大数据可视化基础共33页

合集下载

第9章 数据可视化技术 大数据基础PPT课件

第9章 数据可视化技术   大数据基础PPT课件
由于SPSS for Windows可以直接读取EXCEL及DBF数据文件,易学、易用, 已推广到多种各种操作系统的计算机上,它与SAS、BMDP并称为国际上最有 影响的三大统计分析软件。
桌面可视化技术
3.R可视化 R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个集统计分析与图
形显示于一体的用于统计计算和统计制图的优秀工具。它可以运行于UNIX、Windows 和Macintosh的操作系统上,而且嵌入了一个非常方便实用的帮助系统。 用户可以在R官方网站及其镜像中下载任何有关的安装程序、源代码、程序包及文档 资料。标准的安装文件自身就带有多个模块和内嵌统计函数,安装好后可以直接实 现许多常用的统计功能。同时,R还是一种编程语言,具有语法通俗易懂、易学易用 和资源丰富的优点。大多数最新的统计方法和技术都可以在R中直接获取。
Seaborn基于Matplotlib提供内置主题、颜色调色板、函数、可视化单变量、双变量 和线性回归等工具,使作图变得更加容易。
OLAP可视化工具
1.Oracle BI Oracle BI Data Visualization Desktop具备可视、自助、简单、快速、
智能、多样的特性,为用户提供个人桌面应用程序,以便用户能够访问、 探索、融合和分享数据可视化。Oracle BI有着丰富的可视化组件,可实 现对颜色、尺寸、外形的创新性使用模式以及多种坐标系统。并通过 Html5进行渲染,还可以选择或制作个性化的色系。Oracle BI新增了列 表、平行坐标、时间轴、和弦图、循环网络、网络、桑基和树图等。 Oracle BI对大多数数据通过可视化方式进行整理、转换操作。可在面板 和分析注释之间自由切换,为用户提供友好的数据源页面,还提供打印 面板和分析注释页面;支持导出为PDF和PowerPoint格式。Oracle BI向 用户提供数据模式的自动检测,能更好地帮助用户了解数据及完成数据 可视化。

数据可视化培训资料

数据可视化培训资料

数据可视化培训资料在当今数字化的时代,数据已经成为了企业和组织决策的重要依据。

然而,面对海量的数据,如何能够快速、准确地理解和分析它们,成为了一个关键的问题。

数据可视化作为一种有效的手段,可以将复杂的数据以直观、清晰的方式呈现出来,帮助人们更好地理解数据背后的信息和规律。

因此,掌握数据可视化的技能对于提升个人和团队的数据分析能力具有重要意义。

一、数据可视化的基本概念数据可视化是指将数据通过图形、图表、地图等视觉元素进行表达和呈现的过程。

其目的是将抽象的数据转化为易于理解和感知的形式,以便用户能够快速发现数据中的模式、趋势和关系。

数据可视化不仅仅是简单地绘制图形,更是一种通过设计和布局来传达数据内涵的艺术。

二、数据可视化的重要性1、增强数据理解通过将数据以可视化的形式呈现,可以让人们更容易理解数据的含义和结构。

相比于枯燥的数字表格,直观的图表能够更快速地传达数据的主要特征和趋势。

2、发现数据中的规律可视化能够帮助我们发现隐藏在数据中的规律和模式。

例如,通过折线图可以清晰地看到数据的变化趋势,通过柱状图可以比较不同类别之间的数据差异。

3、提高沟通效率在团队合作和决策过程中,数据可视化能够有效地促进成员之间的沟通和交流。

清晰的可视化图表可以避免因对数据理解不一致而产生的误解和争议。

4、支持决策制定决策者可以基于可视化的数据做出更明智、更准确的决策。

直观的展示能够让他们快速了解业务的现状和问题,从而制定出更有效的策略。

三、数据可视化的基本原则1、准确性可视化的结果必须准确地反映数据的真实情况,不能因为追求美观而扭曲数据。

2、简洁性避免过度复杂的设计和过多的元素,保持图表简洁明了,让用户能够快速获取关键信息。

3、一致性在同一套可视化作品中,使用一致的颜色、字体、图表类型等,以保持整体的风格统一。

4、突出重点通过适当的颜色、大小、形状等手段,突出数据中的重点和关键信息,引导用户的注意力。

四、常用的数据可视化工具1、 Excel作为最常见的办公软件之一,Excel 提供了丰富的图表功能,如柱状图、折线图、饼图等,适合处理简单的数据可视化任务。

19_大数据可视化介绍课件

19_大数据可视化介绍课件

大数据可视化介绍课件演讲人目录01.大数据可视化的概念02.大数据可视化的工具和技术03.大数据可视化的设计原则04.大数据可视化的应用前景大数据可视化的概念1数据可视化的定义数据可视化是将数据转化为图表、图形等形式,以便更好地理解和分析数据。

