管内流体流动现象
管内流体流动现象

(1-27)
其单位为m2/s。显然运动粘度也是流体的物理
性质。
二、流体的流动型态
1、两种流型——层流和湍流 图1-18为雷诺实验装置示意图。水箱装有溢流装置, 以维持水位恒定,箱中有一水平玻璃直管,其出口 处有一阀门用以调节流量。水箱上方装有带颜色的 小瓶,有色液体经细管注入玻璃管内。
图1-17 流体在管内的速度分布
实验证明,对于一定的流体,内摩擦力F与两流体 层的速度差成正比,与两层之间的垂直距离dy成 反比,与两层间的接触面积A成正比,即
.
F A(ddyu1-26)
式中:.F——内摩擦力,N;
du
—dy —法向速度梯度,即在与流体流动方向相垂直的
y方向流体速度的变化率,1/s;
2. 湍流时的速度分布 湍流时的速度分布目前尚不能利用理论推导获得,而是通过
实验测定,结果如图1-22所示,其分布方程通常表示成以下 形式:
图1-22 湍流时的速度分布
四、流体流动边界层
图1-19 流体流动型态示意图
2、流型判据——雷诺准数
流体的流动类型可用雷诺数Re判断。
Re d(u1-28)
Re准数是一个无因次的数群。
大量的实验结果表明,流体在直管内流动时, (1)当Re≤2000时,流动为层流,此区称为层流区; (2)当Re≥4000时,一般出现湍流,此区称为湍流区; (3)当2000< Re <4000 时,流动可能是层流,也可
μ——比例系数,称为流体的粘度或动力粘度,Pa·s。
一般,单位面积上的内摩擦力称为剪应力,以τ表
示,单位为Pa,则式(1-26)变为
.
化工原理-流体在管内的流动.

对本题 Z1=Z2 We=0 ∑hf=0
因而上式中有两个未知数u1、u2。
再借助连续性方程
u1d12= u2d22
两式联解即可求出
13
2.5 柏努利方程的应用
二、确定容器间的相对位置
例2.如本题附图所示,密度为850kg/m3的料液从高 位槽送入塔中,高位槽内的液面维持恒定。塔内表 压强为9.81×103Pa,进料量为5m3/h。连接管直径为 φ38×2.5mm,料液在连接管内流动时的能量损失为 30J/kg(不包括出口的能量损失)。试求高位槽内的液 面应比塔的进料口高出多少?
p2
上式称柏努利方程式,其条件为1)连续、稳定、不可压缩; 2)理想流体,无外加机械功。
10
2.4 柏努利方程 (B.e.q)
三、柏努利方程式的讨论
1)从理想流体的柏努利方程式可见,流体流动过程中各种形式的机械能 可以相互转换的。 2)柏努利方程式中各项单位为J/kg,表示单位质量流体所具有的能量。应 注意gZ、u2/2、p/ρ、与We、∑hf的区别。前三项是指在某截面上流体本身 所具有的能量,而后两项是指流体在两截面之间所获得相应的和所消耗的 能量。
u
2
2.1 流量与流速
工程上输送流体管路直径的确定 d 4Vs
u
流量VS为生产任务所决定,一般是给定的。 关键:在于选择合适的流速。
若流速选得太大,管径虽然可以减小,但流体流过管道的阻力 增大,消耗的动力就大,操作费随之增加。反之,流速选得太小, 操作费可以相应减小,但管径增大,管路的基建费随之增加。所以 当流体以大流量在长距离的管路中输送时,需根据具体情况在操作 费与基建费之间通过经济权衡来确定适宜的流速。
p
管内流体流动现象

