磁化率磁导率磁场强度磁感应强度
饱和磁感应强度,磁化强度的详细介绍

现在你通过电流I,把磁场H加到某种材料当中,你所要研究的粒子,不再活在真空,而在材料里活动,它可以是金属里本身自带的电子,也可以是通过外界射束打入的。这都无妨,只需记住现在你要研究的粒子不再在真空,而在介质里。一个粒子受到的力学上的响应,当然是与这个点的总磁场有关。因此,B的意义就变得丰富了,它代表在该点处的总磁场。为什么说“总”磁场呢?考虑空间里的一点,没有材料的时候磁场值为H。现在有了材料,这一点处于材料中,外加场H穿进材料后,材料受H影响产生了一些附加场,在该点处的磁场不再是H了。受外界磁场影响使得材料里也有内部额外磁场的过程,我们叫它“磁化”。我们希望一件事物更加具体,就说把它具体化,希望一个企业有规模,就说把它规模化,同样希望一块材料里面有更多额外磁场,就说把它“磁化”。
进一步,χ>0但是数值不太大的,你命名他为顺磁介质,它顺从的跟着磁场方向嘛;χ>0数值比较大的,就是铁磁介质,由于其他机制(超过深度不加以介绍),外加的磁场产生了很大的内磁场,比用用电流制造永磁铁的过程;χ<0,就是H给材料产生的外加磁场M与H方向相反,所以就是反磁介质,或叫抗磁介质;如果是第一类超导体,它所谓的完全抗磁性,就是这个意思:外加场H,总有感生的内场M,把外场抵消,使得超导体内部磁场为零。物理上看,好像磁场穿不进来一样。
这个公式多了个外加因子,不好看。现在你开始考虑构建“磁导率”这个概念,因为H只是电流外加给的磁场,你希望通过粒子受力,直接定义一个粒子感受到的磁场——叫它B,使得F= qvⅹB成立。现在你理解的磁导率,就是一个粒子对外界磁场的受力响应程度:磁导率大,那么同样大的外加磁场H使得粒子受力的响应(如偏转)也越大;磁导率如果为零,那么多大的磁场也不会使得粒子有偏转等力学反应,磁导率如果近乎无限大,你只要加一丁点外磁场H,粒子就已经偏转的不亦乐乎了。
磁学中的磁场强度与磁矩的关系解析

磁学中的磁场强度与磁矩的关系解析磁学是物理学的一个重要分支,研究的是磁场及其与物质之间的相互作用。
在磁学中,磁场强度和磁矩是两个关键概念,它们之间存在着密切的联系和相互影响。
首先,我们来了解一下磁场强度的概念。
磁场强度是指单位面积上垂直于磁场方向的力的大小,通常用字母H表示。
磁场强度与磁场的强弱成正比,可以通过安培定律来计算。
在真空中,磁场强度与磁感应强度之间的关系为H=μ0B,其中μ0是真空中的磁导率,B是磁感应强度。
这个公式表明,磁场强度与磁感应强度成正比,而磁感应强度则是由磁矩所产生的。
接下来,我们来探讨一下磁矩的概念。
磁矩是指物体在磁场中受力的大小和方向,通常用字母m表示。
磁矩与磁场之间存在着一种相互作用,这种相互作用可以通过磁矩与磁场的叉乘来描述。
根据磁矩的定义,我们可以得到磁矩与磁场之间的关系为τ=m×B,其中τ是磁矩受力的大小和方向,B是磁场强度。
这个公式表明,磁矩与磁场强度之间存在着一种相互作用,磁矩在磁场中会受到力的作用。
在磁学中,磁场强度和磁矩之间的关系可以通过磁化强度来描述。
磁化强度是指单位体积内磁矩的总和,通常用字母M表示。
磁化强度与磁场强度之间存在着一种线性关系,可以用磁化率来表示。
磁化率是指磁化强度与磁场强度之间的比值,通常用字母χ表示。
根据定义,磁化率可以表示为χ=M/H。
这个公式表明,磁化率是磁化强度与磁场强度之间的比值,它描述了物体对磁场的响应程度。
磁场强度和磁矩之间的关系还可以通过磁化曲线来描述。
磁化曲线是指磁场强度和磁化强度之间的关系曲线,通常用字母B-H曲线表示。
磁化曲线可以反映物体对磁场的响应特性,通过分析磁化曲线可以了解物体的磁性质。
在磁化曲线中,当磁场强度增大时,磁化强度也会增大,但是增长速度会逐渐减小,最终趋于饱和。
这是因为在磁场强度较低时,物体的磁矩会随着磁场的增强而增大;但是当磁场强度达到一定值后,物体的磁矩已经趋于饱和,不再随磁场的增强而增大。