数据可视化可以帮助人们更好地理解数据的分布、关系和趋势。

数据可视化可以提高数据分析的效率和准确性。

数据可视化可以更好地传达数据和信息,提高沟通效果。

数据可视化的作用01帮助人们更好地理解数据02提高数据分析的效率03促进数据驱动的决策04增强数据的传播力和影响力数据可视化的应用领域商业领域:帮助企业分析市场趋势,制定营销策略01教育领域:帮助教师和学生更好地理解和分析数据,提高教学效果02科研领域:帮助研究人员更好地分析和展示研究成果,提高科研效率03政府领域:帮助政府更好地分析和展示政策效果,提高政策制定和实施的准确性和有效性04大数据可视化的工具和技术2数据可视化工具●Tableau:商业智能和数据可视化工具,支持多种数据源和图表类型●Power BI:微软开发的数据可视化和业务智能工具,支持多种数据源和图表类型●D3●Plotly:Python库,用于创建交互式数据可视化●Google Data Studio:谷歌开发的数据可视化工具,支持多种数据源和图表类型●***gram:在线数据可视化工具,支持多种数据源和图表类型●Canva:在线设计工具,支持创建数据可视化图表●ECharts:百度开发的数据可视化工具,支持多种数据源和图表类型●Apache ECharts:Apache基金会开发的数据可视化工具,支持多种数据源和图表类型●SAS Visual Analytics:SAS公司开发的数据可视化工具,支持多种数据源和图表类型数据可视化技术01数据可视化工具:如Tableau、Power BI等02数据可视化技术:如数据可视化图表、数据可视化地图、数据可视化动画等03数据可视化设计原则:如清晰、简洁、易于理解等04数据可视化应用领域:如商业智能、数据分析、数据新闻等数据可视化案例分析01案例一:Google Flu Trends02案例二:FacebookSocial Graph03案例三:Amazon SalesDashboard04案例四:NewYork TimesElection Map大数据可视化的设计原则3数据来源:确保数据来源可靠,真实反映实际情况数据处理:对数据进行清洗、整理和转换,保证数据质量数据展示:选择合适的图表类型,准确反映数据关系和趋势数据解读:对数据进行正确解读,避免误导和误解数据更新:定期更新数据,保持数据可视化的时效性数据安全:确保数据安全和隐私保护,防止数据泄露和滥用交互式设计:提供交互式功能,让用户能够更深入地了解数据布局设计:合理布局,避免元素过于拥挤或分散标签设计:使用简洁明了的标签,避免使用过于复杂的术语颜色选择:使用对比度高的颜色,提高数据之间的区分度数据可视化的视觉效果01清晰明了:数据可视化应使数据易于理解,避免过于复杂或模糊的视觉效果。

数据 可视化基础

数据 可视化基础
1
目录
数据分析与数据库初步 认识
第1章
企业级数据分析环境 的搭建
第3章
数据可视化基础 第5章
供应链数据分析 与数据挖掘实战
第7章
第2章
TPC-DS数据分 析案例简介
第4章
结构化查询语言 SQL
第6章
用户数据分析与 数据挖掘实战
2
本章内容
1 工作界面布局 2 基本可视化组件 3 进阶可视化组件 4 分析板块的应用 5 仪表板与故事
Desktop、Tableau Desktop等数据分析工具对TPC-DS数据
集展开数据可视化分析;
2. 掌握各种可视化组件的技术实现方法以及应用场景;
3. 掌握不同数据分析工具在操作、功能实现、可视化效果等方
面的异同点;
4. 了解分析板块的使用方法;
5. 掌握仪表板和故事的设计方法。
3
工作界面布局
析工具的工作界面布局,包括工作板、字段列表、值区域、筛
选器等;接下来讲解了基本与进阶的可视化组件的技术实现方
法、应用场景及可视化效果,包括堆积条形图、簇状条形图、
折线图、组合图、饼状图与环状图、表格与矩阵、仪表与卡片、
排名图、瀑布图、树状图、直方图、盒须图、散点图、词云图、
弦图与桑基图、地图等,在介绍可视化组件的基础上横向对比
• 【例5-1】使用堆积条形图或堆积百分比条形图探究store sales网络各城 市不同婚姻状况用户的消费总金额情况。
• 1. 堆积条形图 • Power BI 堆积条形图
12
堆积条形图
• Tableau堆积条形图
13
堆积条形图
• Power View堆积条形图
14
堆积条形图

