制冷技术概述
制冷技术介绍

制冷技术介绍制冷技术是指利用物理原理和化学原理,将热量从一个物体或空间中转移出来,使其温度降低的技术。
制冷技术在现代工业、生活中得到了广泛应用,如空调、冰箱、冷冻车、冷库等。
一、制冷技术的历史制冷技术的历史可以追溯到古代。
在公元前1000年左右,古埃及人就利用夜间的低温将水冷却,制作冰块用于制作饮料。
公元前400年左右,古希腊人用雪和冰制作冰块,用于降低饮料的温度。
到了18世纪,英国人威廉·卡门(William Cullen)首次成功制冷,并在此基础上开展了制冰研究。
19世纪,美国人约翰·戴维斯·布尔(John Davis Booth)发明了第一个机械制冷机,这标志着制冷技术进入了机械化时代。
二、制冷技术的原理制冷技术的原理主要有以下几种:1. 压缩制冷原理:利用压缩机将制冷剂压缩成高压气体,然后通过冷凝器将其冷却成液体,再通过膨胀阀使其膨胀成低温低压气体,从而实现制冷的目的。
2. 吸收制冷原理:利用吸收剂和制冷剂之间的化学反应,将热量从一个物体或空间中吸收出来,从而实现制冷的目的。
3. 热泵制冷原理:利用热泵的工作原理,将热量从一个物体或空间中吸收出来,然后通过压缩和膨胀等过程,将其释放到另一个物体或空间中,从而实现制冷的目的。
三、制冷技术的应用制冷技术在现代工业、生活中得到了广泛应用。
以下是一些常见的应用:1. 空调:通过制冷技术,将室内的热量转移至室外,从而实现室内温度的调节。
2. 冰箱:通过制冷技术,将冰箱内部的温度降低,从而实现食品的冷藏和冷冻。
3. 冷冻车:通过制冷技术,将车内的温度降低,从而实现食品的冷藏和冷冻。
4. 冷库:通过制冷技术,将库内的温度降低,从而实现食品的长期储存。
5. 医疗设备:制冷技术在医疗设备中也得到了广泛应用,如MRI、CT等设备的制冷系统。
总之,制冷技术在现代工业、生活中发挥着重要的作用,随着科技的不断发展,制冷技术也在不断创新和改进,为人们的生活带来了更多的便利和舒适。
制冷与低温技术原理复习提纲

制冷与低温技术原理复习提纲
一、制冷技术概述
1.制冷技术的定义和应用领域
2.制冷循环原理
二、制冷循环中的主要组件
1.压缩机:
a.压缩机的工作原理和分类
b.压缩机的性能参数和选择方法
2.冷凝器:
a.冷凝器的工作原理和分类
b.冷凝器的热流计算和设计方法
3.膨胀阀:
a.膨胀阀的工作原理和分类
b.膨胀阀的性能参数和选用方法
4.蒸发器:
a.蒸发器的工作原理和分类
b.蒸发器的热流计算和设计方法
三、常见的制冷循环
1.理想的制冷循环
2.逆温循环
3.逆向布朗循环
四、低温技术概述
1.低温技术的定义和应用领域
2.低温空气分离技术
五、低温制冷技术
1.低温制冷循环原理
2.低温制冷设备的组成和工作原理
3.液化天然气制冷技术
六、液化空气循环原理
1.液化空气循环的工作原理
2.液化空气循环的主要组件
七、低温实验装置
1.低温实验装置的组成和原理
2.低温实验装置的应用
八、制冷与低温技术的发展趋势
1.制冷与低温技术的现状和发展趋势
2.制冷与低温技术的节能与环保方向
以上仅是一个简单的制冷与低温技术原理复习提纲,希望能对你的学习有所帮助。
在实际学习过程中,你可以根据自己的需要进行相应的扩展和深入研究,更全面地理解和掌握制冷与低温技术的原理与应用。
冷库制冷技术手册

冷库制冷技术手册摘要:一、冷库制冷技术概述1.冷库制冷技术的背景与意义2.冷库制冷技术的基本原理二、冷库制冷系统的主要组成部分1.压缩机2.冷凝器3.膨胀阀4.蒸发器三、冷库制冷技术的发展趋势1.节能环保型制冷技术2.智能化控制系统3.制冷剂的替代与更新四、冷库制冷技术的应用领域1.食品冷链物流2.医药冷链存储3.工业制冷正文:冷库制冷技术手册随着社会经济的快速发展,制冷技术在各个领域的应用越来越广泛,尤其是在食品冷链物流、医药冷链存储等方面,冷库制冷技术发挥着举足轻重的作用。