磁化率磁导率磁场强度磁感应强度

垂直交变的电场会在周围形成一个水平交变的磁场,而水平交变的磁 场又会在远方形成一个垂直的交变电场。这样电磁波就向四周传播出 去了。
电磁波的产生和传播
由麦克斯韦的电磁场理论,变化的电场产生变化的磁场, 而变化的磁场又产生变化的电场,这样就产生了电磁波。
E B
E B
E
顺磁性物质 相对磁导率稍大于1。如空气、 铝、铬、铂 反磁性物质 相对磁导率稍小于1。如氢、 铜等。 铁磁性物质 相对磁导率远大于1,其可达 几百甚至数万以上,且不是一个常数。如 铁、钴、镍、硅钢、坡莫合金、铁氧体等。
磁化率
• 磁化率,表征磁媒介质属性的物理量(磁导 率为表示媒介质导磁性能)。
磁导率
• 磁导率 :一个用来表示媒介质导磁性能的物 理量。不同的媒介质对磁场的影响不同,影响 的程度与媒介质的导磁性能有关。 • 意义:表示在空间或在磁芯空间中的线圈流过 电流后,产生磁通的阻力或者是其在磁场中导 通磁力线的能力。 • 公式表示: u=B/H 单位为H/m • μ为介质的磁导率,或称绝对磁导率。通常使 用的是磁介质的相对磁导率μr,其定义为磁导 率μ与真空磁导率μ0之比。 μ0=4π×10-7H/m
电流为1 A。 )
5、热力学温度(Kelvin温度)T;开(尔文) K(水三相点 热力学温度的1/273.16 ) 6、发光强度I(IV);坎(德拉)cd(是一光源在给定方向上 的发光强度,该光源发出频率为540×1012 Hz的单色辐射,且 在此方向上的辐射强度为(1/683)W/sr。 ) 7、物质的量n(v)。摩(尔)mol(是一系统的物质的量,
对于顺磁性或抗磁性物质顺次抗磁是根据磁导率来说的通常m的绝对值都很小大约在10磁导率和磁化率之间的联系电磁波电磁波从低频率到高频率包括有无线电波微波红外线可见光紫外光x射线和伽马射线等等
材料物理性能复习题

一、名词解释光矢量:即是光波的电场强度矢量。
双折射:当光束通过各向异性介质外表时,折射光会分成两束沿着不同的方向传播,这种由一束入射光折射后分成两束光的现象。
光轴:通过改变入射光的方向,可以发现,在晶体中存在一些特殊的方向,沿着这些方向传播的光不会发生双折射,这些特殊的方向称为晶体的光轴。
热膨胀:物质在加热或冷却时的热胀冷缩现象称为热膨胀。
朗伯特定律:l e I I α-=0,在介质中光强随传播距离呈指数形式衰减的规律即称为朗伯特定律。
热稳定性:指材料承受高温的急剧变化而不致破坏的能力,也称为抗热震性。
滞弹性:指材料在交变载荷的情况下表现为应变对应力的滞后特性即称为滞弹性。
应力感生有序:溶解在固溶体中孤立的间隙原子,置换原子,在外加应力时,这些原子所处的位置的能量即出现差异,因而原子要发生重新分布,即产生有序排列,这种由于应力引起的原子偏离无序状态分布叫应力感生有序。
穆斯堡耳效应:固体中的无反冲核共振吸收即为穆斯堡尔效应。
高分子的分子结构:指除具有低分子化合物所具有的,如同分异构、几何异构、旋光异构等结构特征之外,还有高分子量,通常由103~105个结构单元组成的众多结构特点。
高分子的聚集态结构:是指大分子堆砌、排列的形式和结构。
均方末端距:是描述高分子链的形状和大小时采用末端距的2次方的平均值,用r 2表示,称为均方末端距。
二、填空题1、以下图为聚合物的蠕变和回复曲线,可见一个聚合物材料的总形变是三种形变之和,其中 ε1为普弹形变、 ε2为高弹形变、 ε3为粘性流动。
2、从微观上分析,光子与固体材料相互作用的两种重要结果是:电子极化和电子能态转变3、在光的非弹性散射光谱中,出现在瑞利线低频侧的散射线统称为斯托克斯线,而在瑞利线高频侧的散射线统称为反斯托克斯线。
4、掺杂在各种基质中的三价稀土离子,它们产生光学跃迁的是4f 电子。
5、红宝石是历史上首先获得的激光材料,它的发光中心是C r 3+ 离子。
物质的磁性磁导率和磁化率