大数据可视化之基础图表

大数据可视化之基础图表
• 如果把每日的K线图放在一张纸上, 就能得到日K线图,同样也可画出周 K线图、月K线图。
2018-7-23
20
(13)气泡图
• 气泡图与散点图相似, 不同之处在于:气泡图 允许在图表中额外加入 一个表示大小的变量进 行对比。
2018-7-23
21
(14)时间类
时间类图表也是应用较为广泛的 图表。一般按周分布。
Ø
每页显示一日信息的叫日历。
Ø
每页显示一个月信息的叫月历
Ø
每页显示全年信息的叫年历。
2018-7-23
22
(15)漏斗图
漏斗图形如漏斗,一般分层设计, 可以根据各层之间的变化情况进 行分析,发现该层次的问题,予 以改进。
2018-7-23
23
谢谢!
2018-7-23
24
• 指标值用指针形式展示, 落在相应的区域中。
2018-7-23
18
(11)热力图
• 热力图采用特殊高亮的 形式显示出高密度、高 数值等焦点区域,从而 引导阅读者的视觉访问。
2018-7-23
19
(12)K线图
• K线图形态可分为反转形态、整理形 态及缺口和趋向线等。K线图因其细 腻独到的标画方式而被引入到股市 及期货市场。股市及期货市场中的K 线图的画法包含四个数据,即开盘 价、最高价、最低价、收盘价,所 有的k线都是围绕这四个数据展开, 反映大势的状况和价格信息。
• 散点图将序列显示为一组点。值由 点在图表中的位置表示。
• 类别由图表中的不同标记表示。 • 散点图通常用于比较跨类别的聚合
数据。
2018-7-23
11
(5)面积图
• 面积图强调数量随时间而变化的程 度,也可用于引起人们对总值趋势 的注意。

大数据可视化之基础图表

大数据可视化之基础图表
• 柱状图(bar chart),是一种 以长方形的长度为变量的表 达图形的统计报告图。 • 由一系列高度不等的纵向条 纹表示数据分布的情况,用 来比较两个或以上的价值 (不同时间或者不同条件)。 • 只有一个变量。 • 通常利用于较小的数据集分 析。 • 在表征高度时使用柱状图。
2018-7-23 3
2018-7-23
13
(6)雷达图
• 雷达图(Radar Chart),又可 称为戴布拉图、蜘蛛网图 (Spider Chart),将多项指标画 在一个圆形的图标上,从而了解 指标情况及变动情况。 • 一般雷达图示为多维度的。 • 指标一般不建议超过8个。 • 也可以采用一组雷达图显示信息。
2018-7-23
横向条形图
• 可以理解为柱状图的旋转了 90度。 • 但是例如表征长度时一般用 横向条形图。
2018-7-23
4
直方图
• 直方图是一种统计图形。 • 需要注意的是,直方图和柱状 图之间的差别在于长方形之间 没有空隙。
2018-7-23
5
多维度条形图
• 簇状条形图 • 堆积条形图 • 百分比堆积条形图
2018-7-23
20
(13)气泡图
• 气泡图与散点图相似, 不同之处在于:气泡图 允许在图表中额外加入 一个表示大小的变量进 行对比。
2018-7-23
21
(14)时间类
时间类图表也是应用较为广泛的 图表。一般按周分布。 Ø
Ø Ø 每页显示一日信息的叫日历。 每页显示一个月信息的叫月历 每页显示全年信息的叫年历。
2018-7-23
8
复合饼图
2018-7-23
9
(3)折线图
• 折线图可以显示随时间(根据 常用比例设置)而变化的连续 数据,因此非常适用于显示在 相等时间间隔下数据的趋势。 • 在折线图中,类别数据沿水平 轴均匀分布,所有值数据沿垂 直轴均匀分布。