本文将为您详细介绍冷库制冷技术的相关内容。
一、冷库制冷技术概述冷库制冷技术是一种利用制冷剂在蒸发器、压缩机、冷凝器等部件之间进行相变以吸收和释放热量的技术。
通过这一技术,可以在一定范围内实现对温度的精确控制,满足不同场合对低温环境的需求。
二、冷库制冷系统的主要组成部分1.压缩机:压缩机是制冷系统的核心部件,负责压缩制冷剂气体并将其输送至冷凝器。
2.冷凝器:冷凝器负责将压缩机输送来的高温高压制冷剂气体冷却并凝结为液态制冷剂。
3.膨胀阀:膨胀阀的作用是控制制冷剂的流量,从而调节制冷系统的制冷能力。
4.蒸发器:蒸发器是制冷剂液态在冷库内蒸发吸收热量的部件,从而实现降温的目的。
三、冷库制冷技术的发展趋势1.节能环保型制冷技术:为了应对能源危机和减少对环境的影响,节能环保型制冷技术越来越受到关注。
例如,采用自然制冷剂、磁悬浮压缩机等节能环保型技术。
2.智能化控制系统:随着信息技术的发展,智能化控制系统逐渐应用于冷库制冷技术中,实现对制冷过程的精确控制和优化。
3.制冷剂的替代与更新:为了减少对臭氧层的破坏,制冷剂的替代与更新成为制冷技术发展的重要方向。
例如,氢氟碳化物(HFCs)等替代制冷剂的研究与应用。
四、冷库制冷技术的应用领域1.食品冷链物流:冷库制冷技术在食品冷链物流中发挥着重要作用,可以确保食品在运输、储存过程中的新鲜度与质量。
冷库制冷技术手册

冷库制冷技术手册(原创实用版)目录一、冷库制冷技术的概述二、冷库制冷技术的工作原理三、冷库制冷技术的设备与材料四、冷库制冷技术的安装与维护五、冷库制冷技术的发展趋势与前景正文一、冷库制冷技术的概述冷库制冷技术是一种为冷库提供低温环境的技术,它通过制冷设备将室内的热量吸收,使室内温度降低,以满足食品、药品等物品的低温储存需求。
冷库制冷技术在食品、药品、化工、生物等行业具有广泛的应用。
二、冷库制冷技术的工作原理冷库制冷技术的工作原理主要是利用制冷剂在蒸发器、压缩机、冷凝器和膨胀阀等设备中不断循环流动,通过吸热和放热的过程,使室内温度降低。
具体来说,制冷剂在蒸发器中吸热蒸发,在压缩机中压缩升温,在冷凝器中放热冷凝,最后通过膨胀阀节流降温,再进入蒸发器循环。
三、冷库制冷技术的设备与材料冷库制冷技术主要设备包括压缩机、蒸发器、冷凝器和膨胀阀等。
其中,压缩机是制冷系统的核心设备,负责压缩制冷剂;蒸发器是制冷剂吸热的地方,冷凝器是制冷剂放热的地方,膨胀阀负责调节制冷剂的流量。
此外,冷库制冷技术还需要保温材料、冷却塔、水泵等辅助设备。
四、冷库制冷技术的安装与维护冷库制冷技术的安装主要包括设备安装和管道连接。
设备安装时要保证设备的稳定性和安全性,管道连接时要保证连接牢固、密封良好。
冷库制冷技术的维护主要包括设备维护和系统维护。
设备维护要定期检查设备的运行状况,发现问题及时处理;系统维护要定期清洗蒸发器和冷凝器,保证系统的正常运行。
五、冷库制冷技术的发展趋势与前景随着科技的发展,冷库制冷技术也在不断发展。
未来的冷库制冷技术将更加节能、环保、智能化。
例如,采用变频技术、热回收技术等,可以提高制冷系统的能效比;使用环保制冷剂,可以减少对环境的影响;实现远程监控、自动控制等,可以提高制冷系统的智能化水平。
空调制冷专业介绍

空调制冷专业是一门涉及热力学、流体力学、化学、电子学等多个学科的工程技术领域,主要研究人工环境调节技术和设备的设计、制造、安装、运行和维护。
以下是空调制冷专业的一些基本介绍:1. 制冷原理:制冷技术基于制冷剂在封闭循环中的状态变化来实现热量转移。
