换热器计算步骤

换热器计算步骤
换热器计算步骤

第2章工艺计算

2.1设计原始数据

表2—1

2.2管壳式换热器传热设计基本步骤

(1)了解换热流体的物理化学性质和腐蚀性能

(2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。

(3)确定流体进入的空间

(4)计算流体的定性温度,确定流体的物性数据

(5)计算有效平均温度差,一般先按逆流计算,然后再校核

(6)选取管径和管流速

(7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核

(8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍

l

(9)选取管长

(10)计算管数

N

T

(11)校核管流速,确定管程数

(12)画出排管图,确定壳径

D和壳程挡板形式及数量等

i

(13)校核壳程对流传热系数

(14)校核平均温度差

(15)校核传热面积

(16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

2.3 确定物性数据

2.3.1定性温度

由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。

对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为:

t=420295

357.5

2

+

=℃(2-1)

管程流体的定性温度:

T=310330

320

2

+

=℃

根据定性温度,分别查取壳程和管程流体的有关物性数据。

2.3.2 物性参数

管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】

表2—2

壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】

表2—3

2.4估算传热面积 2.4.1热流量

根据公式(2-1)计算:

p Q Wc t =? 【化原 4-31a 】 (2-2)

将已知数据代入 (2-1)得:

111

p Q WC t =?=60000×5.495×310 (330-310)/3600=1831666.67W

式中: 1W ——工艺流体的流量,kg/h ;

1p C ——工艺流体的定压比热容,kJ/㎏.

K ;

1t ?——工艺流体的温差,℃;

Q ——热流量,W 。

2.4.2平均传热温差

根据 化工原理 4-45 公式(2-2)计算:

12

12

ln m t t t t t ?-??=

?? (2-3) 按逆流计算将已知数据代入 (2-3)得:

()()()()

121242033031029541.86420330ln ln 310295m t t t t t ---?-??=

==?-?-℃

式中: m t ?——逆流的对数平均温差,℃;

1t ?——热流体进出口温差,℃;

2t ?——冷流体进出口温差,℃; 可按图2-1中(b )所示进行计算。

图2-1 列管式换热器流型

2.4.3传热面积

根据所给条件选定一个较为适宜的K 值,假设K =400 W/m 2.K 则估算传热面积为:

m

t K Q

S ?=

(化工原理 式4-43) (2-4) 将已知数据代入 (2-3)得: 2m 39.10986

.4140067

.1831666t =??=m K Q S

式中:S ——估算的传热面积,2m ;

K ——假设传热系数,W/m 2.℃;

m t ?——平均传热温差,℃。 考虑的面积裕度,则所需传热面积为:

28.12515.188.11215.1'm S S =?=?= (2-5)

2.4.4热流体用量

根据公式(2-4)计算:由化工原理热平衡公式

p Q

W c t

=

? 将已知数据代入 (2-4)得: kg/h 68

.17392)

295420(033.367

.1831666222=-?=?=

t C Q W p (2-6)

式中Q ——热流量,W ;

2p c ——定压比热容,kJ/㎏.

℃;

2t ?——热流体的温差,℃; 2W ——热流体的质量流量,kg /h 。

2.5 工艺尺寸 2.5.1管数和管长

1.管径和管流速

根据红书 表3-2 换热管规格

表2-4

根据 红书 表3-4 取管流速s m i /1u = ⒉管程数和传热管数 依红书3-9式 u

n d

q

v 2

=

,可根据传热管径和流速确定单管程传热管数

758.74102.04

7.70967

.164n 2

2

≈=??=

=

ππ

u d q

i

i v s (根) (2-7) 式中

q

v

——管程体积流量,s 3

m ;

n ——单程传热管数目;

i d ——传热管径,mm ; u ——管流体流速,s

m 。

按单管程计算,依红书3-10,所需的传热管长度为 ()m n

d A s

o

p 3.2175

025.08

.125L =??=

=

ππ (2-8)

式中 L ——按单程管计算的传热管长度,m A p ——传热面积,2m ;

d

o

——换热管外径,m 。

按单管程设计,传热管过长,则应采用多管程,根据本设计实际情况,采用非标准设计,现取传热管长m l 6=,则该换热器的管程数为 456.36

3

.21≈===

l L N p (管程)

(2-9) 传热管总根数 300475=?=?=N n N p s T (根) (2-10) 式中, 0d ——管子外径,m ;

'

T N ——传热管总根数,根;

0d ——管子外径,m ;

