应引导学生掌握一些解决问题的方法和技巧,培养学生的问题解决能力。
四、及时进行评价和反馈在教学分数应用题中,教师还应及时进行评价和反馈,帮助学生发现问题,并及时进行纠正和改进。
教师可以通过检测、作业、讨论等形式,对学生的学习情况进行评价,倾听学生的声音,了解学生的学习困难和问题,帮助学生及时解决问题。
分数应用题的解题方法和技巧

分数应用题解题的一般步骤:
1、 找出单位“1” (标准量),观察单位“1”(标准量)是已知还是未知,如果已知时,可以确定用乘法计算;如果未知就用除法计算。
2、分析题意,找出各个信息所对应的量。
并能有条理地说明解题思路、有根有据地说清楚自己是怎么思考的,这样是培养逻辑思维能力的一个有效方法。
3、 根据(比较量 ÷单位“1” =对应分率)(单位“1”×对应分率=比较量)(比较量 ÷对应分率=单位“1”)各量之间的关系列式计算。
总结:以上步骤可以用一句话概括:一找二定三列式,即第一步找单位“1”,第二步确定单位“1”已知还是未知,第三步列式解答。
分数或百分数应用题解题的口诀
知“1”用乘:单位“1”的量×所求的量对应的分率=所求的量
求“1”用除:已知的量÷已知的量对应的分率=单位“1”的量
了解什么是“1”。
“1”,就是单位“1”,也就是“标准量”。
如: 我班女生人数是男生人数的32。
这里是把男生人数做为一个标准,拿女生人数跟男生人数去做比较,我们就把这里的男生人数叫做单位“1”的量,即标准量。
女生人数是比较量,32
是女生所对应的分率。
如何判断单位“1”?
找到关键句,即含有分数或百分数的句子,把句子补充完整,与分数(或百分数)最接近的那个量是单位“1”,或“比”字“是”字后面,“的”字前面。
数学分数应用题解题方法

数学分数应用题解题方法
1. 哎呀,要解决数学分数应用题,首先得认真审题呀!就像要去一个陌生地方,得先搞清楚路线吧!比如这道题:小明有半块蛋糕,又得到了整个蛋糕的 1/4,那他现在一共有多少蛋糕呀?
2. 接下来,找到关键信息很重要呢!这就像在一堆玩具里找到你最喜欢的那个。
像“一本书300 页,已经看了2/5”,“2/5”就是个关键信息呀!
3. 然后呢,要确定单位“1”呀!这就好比你要知道自己是在跟谁比。
比如“某班男生占全班人数的3/5”,全班人数就是单位“1”呢!
4. 画个图也超有用的呀!它能把问题变得清晰可见。
比如说有堆苹果,给了别人 1/3,我们画个图,就能清楚地看到剩下多少啦!
5. 列式计算可不能马虎哟!就像在搭积木,要一块一块稳稳地搭起来。
例如“一个数的 1/3 是 10,这个数是多少”,这就得认真列式算啦!
6. 检查可别忘掉呀!这就和出门前照镜子一样重要。
看看你的答案合不合理,有没有漏算呀!
7. 在解决分数应用题时,要学会举一反三呀!不能只会做一道题,别的类似的就傻眼了。
像知道了怎么算苹果的,换成橘子的问题也得会呀!
8. 多和同学讨论讨论也很好啊!说不定他的想法就会给你启发呢。
“嘿,你这道题是怎么想的呀?”这样互相交流多有意思!
9. 只要多练习,分数应用题就难不倒我们啦!就像玩游戏,玩多了自然就厉害啦!
我的观点结论:数学分数应用题其实不难,只要用对方法,大家都能轻松搞定!。
分数应用题解题技巧