制冷剂在压缩机的作用下被压缩,温度和压力升高,然后流经冷凝器放热液化,再通过节流装置(如膨胀阀)降低压力和温度,变为低温低压的蒸汽,最后流经蒸发器吸收热量变为气态,完成一个制冷循环。
2. 空调系统:空调系统旨在提供舒适的室内环境,主要包括制冷系统、加热系统、通风系统和空气净化系统。
制冷系统负责在夏季降低室内温度,加热系统在冬季提供暖气,通风系统保证空气流通,而空气净化系统则改善室内空气质量。
3. 制冷剂:制冷剂是制冷系统中传递热量的介质,它必须具备在蒸发器中吸热蒸发、在冷凝器中放热液化的特性。
常见的制冷剂有R-22、R-407C、R-410A等,它们对环境的影响不同,目前趋向于使用对环境影响小的制冷剂。
4. 节能与环保:随着科技进步和环境保护意识的增强,空调制冷专业的研发重点之一是提高能效比和降低对环境的负担。
这包括使用高效的压缩机、换热器、节流装置,以及研发新型制冷剂。
5. 自动化控制:现代空调制冷系统采用先进的自动化控制技术,通过传感器、执行器和计算机控制系统实现对室内环境的精细化管理,如温度、湿度、洁净度的精确控制。
6. 应用领域:空调制冷技术广泛应用于住宅、商业建筑、交通工具(如汽车、飞机、船舶)、数据中心、医疗设备、食品冷冻等领域。
7. 专业发展:随着全球气候变化和能源危机的挑战,空调制冷专业的发展趋势包括开发更加节能环保的制冷技术,如吸收式制冷、太阳能制冷、地热制冷等;研究新型制冷剂和替代能源;以及利用物联网技术提高空调系统的智能化管理水平。
在中国,随着经济的快速发展和人民生活水平的提高,空调制冷行业得到了迅猛发展,对专业人才的需求也日益增长。
实用制冷原理知识点总结

实用制冷原理知识点总结一、制冷原理概述制冷原理是指利用一定的物理原理和技术手段,通过设备将热量从一个热源移动到另一个低温热源的过程。
在日常生活中,制冷技术被广泛应用于制冷空调、冷藏冷冻等方面,为人们提供了舒适的生活环境和保鲜储存食品的条件。
二、热力学基础1. 热力学第一定律热力学第一定律,也被称为能量守恒定律,指出热量是能量的一种转换形式,能量守恒定律指出了能量不会凭空消失或产生,只会在物体之间转移或转换,这为制冷原理提供了理论基础。
2. 热力学第二定律热力学第二定律是制冷原理的重要基础,它阐明了热子不能自行从低温物体传到高温物体,使得物体的温度不会自发地下降。
这一定律指出了热力学过程中热量传递的方向,为制冷原理提供了方向性指导。
3. 熵增原理熵是热力学中的基本物理量,其增加代表着物质的无序程度的增加。
热力学第二定律可以归结为熵增原理,即在孤立系统中,熵不会自行减少,而是随着时间增加。
熵增原理也为制冷原理提供了理论基础。
三、热力学循环1. 理想气体循环理想气体循环是制冷原理中的基本循环之一,包括压缩、冷却、膨胀和加热四个过程。
理想气体循环的热力学循环过程可以被用于实现空调和制冷设备。
2. 蒸汽压缩循环蒸汽压缩循环是制冷原理中应用最为广泛的一种循环方式,它是一种通过压缩和膨胀蒸汽来实现制冷的循环过程。
蒸汽压缩循环通过蒸汽在高温高压的条件下吸收热量,再通过压缩和膨胀来降低温度,最终实现制冷的目的。
3. 吸收式循环吸收式循环是一种利用溶液的物理变化来实现制冷的循环过程,其工作原理是将制冷剂溶解在吸收剂中,然后在加热的条件下从溶液中蒸发出来,再在冷凝器中冷凝成液体,形成循环的过程。
四、制冷设备1. 制冷剂制冷剂是制冷设备中的重要组成部分,它通过循环流动并进行蒸发和冷凝来实现热量的转移和降温。
常见的制冷剂包括氨、氟利昂、R134a等,它们在不同的制冷设备中具有各自的应用特点。
2. 压缩机压缩机是制冷设备中的核心部件,它通过不断压缩制冷剂蒸汽来提高其压力和温度,然后通过冷凝器的冷却将其变成液态制冷剂。
制冷技术