3.换热器的实际传热面积,依据红书3-12,

203.1413006025.014.3m lN d A T =???==π (2-11)

式中,

换热器的实际传热面积换热器的总传热管数;

----A N T

2.5.2平均传热温差校正及壳程数

选用多管程损失部分传热温差,这种情况下平均传热温差校正系数与流体进出口温度有关,其中按红书3-13a 3-13b

12

21

T T R t t -=

=-热流体的温差冷流体的温差 (2-12)

2111

t t P T t -=

=-冷流体的温差

两流体最初温差 (2-13)

将已知数据代入(2-12)和(2-13)得:

1221420295

0.75330310T T R t t --=

==-- 2111330310

0.22420310

t t P T t --=

==-- 按单壳程,四管程结构,红书图3-7,查得校正系数[1]:

图2-2 温差校正系数图

0.96t ε?=;

平均传热温差 按式(2-9)计算:

m t t t ε??=?塑 (2-14)

将已知数据代入(2-9)得:

0.9641.8640.2m t t t C ε??=?=?=。

式中 :m t ?——平均传热温差,℃; t ε?——校正系数;

t ?塑——未经校正的平均传热温差,℃。

由于平均传热温差校正系数大于0.8,同时壳程流量较大,故取单壳程合适。 传热管排列方式:采用正三角形排列

每程各有传热管75根,其前后官箱中隔板设置和介质的流通顺序按 化工设计 3-14 选取

取管心距:

01.28t d = (2-15) 则管心距:

m m 322528.1d 28.1o =?=?=t

根据标准选取为 32mm : 隔板中心到离其最近一排管中心距

mm

t s 226232

62=+=+=

(2-16)

各程相邻传热管的管心距为2s=44mm 。

每程各有传热管75根,其前后管箱中隔板设置和介质的流通顺序按图2-4选取。

图2-3组合排列法

图2-4 隔板形式和介质流通顺序

⒌壳体径

采用多管程结构,壳体径可按式计算。正三角形排列,4管程,取管板利用率为

0.70.8~.60==ηη,取,则壳体径为

)mm (5.6957

.0300

3205.105.1=??==η

N

T

t

D .

(2-17)

式中:D ——壳体径,m; t ——管中心距,m;

N

T

——横过管束中心线的管数

按卷制圆筒进级挡圆整,取为D=700mm 。

2.5.3 折流板

管壳式换热器壳程流体流通面积比管程流通截面积大,为增大壳程流体的流速,加强其湍动程度,提高其表面传热系数,需设置折流板。单壳程的换热器仅需要设置横向折流板。

采用弓形折流板,弓形折流板圆缺高度为壳体径的20%~25%,取25%,取则切去的圆缺高度为:

0.25700175h =?=mm (2-18) 故可取h =180mm

取折流板间距D B 3.0=,则

)(2107003.0mm B =?= (2-19) 可取为B=250mm 。

折流板数N B (块)折流板间距传热管长231-250

6000

1-===

N B (2-20)

折流板圆缺面水平装配。 化工设计 图3-15

图2-5 弓性折流板(水平圆缺)

2.5.4其它附件拉杆

拉杆数量与直径:由化工设计表4-7 表4-8 该换热器壳体径为700mm ,故其拉杆直径为φ16拉杆数量为6个。

2.5.5接管

依据化工原理 式1-24 ,

壳程流体进出口接管:取接管水蒸气流速为=u 1 4.42m/s ,则接管径为 )(219.042

.48.28360017393

4V 4D 1

1

1m u =???=

=

ππ)( (2-21) 圆整后可取径为=D 1150mm 。

管程流体进出口接管:取接管液体流速为=u 21m/s ,则接管径为

)(173.01

7.709360060000

4V 4D 2

2

2m u =???=

=

ππ)( 圆整后取管径为D 2=180mm 。 式中:D ——接管径,m ;

u ——流速,/m s ;

V ——热、冷流体质量流量,kg/s 。

2.6换热器核算 2.6.1 热流量核算

2.6.1.1 壳程表面传热系数

壳程表面传热系数用克恩法计算,见式 红书3-22

14

.0)(Pr

31

Re

55

.0136.0o ηηλ

αw

d e

= (2-22) 当量直径,依式红书 3-32b 计算:

d d t o

o e ππ)423(4d 2

2-=

(2-23)

将已知数据代入 (2-23)得 :