分数应用题解题方法一、解题技巧:一抓,二找,三确定,四对应。
1.一抓:抓住关键句----含有分率的句子(不带单位的分数)2.二找:找准单位1的量:单位1一般都是在“的”前面,或是在“比、是、占、相当于”的后面。
看分率是谁的几分之几,谁就是单位1的量。
3.三确定:确定单位1是已知还是未知,单位1已知用乘法计算,单位1未知用除法或方程计算。
4.四对应:找出相对于的数量与分率。
乘法:单位1×对应分率=对应数量除法:对应数量÷对应分率=单位1二、解题方法:借助线段图帮助我们来分析数量关系,画图时先画单位1的量。
第一类:乘法一条公路:男生:女生:第二类:除法一条公路:男生:女生:三、分数应用题主要讨论的是以下三者之间的关系。
1.分率:表示一个数是另一个数的几分之几。
2.标准量:我们把单位1的量称为标准量。
3.比较量:我们把同标准量比较的量称之为比较量,也叫分率对应的数量。
四、分数应用题的分类。
第一类:已知两个数量,比较它们之间的倍数关系,应该用除法计算。
A求分率即就是求一个数是另一个数的几分之几。
(五下)基本关系式:比较量÷标准量=分率(几分之几)学校的果园里有梨树15棵,桃树20棵。
梨树是桃树的几分之几?B求一个数比另一个数多几分之几。
(六上)基本关系式:相差量÷标准量=分率学校的果园里有梨树15棵,桃树20棵。
桃树比梨树多几分之几?C秋一个数比另一个数少几分之几。
(六上)基本关系式:相差量÷标准量=分率学校的果园里有梨树15棵,桃树20棵。
梨树比桃树少几分之几?第二类:单位1已知,用乘法计算。
A求一个数的几分之几是多少。
(五下)把已知数量看多单位1,就是求它的几分之几是多少,它反映的是部分与整体之间的关系。
基本关系式:单位1的量×对应分率=对应数量1.一条公路全长1200米,已经修了全长的13,修了多少米?2.一支钢笔单价是30元,圆珠笔的单价是钢笔的16。
分数应用题的方法和技巧

分数应用题的方法和技巧
在解答分数应用题时,以下是一些常用的方法和技巧:
1. 确定未知数:首先明确问题中的未知数,并用一个变量来表示。
例如,如果问题涉及到某个人的年龄,可以用x来表示这个人的年龄。
2. 变量的分数表达式:根据问题描述,将变量表示为一个分数表达式。
例如,如果问题中提到某个人年龄的1/3等于15岁,则可以表示为x/3 = 15。
3. 解方程:将问题转化为一个方程,并求解这个方程来得到未知数的值。
在上述例子中,通过乘以3,可以得到x = 45。
4. 确认答案的合理性:将未知数的值代入原方程中,确认答案的合理性。
在上述例子中,将x = 45代入x/3 = 15,可以验证
等式成立。
5. 注意化简:在解题过程中,可能需要对分数进行化简。
例如,将2/4简化为1/2,便于计算。
6. 注意单位转换:问题中可能涉及到单位的转换。
在解题过程中,需要注意将单位转换为一致的形式,以便计算。
7. 图形辅助:对于某些问题,可以用图形进行辅助。
例如,在解决比例问题时,可以用图形表示比例关系,帮助理解和解决问题。
8. 相关知识点:对于一些特定的类型的分数应用题,掌握相关的数学知识点会有帮助。
例如,理解分数的基本运算法则、比例关系的性质等。
以上是一些常用的方法和技巧,希望对解答分数应用题有所帮助。
小学数学论文 浅谈分数应用题的解题方法和技巧