制冷技术1制冷技术:研究如何获得低温的一门技术2制冷:使某一空间或某物体达到低于周围环境介质的温度,并维持这个低温的过程3环境介质:指自然界的空气和水4制冷过程:不断地从该空间或该物体中取出热量并转移到环境介质中去的过程5制冷途径:天然冷源、人工制冷6人工制冷的方法:液体气化制冷、气体膨胀制冷、热电制冷7制冷技术按制冷温度分:(1)普通制冷(-120C)(2)深度制冷(-120C——253C)(3)超低温制冷(-253C以下)8制冷剂或工质:在制冷装置中用来实现制冷循环的工作物质9实现逆卡若循环的条件:(1)高低热源温度恒定、(2)工质在冷凝器和蒸发器中与外界热源之间无传热温差(3)制冷工质流经各个设备时无摩擦损失或其他不可逆损失10卡若循环分:正卡若循环、逆卡若循环11逆卡若循环的组成及循环过程:12制冷系数:制冷剂从被冷却物体中吸取的热量q0与循环中所消耗功∑W的比值,即:13(1)逆卡若循环制冷系数(无传热温差):(2)逆卡若循环制冷系数(有传热温差)14蒸汽压缩机采用逆卡若循环的困难(1)压缩过程是在湿蒸汽区中进行的,危险性很大(2)膨胀机等熵膨胀不经济(3)无温差的传热实际上是不可能15理想循环与理论循环的不用点:(1)整齐的压缩采用干压缩代替湿压缩(2)膨胀阀代替膨胀机(3)制冷剂在冷凝器和蒸发器中的传热均为定压过程,并具有传热温差16理论循环的四大件:压缩机、冷凝器、膨胀阀、蒸发器17采用压焓图的原因:(含图)由于制冷剂在蒸发器内吸热气化,在冷凝器中放热冷凝都是再定压下进行的,而定压过程中所交换的热量和压缩机在绝热压缩过程中所消耗的功,都可用焓差来计算,而且制冷剂经膨胀阀绝热节流后,焓值不变。
18理论循环的压焓图表示:有关计算:制冷量q0=h1-h5单位容积制冷量q v= q0/v1质量流量M R=φ0/ q0体积流量V R=φ0/ q v热负荷φk=M R q k=M R(h2-h4)理论耗功率P th=M R w0=M R(h2-h1)制冷系数εth= q0 /w0= (h1-h5)/ (h2-h1)19实现液体过冷的办法:(1)增设专门的过冷设备(2)适当的增加冷凝器的传热面积,使一部分传热面积用于过冷(3)采用回热循环20看图确定个点含义:1点的确定:t1=t0(蒸发温度)——p1 s14点的确定:t4=t k(冷凝温度)——p4 h41’点的确定:t1’=t吸和p1’=p1——v1’h1’s1’2’点的确定:p2’=p4和s1’= s2’——h2’4’点的确定:t4’=t rc(过冷温度)和p4’=p4——h4’(也可用h4-h4’=h1’-h1)5’点的确定:h4’=h5’21过冷循环在压焓图上的表示:有关计算:制冷量q0=h1-h5’单位容积制冷量q v= q0/v1质量流量M R=φ0/ q0体积流量V R=φ0/ q v热负荷φk=M R q k=M R(h2-h4’)理论耗功率P th=M R w0=M R(h2-h1)制冷系数εth= q0 /w0= (h1-h5’)/ (h2-h1)22过热循环在压焓图上的表示:有关计算:(在蒸发器中叫有效过热)制冷量q0=h1’-h5 (有效过热但无效过热用q0=h1-h5)单位容积制冷量q v= q0/v1’质量流量M R=φ0/ q0体积流量V R=φ0/ q v热负荷φk=M R q k=M R(h2’-h4)理论耗功率P th=M R w0=M R(h2’-h1’)制冷系数εth= q0 /w0= (h1’-h5)/ (h2’-h1’)23回热循环图及其在压焓图上的表示:有关计算:制冷量q0=h1’-h5’单位容积制冷量q v= q0/v1’质量流量M R=φ0/ q0体积流量V R=φ0/ q v热负荷φk=M R q k=M R(h2’-h4’)理论耗功率P th=M R w0=M R(h2’-h1’)制冷系数εth= q0 /w0= (h1’-h5’)/ (h2’-h1’)24制冷计算时注意点:(1)确定制冷剂(2)确定制冷剂的类型(3)压焓图25单级蒸汽压缩机式制冷理论循环的热力计:(1)单位质量制冷量q0:q0=h1-h5(kj/kg)(2)单位容积制冷量q vq v=q0/v1=h1-h5/v1(kj/m)(3)制冷装置中制冷剂的质量流量M R:M R=Φ0/q0(kg/s)(4)制冷装置中制冷剂的体积流量V R:V R=Φ0/q v(m/s)(5)冷凝器的热负荷Φk:Φk= M R q k= M R(h2-h1) (kW)(6)压缩机的理论耗功率P th:P th= M R w0= M R(h2-h1)(7)理论制冷系数εth:εth= q0 /w0=h1-h5/h2-h126实际制冷循环与理论制冷循环的差别:(1)制冷剂在压缩机中的压缩过程不是等熵过程(不是绝热过程)(2)制冷剂通过压缩机吸、排气阀时有流动阻力和热量交换(3)制冷剂通过管道和设备时,制冷剂与管壁或器壁之间存在摩擦阻力及与外界的热交换(4)冷凝器和蒸发器内存在着流动阻力,导致了高压气体在冷凝器的冷却冷凝和低温液体在蒸发器中的气化都不是定压过程,同时也有热量交换27制冷剂:又称制冷工质,在制冷装置中实现制冷循环的工作物质28对制冷剂的要求:环境方面的要求、热力学方面的要求、物理化学方面的要求29环境方面的要求:ODP:指大气层臭氧层损耗潜能值GWP:指全球温室效应潜能值ODP、GWP值必须是0或尽可能小30热力学方面的要求:(二高四低)1)临界温度要高2)单位容积制冷量要大3)蒸发温度要低4)冷凝温度要低5)凝固温度要低6)绝对指数要低31物理化学方面的要求:流动性好、传热性好、安全性好、热稳定性好、化学稳定性好、溶解性好32制冷剂的种类:(CmHnFxClyBz)无机化合物:R7+分子量氟利昂(卤代烃): R(m+1)(n+1)xBz碳氢化合物(烃类):1)烷烃类:与氟利昂一样2)烯烃类:R1+(m-1)(n+1)x混合制冷剂:33CFC代替物的选择:对环境安全、具有良好的热力性能、具有可行性34代码和种类:R12——CFC。
空调制冷技术与节能效果分析

空调制冷技术与节能效果分析随着人们生活水平的不断提高,空调成为了我们日常生活中不可或缺的一部分。
然而,随之而来的高能耗和环境污染也引发了人们对节能环保的关注。
因此,研究空调制冷技术的节能效果显得尤为重要。
本文将对空调制冷技术与节能效果进行分析,并探讨如何通过使用先进的技术手段来提高空调的节能性能。
一、空调制冷技术概述空调制冷技术是指通过控制空气循环和温度调节,使室内温度降低到所需的舒适范围。
目前,主要的空调制冷技术包括传统制冷循环、换热器技术和制冷剂选择。
1. 传统制冷循环传统制冷循环是目前主流的空调制冷技术。
它主要通过蒸发器吸热、压缩机压缩制冷剂、冷凝器释放热量和膨胀阀调节制冷剂流量等来实现制冷效果。
虽然传统制冷循环成熟可靠,但其能耗较高,效率较低。
2. 换热器技术换热器技术是改善空调制冷效果的重要手段之一。
通过优化换热器的结构和材料,可以提高制冷循环中的传热效率,降低热量损失,从而减少能量消耗。
3. 制冷剂选择制冷剂是空调制冷过程中至关重要的元素。
传统制冷剂如氟利昂对臭氧层有破坏作用,对环境造成严重危害。
因此,研发和使用环保型制冷剂成为了当今空调技术发展的趋势。
环保型制冷剂具有低全球变暖潜势和零臭氧层破坏潜力,能够显著降低空调系统的环境风险。
二、节能效果分析节能是当前空调技术发展的重要目标之一。
下面将从多个角度分析空调制冷技术的节能效果。
1. 能耗降低采用先进的空调制冷技术可以显著降低能耗。
换热器技术的应用可以提高传热效率,减少能量损失。
同时,选择高效制冷剂和减少制冷剂泄漏也能降低能耗。