磁性材料广泛应用于计算机及声像记录用大容量存储装置如磁盘磁带电工产品如变压器电机以及通讯无线电电器和各种电子装置中是电子和电工工业机械行业和日常生活中不可缺少的材之一本章主要内容?磁学理论物质的磁性磁性的基本物理量?磁性材料分类软磁材料永磁材料半硬磁材料?磁性材料的基本性能与应用第三章磁性功能材料3
磁学基础知识

磁现象及磁学物理量
pm
0 m
pe ql
pm qm l
m
iS
电偶极矩 磁偶极矩 磁矩
0 : 真空磁导率
4 107 H / m (SI )
1 (CGS)
磁化强度M 磁极化强度J
M
m
V
J
p
V
J 0M
(ESU)
kC kA c2
(EMU) 电流的定义式
CGS单位制(cm, g, s):高斯和韦伯发展起来
磁矩:emu(electric magnetic unit)
1emu 1Biot1cm2 10 A 1cm2 103 Am2
磁化强度M:高斯(G)
1G
1emu 1cm3
原子磁矩的来源: 电子自旋和电子运动
0
抗磁性
交换作用 拉莫尔进动
交换作用
交换作用是一种量子力学效应,
Eij 2Ji j Si S j
Ji j 称为交换积分
我们把这种交换作用等价为磁场Hm,称之为外斯分子场。
分子场的数量级大约在1000T左右! 交换作用是一种短程相互作用。
Ji j 0 铁磁性
(1 sin2 )
2
K sin2 c
一维纳米线:
K
0
M
2 s
2
Em
0
M
2 s
4
sin2
感生各向异性 磁场感生各向异性
应力感生各向异性
Ku
3 2
磁场强度,磁感应强度,磁化强度的物理意义

B和H的关系正名,虽然发在数学吧,但是是我在网上目前看到唯一没有根本错误的解释。
希望读者耐心看完。
设想你暂时只知道磁场是由磁铁产生,也知道牛顿力学,但尚不知道怎么物理上定义“磁场”。
有一天,你用电流做实验。
你惊讶的发现:通了电的导线能使它附近的小磁针扭转,从而得出了“电流也产生磁场”的结论。
进一步,你通过力学(如平行电流线,扭转力矩等)的测量,你发现1.长直导线外,到导线距离相等的点,磁针感受到的“磁场”强度相同2.距离不同的点,“磁场”强度随着距离成反比。
这样,你便想要通过力学测量和电流强度定义一个物理量H,2*pi*r*H=I。
对形状稍稍推广,你就得到了安培环路定理的一般积分形式。
注意这时候不需要用到真空磁导率μ0,因为你只要知道电流I就足以定义H这个物理量,没有理由知道μ0这回事儿。
现在,你有了H,有了“电流能够产生磁场”这个概念,有了安培环路定理。
你心满意足,转移了研究兴趣,开始研究带电粒子的受力。
对于一定速度的粒子,加上刚才的磁场,通过几何轨道,牛顿力学,你可以测出粒子受的力。
你发现受的力和电荷数q以及速度成正比,也和H成正比,但是力F并不直接等于qvH,而是还差一个因子:F=A*q*vⅹH,A只是个待定因子,暂未赋予物理意义。
这个公式多了个外加因子,不好看。
现在你开始考虑构建“磁导率”这个概念,因为H只是电流外加给的磁场,你希望通过粒子受力,直接定义一个粒子感受到的磁场——叫它B,使得F= qvⅹB成立。
现在你理解的磁导率,就是一个粒子对外界磁场的受力响应程度:磁导率大,那么同样大的外加磁场H使得粒子受力的响应(如偏转)也越大;磁导率如果为零,那么多大的磁场也不会使得粒子有偏转等力学反应,磁导率如果近乎无限大,你只要加一丁点外磁场H,粒子就已经偏转的不亦乐乎了。
你开始管这个磁导率叫μ,并且定义μ=B/H。
其中H是(通过电流)外来的,B是使得粒子偏转的响应。
这样,磁导率=粒子的响应/外加的场。
磁学基础与磁性材料+严密第一章、三章以及第七章答案

磁性材料的分类^《}第一章》第二章磁学基础知识答案:1、磁矩2、磁化强度3、·4、磁场强度 H5、磁感应强度 B磁感应感度,用B表示,又称为磁通密度,用来描述空间中的磁场的物理量。
其定义公式为(百度百科)磁感应强度(magnetic flux density),描述磁场强弱和方向的基本物理量。