第一章 流体流动§4 流体在管内流动时的摩擦阻力损失本节重点:直管阻力与局部阻力的计算,摩擦系数的影响因素。
难点:用量纲分析法解决工程实际问题。
流动阻力的大小与流体本身的物理性质、流动状况及壁面的形状等因素有关。
化工管路系统主要由两部分组成,一部分是直管,另一部分是管件、阀门等。
相应流体流动阻力也分为两种:直管阻力:流体流经一定直径的直管时由于内摩擦而产生的阻力; 局部阻力:流体流经管件、阀门等局部地方由于流速大小及方向的改变而引起的阻力。
一 范宁公式(Fanning )1、范宁公式 :范宁经过理论推导,得到了以下公式: 22l u h f d λ= (1-53) 式(1-53)为计算流体在直管内流动阻力的通式,称为范宁(Fanning )公式。
式中λ为无量纲系数,称为摩擦系数或摩擦因数,与流体流动的Re 及管壁状况有关。
式(1-53)也可以写成:22u d l h p f f ρλρ==∆ (1-54) 应当指出,范宁公式对层流与湍流均适用,只是两种情况下摩擦系数λ不同。
2、管壁粗糙度对摩擦系数λ的影响光滑管:玻璃管、铜管、铅管及塑料管等称为光滑管;粗糙管:钢管、铸铁管等。
管道壁面凸出部分的平均高度,称为绝对粗糙度,以ε表示。
绝对粗糙度与管径的比值即dε,称为相对粗糙度。
工业管道的绝对粗糙度数值见教材(P27表1-1)。
管壁粗糙度对流动阻力或摩擦系数的影响,主要是由于流体在管道中流动时,流体质点与管壁凸出部分相碰撞而增加了流体的能量损失,其影响程度与管径的大小有关,因此在摩擦系数图中用相对粗糙度dε,而不是绝对粗糙度ε。
流体作层流流动时,流体层平行于管轴流动,层流层掩盖了管壁的粗糙面,同时流体的流动速度也比较缓慢,对管壁凸出部分没有什么碰撞作用,所以层流时的流动阻力或摩擦系数与管壁粗糙度无关,只与Re有关。
流体作湍流流动时,靠近壁面处总是存在着层流内层。
如果层流内层的厚度δL大于管壁的绝对粗糙度ε,即δL>ε时,如图1-28(a)所示,此时管壁粗糙度对流动阻力的影响与层流时相近,此为水力光滑管。
化工原理 第二章 流体流动.

本章着重讨论流体流动过程的基本原理和流体 在管内的流动规律,并应用这些规律去分析和计 算流体的输送问题:
1. 流体静力学 3. 流体的流动现象 5. 管路计算
2. 流体在管内的流动 4. 流动阻力 6. 流量测量
要求 掌握连续性方程和能量方程 能进行管路的设计计算
概述 流体: 在剪应力作用下能产生连续变形的物体称
为流体。如气体和液体。
流体的特征:具有流动性。即
抗剪和抗张的能力很小; 无固定形状,随容器的形状而变化;
在外力作用下其内部发生相对运动。
流体的研究意义
流体的输送:根据生产要求,往往要将这些流体按照生产 程序从一个设备输送到另一个设备,从而完成流体输送的任
务:流速的选用、管径的确定、输送功率计算、输送设备选用
为理想气体)
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
求干空气的平均分子量: Mm = M1y1 + M2y2 + … + Mnyn
Mm =32 × 0.21+28 ×0.78+39.9 × 0.01
=28.96
气体平均密度:
0
p p0
T0 T
0
T0 p0
p T
Mm R
解:应用混合液体密度公式,则有
1
m
a1
1
a2
2
0.6 0.4 1830 998
7.285 10 4
m 1370 kg / m3
例2 已知干空气的组成为:O221%、N278%和Ar1%(均为体积%)。 试求干空气在压力为9.81×104Pa、温度为100℃时的密度。(可作
第七章 管内流体流动分析

第九章 管内流体流动
§9.1 粘性流体的两种流动状态(内部结构) §9.2 圆管中充分发展的层流流动 §9.3 湍流(紊流)的半经验公式 §9.4 圆管中充分发展的湍流流动 §9.5 管道入口段中的流动
§9.1 粘性流体的两种流动状态
一、层流与湍流
1.流动形态 雷诺试验揭示出粘性流体有两种性
层流 过渡状态
紊流
§9.1 粘性流体的两种流动状态
雷诺实验(续)
实验现象(续)
§9.1 粘性流体的两种流动状态
2.两种流动状态的判定
a、实验发现
v vcr v vcr
流动较稳定 流动不稳定
b、临界流速
vcr ——下临界流速
vcr ——上临界流速
层 流: v vcr
不稳定流: vcr v vcr
§9.2 圆管中充分发展的层流流动
4. 阻力系数与 流动损失
定义式
p
L D
um2 2
um
p L
R2
8
p L
D2
32
阻力系数
64
Re
水平管:
hf
p
gL uΒιβλιοθήκη 2 D 2gRe Dum
雷诺数
结论:层流流动的沿程损失与平均流速的一次方成正比。
§9.3 湍流的半经验理论
一、湍流假说---普朗特混合长度理论
紊 流: v vcr
§9.1 粘性流体的两种流动状态
2、两种流动状态的判定(续)
c、临界雷诺数 雷诺数
Re ud
Recr 2300 ——下临界雷诺数
Recr 4000 ——上临界雷诺数
工程上常用的圆管临界雷诺数
化工原理第一章 流体流动