2. 效果优化空调制冷技术的不断创新可以提高制冷效果,实现更快速、更精准的温度调节。
利用智能控制系统,可以根据实时需求自动调节空调的运行模式和风速,避免能耗的过度浪费。
3. 环境保护采用环保型制冷剂可以有效减少对臭氧层和气候的影响,降低空调系统对环境的破坏性。
与此同时,减少能源消耗也能间接减少对环境的负面影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章概论1.1制冷技术及其应用1.1.1.制冷的基本概念制冷技术是为适应人们对低温条件的需要而产生和发展起来的。
制冷是指用人工的方法在一定的时间和空间内从低于环境温度的空间或物体中吸取热量,并将其转移给环境介质,制造和获得低于环境温度的技术。
能实现制冷过程的机械和设备的总和称为制冷机。
制冷机中使用的工作介质称为制冷剂。
制冷剂在制冷机中循环流动并与外界发生能量交换,实现从低温热源吸取热量,向高温热源释放热量的制冷循环。
由于热量只能自动地从高温物体传给低温物体,因此制冷的实现必须消耗能量,所消耗能量的形式可以是机械能、电能、热能、太阳能、化学能或其它可能的形式。
制冷几乎包括了从室温至0K附近的整个热力学温标。
在科学研究和工业生产中,常把制冷分为普通制冷和低温制冷两个体系。
根据国际制冷学会第13届制冷大会(1971年)的建议,将120K 定义为普冷与低温的分界线。
在120K和室温之间的温度范围属于“普冷”,简称为制冷;在低于120K 温度下所发生的现象和过程或使用的技术和设备常称为低温制冷或低温技术,但是,制冷与低温的温度界线不是绝对的。
1.1.2.制冷技术的应用制冷技术几乎与国民经济的所有部门紧密联系,利用制冷技术制造舒适环境以保障人身健康和工作效率;利用制冷技术生产和贮存食品;利用制冷技术来保证生产的进行和产品质量的要求。
制冷技术的应用几乎渗透到人类生活、生产技术、医疗生物和科学研究等各领域,并在改善人类的生活质量方面发挥巨大的作用。
1.1.2.1.商业及人民生活食品冷冻冷藏和空气调节是制冷技术最重要的应用之一。
商业制冷主要用于对各类食品冷加工、冷藏贮存和冷藏运输,使之保质保鲜,满足各个季节市场销售的合理分配,并减少生产和分配过程中的食品损耗。
典型的食品“冷链”由下列环节组成:现代化的食品生产、冷藏贮运和销售,最后存放在消费者的家用冷藏冷冻装置内。
舒适性空气调节为人们创造适宜的生活和工作环境。
如大中型建筑物和公共设施的空调,各种交通运输工具的空调装置,家用空调等。
近年来,家用空调器已成为我国居民消费的热点家电产品之一。
2003年我国家用空调器的年产量达3500万台,出口1000多万台,中国已成为世界空调产品的生产基地,产量约占世界总产量的40%。
工业空调不仅为在恶劣环境中工作的员工提供一定程度的舒适条件,而且也包括有利于生产和制造而作的空气调节。
如:在冷天或炎热环境中,以维持工人可以接受的工作条件;纺织业、精密制造、电子元器件生产和生物医药等生产行业为了保证一定的产品质量和数量,需要空气调节系统提供合适的生产环境。
1.1.2.2.工农业生产化学工业,利用制冷实现气体分离、气体冷疑;使混合物中一种物质凝固,从而与其它物质分离;液体的低温贮存;为化学合成过程提供合适的温度和压力,移去反应热等。
石油裂解、合成橡胶、合成塑脂、燃料生产、化肥生产需要制冷;天然气液化、脱水、贮运也需要制冷。
机械制造,对钢进行低温处理(-70℃~-90℃)可以改变其金相组织,使奥氏体变成马氏体,提高钢的硬度和强度。
在钢铁工业中,需要对高炉鼓风进行低温除湿,以降低铁水的焦化比,保证铁水的质量。
在机器的装配过程中,利用低温方便地进行零件间的过盈配合。
低温粉碎,低温粉碎技术是利用材料在低温状态下的冷脆性能对材料进行粉碎。