是矢量,常用符号B表示。
磁感应强度也被称为磁通量密度或磁通密度。
在物理学中磁场的强弱使用磁感强度(也叫磁感应强度)来表示,磁感强度大表示磁感强;磁感强度小,表示磁感弱。
6、磁化曲线磁化曲线是表示物质中的磁场强度H与所感应的磁感应强度B或磁化强度M之间的关系7、磁滞回线—()(6 磁滞回线 (hysteresis loop):在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。
)8、磁化率磁化率,表征磁介质属性的物理量。
常用符号x表示,等于磁化强度M与磁场强度H之比。
对于各向同性磁介质,x是标量;对于各向异性磁介质,磁化率是一个二阶张量。
9、磁导率磁导率(permeability):又称导磁系数,是衡量物质的导磁性能的一个物理量,可通过测取同一点的B、H值确定。
二'矫顽力----内禀矫顽力和磁感矫顽力的区别与联系矫顽力分为磁感矫顽力(Hcb)和内禀矫顽力(Hcj)。
磁体在反向充磁时,使磁感应强度B降为零所需反向磁场强度的值称之为磁感矫顽力。
但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。
(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。
使磁体的磁化强度M降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。
内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。
在磁体使用中,磁体矫顽力越高,温度稳定性越好。
(2)退磁场是怎样产生的能克服吗对于实测的材料磁化特性曲线如何进行退磁校正产生:能否克服:因为退磁场只与材料的尺寸有关,短而粗的样品,退磁场就很大,因此可以将样品做成长而细的形状,退磁场就将会减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场强度
真空中的磁场强度
当有当有磁介质时时
U0真空磁导率, M为磁化强度 H单位是安/米(A/m)
磁场强度和磁感应强度
磁场强度和磁感应强度均为表征磁场磁场强弱和方向的物理 量。 磁感应强度就是垂直穿过单位面积的磁力线的数量。常用B 表示。其单位是韦伯/平方米(Wb/m2)或特斯拉(T)。 磁场传播需经过介质(包括真空),介质因磁化也会产生磁 场,这部分磁场与源磁场叠加后产生另一磁场。或者说,一个磁 场源在产生的磁场经过介质后,其磁场强弱和方向变化了。 为了描述磁场源的特性,也为了方便数学推导,引入一个与 介质无关的物理量H,H=B/u0-M,式中,u0为真空磁导率,M为介质 磁化强度。这个物理量,就是磁场强度。磁场强度的单位是安/米 (A/m)。 我理解的是磁感应强度受介质的影响,磁场的强弱和方向变 化,而磁场强度不受介质的影响,是固有的属性,不因介质的改 变而改变。磁场强度是线圈安匝数的一个表征量,反映磁场的源强 弱。磁感应强度则表示磁场源在特定环境下的效果。
磁导率
• 磁导率 :一个用来表示媒介质导磁性能的物 理量。不同的媒介质对磁场的影响不同,影响 的程度与媒介质的导磁性能有关。 • 意义:表示在空间或在磁芯空间中的线圈流过 电流后,产生磁通的阻力或者是其在磁场中导 通磁力线的能力。 • 公式表示: u=B/H 单位为H/m • μ为介质的磁导率,或称绝对磁导率。通常使 用的是磁介质的相对磁导率μr,其定义为磁导 率μ与真空磁导率μ0之比。 μ0=4π×10-7H/m
磁场
• 磁场是一种看不见,而又摸不着的特殊物质。像电场一样, 以场的形式存在。我们熟知的是磁铁、电流、运动电荷周 围存在磁场。概括地说,磁场是由运动电荷或电场的变化 而产生的。 • 磁场的基本特性:对放入其中的磁体或电流有磁力的作 用.