例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2
1.4 流体流动现象

4 边界层的概念
讨论 ⑴边界层分离的必要条件: 流体具有粘性; 流动过程中存在逆压梯度。 ⑵边界层分离的后果: 产生大量旋涡; 造成较大的能量损失。 ⑶流体沿着壁面流过时的阻力称为摩擦阻力。 由于固体表面形状而造成边界层分离所引起的能 量损耗称为形体阻力。 ⑷粘性流体绕过固体表面的阻力为摩擦阻力与形 体阻力之和这两者之和又称为局部阻力。
M L L3 L0 M 0 0 M L
Re ⑶Re准数是一个无因次的数群。
L
第1章 (第4节) 流体流动现象
1 流动类型与雷诺准数
⑷流体的流动类型可用雷诺数Re判断。
Re 2000时为层流
流体质点仅沿着与管轴平行的方向作直线运动,质点无 径向脉动,质点之间互不混合,不碰撞。
1 流动类型与雷诺准数
⑵ 调节阀门开度, 使流量变大,细管 内有色液体成波浪 形。说明流体质点 除沿轴向流动外, 沿径向也运动。相 邻流体层之间混合, 碰撞。 (如动画)
第1章 (第4节) 流体流动现象
1 流动类型与雷诺准数
⑶调节阀门开度,使
流量再变大,细管内 有色液体细线便完全 消失,有色液体出细 管后完全散开,与水 混合在一起。说明流 体质点除沿轴向流动 外,还作不规则杂乱 运动。彼此之间混合, 碰撞。 (如动画)
齐齐哈尔大学
第1章 (第4节) 流体流动现象
1.4 流体流动现象
1 流动类型与雷诺准数
本节 讲授 内容
2 流体在圆形直管内速度分布 3 滞流与湍流的比较
4 边界层的概念
第1章 (第4节) 流体流动现象
化工原理第一章(流体的流动现象)