浅谈分数应用题的解题方法和技巧分数应用题就是我们要探索的其中之一内容。
它是小学应用题教学的重点和难点,由于抽象程度比较高,学生难以理解和掌握。
怎样解决好这一难题,成为众多教师教学研究的热点。
数学应用题的构成要素是:具体内容,名词术语,数量关系和结构特征。
这些构成要素不是孤立的,而是相互联系的,是造成学生解答应用题困难的原因。
其中,处于核心地位的是数量关系。
确定了数量之间的相互关系,才能得到解决方法,因此应用题教学应在理解题意的基础上,重点抓住名词术语进行分析,把握数量之间的等量关系,学生才能真正掌握解题方法。
一、分数应用题题型探究的策略分数应用题的解题都是有规律可循地。
根据分数应用题的特征,可以把分数应用题分为三种基本类型。
一是求一个数是另一个数的几分之几,而是求一个数的几分之几是多少,三是已知一个数的几分之几是多少,求这个数。
这是第一阶段要学习的三种基本题型;第二阶段学习分数复合应用题,采用乘除混合编排方式,第三阶段学习较复杂的分数应用题和工程问题。
分数应用题的基础题型是简单的分数乘法应用题,它不仅是学习分数除法应用题的前位知识,还是学习分数复合应用题的基础。
这样编排体现了由简单到复杂,由易到难的知识结构,便于学生构建认知结构。
解题关键要抓住的就是分数乘法的意义:单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来分析解答的,所以要把这个关系式吃透,从中总结出“一找,二看,三判断”的解答步骤。
找:找单位“1”;看:看单位“1”是已知还是未知;判断:已知用乘法,未知用除法。
在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学能有相当大的帮助。
教学到教复杂的分数应用题题型时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1’”和“比一个数多(少)几分之几”的两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分率=对应量,所以单位“1”=对应量÷对应分率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学职称论文-浅谈分数应用题的解题方法和技巧摘要:《新课标》指出,应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
关键词:应用题思路策略
分数应用题就是我们要探索的其中之一内容。
它是小学应用题教学的重点和难点,由于抽象程度比较高,学生难以理解和掌握。
怎样解决好这一难题,成为众多教师教学研究的热点。
数学应用题的构成要素是:具体内容,名词术语,数量关系和结构特征。
这些构成要素不是孤立的,而是相互联系的,是造成学生解答应用题困难的原因。
其中,处于核心地位的是数量关系。
确定了数量之间的相互关系,才能得到解决方法,因此应用题教学应在理解题意的基础上,重点抓住名词术语进行分析,把握数量之间的等量关系,学生才能真正掌握解题方法。
一、分数应用题题型探究的策略
分数应用题的解题都是有规律可循地。
根据分数应用题的特征,可以把分数应用题分为三种基本类型。
一是求一个数是另一个数的几分之几,而是求一个数的几分之几是多少,三是已知一个数的几分之几是多少,求这个数。
这是第一阶段要学习的三种基本题型;第二阶段学习分数复合应用题,采用乘除混合编排方式,第三阶段学习较复杂的分数应用题和工程问题。
分数应用题的基础题型是简单的分数乘法应用题,它不仅是学习分数除法应用题的前位知识,还是学习分数复
合应用题的基础。
这样编排体现了由简单到复杂,由易到难的知识结构,便于学生构建认知结构。
解题关键要抓住的就是分数乘法的意义:单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来分析解答的,所以要把这个关系式吃透,从中总结出“一找,二看,三判断”的解答步骤。
找:找单位“1”;看:看单位“1”是已知还是未知;判断:已知用乘法,未知用除法。
在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学能有相当大的帮助。
教学到教复杂的分数应用题题型时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位…1‟”和“比一个数多(少)几分之几”的两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分率=对应量,所以单位“1”=对应量÷对应分率。
在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分率。
对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的
1+(或-)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。
二、分数应用题的解题思路探究的策略
新课标指出:“学生将通过数学活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。
”分数应用题解题虽说复杂,但都是有章可循。
我通过这些年地教学总结出如下方法:
(一)画线段图进行分析。
对于一些简单的分数应用题,教师要教会学生画线段图,然后引导学生观察线段图,如果单位“1”对应的数量是已知的,就用乘法,找
未知数量对应的分率;如果单位“1”对应的数量是未知的,就用方程或除法,找已知数量对应的分率。
(二)从确定对应入手找出解题方法
分数应用题中有一个“量率对应”的明显特点,对一个单位“1”来说,每个分率都对应着一个具体的数量,而每一个具体的数量,也同样对应着一个分率,因此,
正确地确定“量率对应”是解题的关键。
我们要引导学生学会和掌握“明确对应,
找准对应分率”的解题方法。
(三)通过转化单位“1”找出解题方法
在一道分数应用题中,如果出现了几个分率,而且这些分率的标准量不同,量的性质相异,在解题时,必须以题中的某一个量为标准量,将其余量的对应分率统一到这个标准量上来,才可列式解答。
(四)通过逆推找出解题方法
有些分数应用题,如果按从始至终的先后顺序去分析,很难达到解决问题的目的,甚至陷入绝境。
不妨“反过来想一想”进行逆推,便容易打开思路,顺利解题。
(五)抓住不变量找出解题方法
对于标准量不统一的分数应用题,如果我们能从题中找到一个不变量,就以不变量为突破口,便能够很快找到解题方法。
(六)通过转变换条件找出解题方法
有些分数应用题,可以通过改变看问题的角度,将题中某些已知数量转换成与之有关联的另一个数量,使之成为一个较为熟悉的简单的问题,从而找到解题的新方法。
以上几种解较复杂分数应用题的方法,并非这几种,它的解法不是绝对孤立的,因此,在教学中,我们要引导学生灵活运用,以形成自己的解题技能技巧。
总之,分数应用题的学习的确有难度,但并非难以理解和接受,现在的教材中多次简化了分数应用题的难度,如“工程问题”都简化到仅仅一个例题的地步,所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的内容学生学起来会变得比较轻松。