磁感应强度 B
1、定义式(计算式)
F B (通电导线与磁场方向 垂直) IL 2、磁感应强度由磁场本身决定,跟通电导线无关(上式只是计号的接收
国际单位制(SI)规定了七个基本量
1、长度l;米 m;(光在真空中(1/299 792 458)s时间间 隔内所经过路径的长度。) 2、时间s;秒 s(铯-133原子基态的两个超精细能级之间跃
迁所对应的辐射的9 192 631 770个周期的持续时间。 )
3、质量m;千克(公斤)kg(国际千克原器的质量。 ) 4、电流I;安(培)A(在真空中,截面积可忽略的两根 相距1 m的无限长平行圆直导线内通以等量恒定电流时,若导 线间相互作用力在每米长度上为2×10-7 N,则每根导线中的
电磁波波谱
电磁波的产生和传播
垂直交变的电场会在周围形成一个水平交变的磁场,而水平交变的磁 场又会在远方形成一个垂直的交变电场。这样电磁波就向四周传播出 去了。
电磁波的产生和传播
由麦克斯韦的电磁场理论,变化的电场产生变化的磁场, 而变化的磁场又产生变化的电场,这样就产生了电磁波。
E B
E B
E
顺磁性物质 相对磁导率稍大于1。如空气、 铝、铬、铂 反磁性物质 相对磁导率稍小于1。如氢、 铜等。 铁磁性物质 相对磁导率远大于1,其可达 几百甚至数万以上,且不是一个常数。如 铁、钴、镍、硅钢、坡莫合金、铁氧体等。
磁化率
• 磁化率,表征磁媒介质属性的物理量(磁导 率为表示媒介质导磁性能)。
该系统中所包含的基本单元(原子、分子、离子、电子及其
他粒子,或这些粒子的特定组合)数与0.012 kg碳-12的原子数 目相等)
磁导率和磁化率之间的联系
电磁波
电磁波(又称电磁辐射)是 由同相振荡且互相垂直的电场 与磁场在空间中以波的形式传 递能量和动量,其传播方向垂 直于电场与磁场构成的平面。 电磁辐射的载体为光子,不需 要依靠介质传播,在真空中的 传播速度为光速。
电磁波从低频率到高频率,包括有无线电波、微波、红外 线、可见光、紫外光、X-射线和伽马射线等等。人眼可接 收到的电磁辐射,波长大约在380至780纳米之间,称为可 见光。 只要是本身温度大于绝对零度的物体,都可以发射电磁辐 射,而世界上并不存在温度等于或低于绝对零度的物体。
并不是定义B),磁感应强度B是矢量场 也时常称为“磁通量密度” (个人理解为磁感应线的密度,磁感线密集,磁感应强度就强) 、 “磁感应强度” 、“B场”。
3、单位: 特斯拉(简称特)T
4、矢量:方向即磁场方向
1T=1N/A〃m
(即放在该点的小磁针N极受到的磁力的方向) 5、物理意义:磁感应强度B是表示磁场强弱的物理量。
电流为1 A。 )
5、热力学温度(Kelvin温度)T;开(尔文) K(水三相点 热力学温度的1/273.16 ) 6、发光强度I(IV);坎(德拉)cd(是一光源在给定方向上 的发光强度,该光源发出频率为540×1012 Hz的单色辐射,且 在此方向上的辐射强度为(1/683)W/sr。 ) 7、物质的量n(v)。摩(尔)mol(是一系统的物质的量,
• 在电磁学中,磁化率是表征物质在外磁场中 (我理解为把这种物质当做导磁介质)被磁 化程度的物理量。 • 公式: χm=M/H M为物质的磁化强度,H 为磁场强度
磁化率和磁导率的关系
若 χm 为正值,物质的磁性是顺磁性、铁磁 性、亚铁磁性或反铁磁性。对于这案例,物 质的置入会使得 B增强; 若 χm为负值,物质的磁性是抗磁性,物质 的置入会使得B减弱。 对于顺磁性或抗磁性物质(顺次抗磁是根据 磁导率来说的),通常 χm的绝对值都很小, 大约在 10-6 到 10-5 之间,大多时候可以忽略 为0。 在真空里,磁化率是 0 ,相对磁导率是 1 。