ρ(
∂v ∂v ∂v ∂v ∂p ∂ ∂v 2 r ∂ ∂v ∂w ∂ ∂u ∂v + u + v + w ) = k y − + µ(2 − ∇v) + µ( + ) + µ( + ) ∂t ∂x ∂y ∂z ∂y ∂y ∂y 3 ∂z ∂z ∂y ∂x ∂y ∂x
2012-4-18
湍 流 的 实 验 现 象
2012-4-18
(3)流体内部质点的运动方式(层流与湍流的区别) )流体内部质点的运动方式(层流与湍流的区别) ①流体在管内作层流流动 层流流动时,其质点沿管轴作有规 有规 层流流动 互不碰撞,互不混合 则的平行运动,各质点互不碰撞 互不混合 的平行运动 互不碰撞 互不混合。 ②流体在管内作湍流流动 湍流流动时,其质点作不规则的杂 湍流流动 不规则的杂 乱运动,并互相碰撞混合 互相碰撞混合,产生大大小小的旋涡 旋涡。 乱运动 互相碰撞混合 旋涡 管道截面上某被考察的质点在沿管轴向 轴向运动的同时 轴向 ,还有径向 径向运动(附加的脉动 脉动)。 径向 脉动
du F = µA dy
式中:F——内摩擦力,N; du/dy——法向速度梯度 法向速度梯度,即在与流体流动方向相垂直的 法向速度梯度 y方向流体速度的变化率,1/s; µ——比例系数,称为流体的粘度或动力粘度 粘度或动力粘度,Pa·s。 粘度或动力粘度
2012-4-18
【剪应力 剪应力】 剪应力 【定义 定义】单位面积上的内摩擦力称为剪应力 剪应力,以τ表 定义 剪应力 示,单位为Pa。
ρ(
2012-4-18
著名的“纳维-斯托克斯方程”,把流体的速度、压力、密 度和粘滞性全部联系起来,概括了流体运动的全部规律;只 是由于它比欧拉方程多了一个二阶导数项,因而是非线性的 ,除了在一些特殊条件下的情况外,很难求出方程的精确解 。分析这个方程的性态,“仿佛是在迷宫里行走,而迷宫墙 的隔板随你每走一步而更换位置”。计算机之父冯·诺意曼( Neumann,Joha von 1903~1957)说:“这些方程的特性…… 在所有有关的方面同时变化,既改变它的次,又改变它的阶 。因此数学上的艰辛可想而知了。 有一个传说,量子力学家海森伯在临终前的病榻上向上帝提 有一个传说 了两个问题:上帝啊!你为何赐予我们相对论 相对论?为何赐予我 相对论 们湍流 湍流?海森伯说:“我相信上帝也只能回答第一个问题” 湍流 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017/2/18
2、流体的粘度
1)物理意义
du dy
促使流体流动产生单位速度梯度的剪应力。
粘度总是与速度梯度相联系,只有在运动时才显现出来 2)粘度与温度、压强的关系 a) 液体的粘度随温度升高而减小,压强变化时,液体 的粘度基本不变。
2017/2/18
b)气体的粘度随温度升高而增大,随压强增加而增加的 很少。 3)粘度的单位 在SI制中:
解:1)用SI制计算:从附录五查得20º C时,
ρ=998.2kg/m3,μ=1.005mPa.s,
2017/2/18
管径d=0.05m,流速u=2m/s,
Re
du
0.05 2 998.2 99320 3 1.005 10
2)用物理单位制计算:
998.2kg / m3 0.9982 g / cm3
圆管内层流与湍流的比较 层流 本质区别 速度分布 分层流动
r u umax 1 R 2
2
湍流 质点的脉动
r u umax 1 (n 7) R
2017/2/18
流体在圆形直管内流动时:
当 Re 2000时,流体的流动类型属于层流 ;
Re 4000, 流体的流动类型属于湍流;
可能是层流,也可能是湍流,与外 2000<Re <4000时, 界条件有关。——过渡区 例:20º C的水在内径为50mm的管内流动,流速为2m/s, 试分别用SI制和物理制计算Re数的数值。
2017/2/18
3、层流和湍流的平均速度
1)层流时的平均速度
dqV 2 urdr
r2 u umax 1 dr 2 R
(a)
2017/2/18
qV R umax / 2
2
qV R 2umax / 2 umax um 2 A R 2
F A
ma m du d mu A dt A Adt
剪应力:单位时间通过单位面积的动量,即动量通量。 湍流流动的剪应力:
t e
du dy
ε:称为涡流粘度 ,反映湍流流动的脉动特征 ,随流动 状况及离壁的距离而变化。
2017/2/18
cm
2017/2/18
SI单位制和物理单位制粘度单位的换算关系为:
1Pa s 1000CP 10P
4)运动粘度
v
单位: SI制:m2/s; 物理单位制:cm2/s,用St表示。
1St 100cSt 10 m / s
4 2
2017/2/18
二、流动类型与雷诺准数
1、雷诺实验
r2 u umax 1 R2
——层流流动时圆管内速度分布式
2017/2/18
2)圆管内湍流流动的速度分布
r u umax 1 R
1 n
——湍流流动时圆管内速度分布式 4×10-4<Re<1.1×105时,n=6; 1×10-5<Re<3.2×106时,n=7; Re>3.2×106时,n=10 。
99320
三、层流与湍流的比较
1、流体内部质点的运动方式
层流流动时,流体质点沿管轴做有规则的平行运动。 湍流流动时,流体质点在沿流动方向 运动的同时,还做随 机的脉动。
2017/2/18
层流
湍流
2017/2/18
2、流体在圆管内的速度分布
1)圆管内层流流动的速度分布
P1 r 2 p1
N / m N .S 2 ( m / s ) m du / dy
在物理单位制中,
2
Pa.S
m
dyn / cm 2 dyn.s g P ( 泊) 2 du / dy cm s cm cm.s
u F A y
u F A y
剪应力:单位面积上的内摩擦力,以τ表示。
F u A y
2017/2/18
适用于u与y成直线关系
du dy
式中:
——牛顿粘性定律
du 速度梯度 : dy
比例系数,它的值随流体的不同而不同,流 :
体的粘性愈大,其值愈大,称为粘性系数或动力粘度,简
3 1 . 005 10 1000 1.005 102 g /( cm s) 3 P 1.005 10 Pa.s 100
u 2m / s 200cm / s d 5cm
5 200 0.9982 Re 1.005 102
2017/2/18
层流或层流
湍流或紊流
2017/2/18
2、雷诺数Re
Re
雷诺数的因次 :
du
du m m / s . kg / m3 Re N .s / m 2
Re是一个没有单位,没有因次的纯数 。
m kg s
0
0 0
在计算Re时,一定要注意各个物理量的单位必须统一。 雷诺准数可以判断流型
2017/2/18
P2 r 2 p2
du F 2 rl dr
du r p1 r p2 2rl 0 dr
2 2
du p r dr 2l
p 2 u Rr 4l
r 0时,u umax
p 2 R 代入上式得: umax 4l
层流时平均速度等于管中心处最大速度的一半 。
2017/2/18
2)湍流时的平均速度
n 7时,
r u umax 1 R
1 7
——1/7方律
um 0.82umax
湍流时的平均速度大约等于管中心处最大速度的0.82倍。
2017/2/18
4、层流和湍流中的剪应力
层流流动的剪应力 :
管内流体流动现象
一、牛顿粘性定律与流体的粘度 二、流动类型与雷诺准数
三、层流与湍流的比较
2017/18
一、牛顿粘性定律与流体的粘度
1. 牛顿粘性定律
流体的内摩擦力:运动着的流体内部相邻两流体层间的作 用力。又称为粘滞力或粘性摩擦力。 ——流体阻力产生的依据
2017/2/18
2017/2/18