该技术的主要特点和用途如下:可以加工在常温下无法粉碎的高弹性材料,如回收钢结构轮胎中橡胶;研制食品、中草药的细微颗粒;加工生产纳米材料,而且具有绿色生产的特点。
建筑工业,用冻土法挖掘土方、建筑桥梁基础、地下工程等可以提高施工效率,保障施工安全。
制冷还应用于冷却巨型的混凝土块,排除混凝土固化时释放的化学反应热,以免发生热膨胀和混凝土应力。
农、牧业,制冷用于对农作物种子进行低温处理;建造人工气候培育室;保存和处理优良物种、畜种。
某些食品、蔬菜等在冷冻干燥过程中,利用升华作用以除去水分,便于贮存和运输,一些速溶咖啡就是采用这种冷冻干燥工艺进行生产的。
低温与真空,低温是获取真空或高真空最有效手段之一,利用气体在低温表面的凝结、低温吸附以及冷凝霜的捕集作用,可获得<10_12Pa的极高真空。
真空技术在空间研究和电子工业中有这样用途。
1.1.2.3.低温生物医学技术制冷在低温生物医学中发挥着日益重要的作用。
使用真空冷冻干燥法制取药物,低温保存血浆、疫苗、细胞组织、某些药品及生物样品;冷冻医疗是可靠、安全、有效易行的治疗方法,特别是用于治疗恶性肿瘤;用局部冷冻配合手术有很好的治疗效果,如心脏、肿瘤、白内障、扁桃腺等低温外科手术,皮肤、眼珠等的移植手术等。
诸多的现代医疗器械、治疗仪、诊断仪也使用了制冷技术。
1.1.2.4.科学实验研究随着能源需求的日益增加,在开发和合理使用现有能源、探索代用燃料和新能源、改善能源结构、改善环境条件等方面,制冷技术发挥了越来越重要的作用。
如天然气开采、贮存和运输,核聚变的开发和利用,磁悬浮高速列车的运行成功,低温超导技术,氢能的生产和利用等。
低温在航空与航天领域的应用,涉及生命维持系统、地面研究设施,以及超高音速在空间边缘飞行的推进系统。
地面试验装置需用大容积的舱室来模拟深空间条件,高真空的空间环境要用液氮和液氦冷却的低温泵来产生,运载工具的固体或液体燃料的生产等,低温技术已成为空间计划的关键部分之一。
低温技术还用于仪器仪表、大型计算机、红外装置的冷却。
红外天文卫星用4K的液氦和1.8K 的超流氦冷却的仪器来探测宽频道的红外辐射,红外探测器利用固体制冷剂(氢、氖和甲烷等)的升华(或采用辐射制冷技术)来冷却。
近年来,磁共振成像技术(MRI)已被许多医院采用。
采用超导量子干涉仪测量人体的心磁图和脑磁图的技术也将走向应用。
这些器件在不用电极接触人体或不需要任何手术的情况下,探测人体的组织病变,并使精度大为提高。
表1 与低温研究有关的诺贝尔奖金获得者及研究领域么研究低温现象本身,要么研究涉及低温。
制冷与低温技术已发展成为自然科学中重要的分支,渗透到科学技术的各个领域。
在能源和交通、航空和航天、现代工业、科学研究和生物医疗等部门,一旦离开制冷技术,它们的发展和现代化的进步是难以实现的。
表2 制冷技术的应用1.2制冷技术的发展1.2.1.制冷技术的发展历史人类最早将冬季自然界的天然冰雪保存到夏季使用,这在我国、埃及和希腊等文化古国的历史上都有记载。
人工制冷的方法是随着工业革命而开始的。
1748年英国柯伦证明了乙醚在真空下蒸发时会产生制冷效应。
1755年苏格兰人W.Callen发明了第一台蒸发式制冷机,1781年意大利人凯弗罗进行了乙醚蒸发制冷实验。
1834年美国人J.Perkins获得了乙醚在封闭循环中膨胀制冷的英国专利,并制得了冰。
1856年苏格兰人J.Harrison发明了压缩式制冷机,采用二氧化碳、二氧化硫、氨、氯甲烷作制冷剂。
1859年法国人F。
Garre发明氨吸收式制冷机。
美国人D.Byok于1873年制造了第一台氨压缩机。
次年,德国林德建成了第一个氨压缩式制冷系统。
此后,氨压缩式制冷机在工业上获得普遍应用。
直至1929年氟利昂发现之后,氟利昂压缩式制冷机才快速发展起来,并在应用中超过了氨制冷机。