大数据可视化分析

大数据可视化分析

大数据可视化分析第一点:大数据可视化分析的概述大数据可视化分析是一种将复杂的数据集通过视觉元素如图表、图形和颜色转换为易于理解和分析的形式的技术。

在现代数据密集型行业中,企业机构正面临着来自不同来源的大量数据,这些数据包含了丰富的信息和洞察力。

然而,这些信息并非总是易于快速吸收和理解的,特别是在没有适当的视觉表示的情况下。

大数据可视化分析通过将数据转化为视觉故事,不仅使得数据探索和理解变得可能,而且促进了数据驱动决策的过程。

在实践中,大数据可视化分析涉及多个步骤。

首先是数据收集和整合,这要求从多个数据源提取数据,并将其整合到一个统一的视图中。

随后是数据的预处理,它包括清洗数据、处理缺失值、标准化格式等,以确保数据的质量和一致性。

接下来是数据转换,在这一步中,数据被转换为适合可视化的形式,可能包括数据的聚合、切分或其他操作。

最后,通过使用各种可视化工具和库(如Tableau、Power BI、D3.js等),将处理过的数据转换成图表、地图、热图等视觉元素。

大数据可视化分析具有多种优势。

首先,它能够揭示数据中的模式和趋势,帮助分析师识别关联性和异常。

其次,通过交互式可视化,用户可以深入探索数据,动态调整视图,以获得更深层次的洞察。

此外,可视化结果通常更容易被非技术背景的利益相关者理解,使得数据驱动的决策成为可能。

然而,大数据可视化分析也面临挑战,如如何选择合适的图表来最大化信息传递效率,以及如何确保可视化的准确性和公平性。

第二点:大数据可视化分析的实际应用在众多行业和领域中,大数据可视化分析正变得越来越重要。

以下是几个实际应用案例:1.零售业:零售商使用大数据可视化分析来跟踪销售趋势、库存水平和客户行为。

通过可视化工具,他们可以识别哪些产品最畅销,哪些地区需求最大,以及顾客的购买模式如何随时间变化。

这帮助零售商做出更有效的库存管理和营销策略。

2.金融服务业:金融机构利用大数据可视化分析来监控市场动态、风险管理和投资组合表现。

大数据基础--大数据可视化(刘鹏《大数据》课后习题答案)

大数据基础--大数据可视化(刘鹏《大数据》课后习题答案)

⼤数据基础--⼤数据可视化(刘鹏《⼤数据》课后习题答案)1.数据可视化有哪些基本特征? (1)易懂性,可视化可以使碎⽚化的数据转换成具有特定结构的知识,从⽽为决策⽀持提供帮助。

(2)必然性,⼤数据所产⽣的数据量必然要求⼈们对数据进⾏归纳总结,对数据的结构和形式进⾏转换处理。

(3)⽚⾯性,数据可视化的⽚⾯性特征要求可视化模式不能替代数据本⾝,只能作为数据表达的⼀种特定形式。

(4)专业性,专业化特征是⼈们从可视化模型中提取专业知识的环节,它是数据可视化应⽤的最后流程。

2.简述可视化技术⽀持计算机辅助数据认识的3个基本阶段。

(1)数据表达,数据表达是通过计算机图形图像技术来更加友好地展⽰数据信息。

(2)数据操作,数据操作是以计算机提供的界⾯、接⼝、协议等条件为基础完成⼈与数据的交互需求。

(3)数据分析,数据分析是通过数据计算获得多维、多源、异构和海量数据所隐含信息的核⼼⼿段,它是数据存储、数据转换、数据计算和数据可视化的综合应⽤。

3.数据可视化对数据的综合运⽤有哪⼏个步骤? (1)数据获取。

数据获取的形式多样,⼤致可以分为主动式和被动式两种。

(2)数据处理。

数据处理是对原始数据进⾏质量分析、预处理和计算等步骤。

数据处理的⽬标是保证数据的准确性、可⽤性。

(3)可视化模式。

可视化模式是数据的⼀种特殊展现形式,常见的可视化模式有标签云、序列分析、⽹络结构、电⼦地图等。

(4)可视化应⽤。

可视化应⽤主要是根据⽤户的主管需求展开,最主要的应⽤⽅式是⽤来观察和展⽰,通过观察和⼈脑分析进⾏推理和认知,辅助⼈们发现新知识或得到新结论。

4.简述数据可视化的应⽤。

可视化应⽤主要是根据⽤户的主管需求展开,最主要的应⽤⽅式是⽤来观察和展⽰,通过观察和⼈脑分析进⾏推理和认知,辅助⼈们发现新知识或得到新结论。

可视化界⾯也可帮助⼈们进⾏⼈与数据的交互,辅助⼈们完成对数据的迭代运算,通过若⼲步数据的计算实验⽣产系列化的可视化成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
大数据可视化基础
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
相关文档
最新文档