空气制冷机的发明比蒸气压缩式制冷机稍晚。
1844年美国人J.Gorrie发明了空气循环式制冷机,并于1851年获得美国专利,这是世界第一台制冷和空调用机器。
1862年英国基尔克发明了封闭循环的空气制冷机,并获英国专利。
1858年美国人尼斯取得了冷库设计的第一个美国专利,从此商用食品冷藏事业开始发展。
由于制冷技术的发展和在工业生产中的应用,各发达国家率先建立本领域的学术组织。
1888年英国成立了“英国冷库和冰协会”,1891年美国成立“美国冷藏库协会”。
1900年法国成立了“法国和殖民地冷藏工业理事会”。
1903年和1904年,美国先后成立了“美国制冷设备制造协会”和“美国制冷工程师协会”。
在此基础上,国际制冷学会(IIR)于1908年在法国巴黎宣告成立。
它是一个政府间的科技性国际组织,现在大约有60个国家会员。
我国于1978年加入该会,为二级会员国。
在家用冰箱方面,世界上第一台电冰箱是美国考布兰工程师在1918年设计的。
自此之后,制冷技术在人民生活中获得应用。
空调技术的应用起始于1919年,美国芝加哥兴建了第一座空调电影院,次年开始在教堂配备空调。
11年之后出现了舒适空调火车。
随着制冷机型式的不断发展,制冷工质的种类也逐渐增多。
最早在压缩式制冷机中应用有的制冷剂是空气、二氧化碳、乙醚。
在吸收式制冷机中应用的是水和硫酸。
以后渐渐在压缩式制冷机中应用氯甲烷、二氧化硫和氨等。
1929年以后,随着氟利昂制冷剂的出现,制冷压缩机和制冷系统的种类也不断发展。
|我国解放前制冷工业十分落后,基本上没有制造制冷机的能力。
到1949年全国解放时,全国冷库总容量只有35000t,相当于现在一个城市的拥有容量。
到第一个五年计划末期,全国制冷机制造厂发展到十几家。
产品30多种。
改革开放以来,我国的制冷技术获得迅猛发展,逐步形成门类齐全、基本满足国民经济发展的繁荣景象。
近十年以来,我国的制冷空调工业发展迅猛,空调器年产量现已达到3000万台,电冰箱年产量已接近2000万台,社会拥有量接近亿台,制冷空调工业已成为国民经济中的重要支柱产业。
1.2.2.制冷的最新技术发展制冷与低温技术的高速发展主要得益于世界范围的对食品、舒适和健康方面的需求和能源、交通、电子、通讯、材料科学、航天航空技术、低温医学和低温生物学的技术发展。
主要表现在以下几个方面。
1.2.2.1.微电子和计算机技术的应用微电子和计算机技术的发展和应用,使制冷机及其热力循环的理论研究和系统分析、制冷机的设计、制造和控制技术得以升级。
应用计算机模拟制冷循环,研究制冷系统及部件的稳态和瞬态过程,研究制冷的热物理特性,采用优化设计的方法确定产品的结构参数与系统参数,使制冷系统设计和制造过程自动化,从而可能获得最佳的空调器效率[2];微电子和计算机的应用使制冷自动控制技术产生质的飞跃,最佳运行工况调节、蒸发器供液量精确调节、压缩机能量调节、自动除霜、安全保护等过程控制更为理想化、人性化和智能化[3,4]。
1.2.2.2.新材料在制冷产品中的应用陶瓷及陶瓷复合材料在压缩机上的应用改善了导热、耐磨和润滑性能,而且有质轻、强度和忍性好,化学及尺寸稳定性好,表面光洁度好的优点;聚合材料作为制冷机的电绝缘、减振件和软管材料,制造压缩机中的复杂零件如转子、阀片等,使制冷产品性能、寿命和成本效益提高;采用高效换热技术如亲水膜、内螺纹铜管等大幅减少了换热过程的不可逆损失;纳米材料的应用:强化材料的换热、耐磨和抗腐蚀性能。
1.2.2.3. 压缩机技术的发展以高效、环保、可靠、低振、低噪、结构简单和成本低为追求目标,由往复式向回转式、涡旋式以及变频控制发展,主要特征为:新材料的应用、CAD 等现代设计技术、CAM 等现代制造技术、容量调节技术、制冷剂向HFC 和天然工质转型。