)(020.0025

.0)025.04032.023(4)423(4d 2

222m d d t o o

e =??-?=-=

ππππ 式中 e d —当量直径,m ; t —管心距,m ; 0d —管外径,m 。

壳程流通面积依红书式3-25计算

)1(S

t

BD d o o

-=

)(038.0)032.0025.01(7.025.0)1(2m t BD d S o o

=-??=-=22(1)d s BD t =- (2-24) 式中 B —折流板间距,m ;

D —壳体径,m ; t —管心距,m ; d o —管径,m ;

S o —壳程流通面积,2m 。

依据红书计算步骤,壳程流体流速及其雷诺数 分别为

415.4038.0)

8.283600(17393S u o o =?==V o (m/s ) (2-25)

72.11327510

45.228

.28415.402.0u d Re

6

=???=

=-μ

ρ

e o (2-26) 普朗特数

122.1=P

r

黏度校正 1)(14

.0≈η?

η 壳程表面传热系数

℃)(?=???

==23155.01

o W/m 5.6821122.111327602

.00606

.036.014.0)(Pr

31

Re

55

.036

.0η

ηλαw

e

d

(2-27) 式中 2u —壳程流体流速,/m s ;

2s —壳程流通面积,2m ; ρ—密度,3

/kg m

m —热流体的质量流量,/kg h 。 2.6.1.2 管表面传热系数 管程流体流通截面积 )(0236.07502.04

n d 4

22i m N T i S =??=?

?=

π

π

(2-28) 管程流体流速

1=u i (m/s )

雷诺数 1.1660311049.851

02.07.709R 6

=???=

-i i i i i

u d e μρ (2-29)

普朗特数 853.0r =P

按化工原理 式 4.08.0Pr Re 23.0d

i

i i λα= 得

℃)(?=???

==24.08.04

.08.0W/m 5.562853.01.16603102

.05507

.023.0Pr Re 23

.0d

i

i i λ

α (2-30)

式中:Re ——雷诺数;

e d

——当量直径,m ;

i u ——管程流体流速,/m s ;

i ρ——密度,3

/kg m ;

i μ——粘度,Pa.s 。

Pr ——普朗特数;

pi c

——定压比热容,kJ/㎏.℃; i μ——粘度,Pa.s ; i λ——热导率,W/m.℃。

2.6.1.3 污垢热阻和管壁热阻

污垢热阻和管壁热阻可取[1]:化工原理附录20

管外侧污垢热阻 4108598.0-?=R o (2m ·℃/W ) 管侧污垢热阻 4108598.0-?=R o (2m ·℃/W ) 管壁热阻按红书 式计算,[1]查表

可得碳钢在该条件下的热导率为40/(.)W m K :

λ

w

w b

R =

(2-31)

将已知数据代入 (2-31)得:

)/(10240

002

.024W K m b

w

w R ??==

=

式中: w R ——管壁热阻,2

./m K W ;

b ——传热管壁厚,m ; w λ——管壁热导率,W/m.℃。

2.6.1.4传热系数c K 按红书3-21计算:

因为αi 值更小,故按Ki 计算

α

αi

00

o

i 1

1

+

+++=

R d

d R d

d R d

d K i m

i w i C (2-32)

将已知数据代入(2-32)得:

)5

.5621108598.002.002.0102025.002.0108598.0025.05.62802.0(1

444+?+??+??+?=

---K

C

1.346=

2.6.1.5传热面积裕度 红书3-35 )(42.12686

.411.3461831666.67

2m Q t K A m C C =?=?=

(2-33)

该换热器的实际换热面积A

)(3.1413006025.014.32m l A N d T o =???==π (2-34)

依红书 式3-36 该换热器的面积裕度为 %79.11%10042

.12642

.1263.141%100=?-=

?-=

A

A C

C

A H (2-35)

该换热器的面积裕度合适,该换热器能够完成生产任务。

2.6.2壁温核算

2.6.2.1 温差计算

由于工作条件是高温高压,与四季气温相差特别大。因此进出口温度可以取原操作温度。另外,由于传热管侧污垢热阻较大会使传热管壁温降低,降低了传热管和壳体之间的温差。但操作初期时,污垢热阻较小,壳体和传热管间壁壁温差可能很大。计算中因按最不利的因素考虑,因此,取两侧污垢热阻为零计算传热管壁温。

由 红书3-42式计算:

R R R t R T h

h

c c

h h

m c c

m w ++

++++=

α

α

α

α

1

1

)

1

()1

(

t (2-36)

液体的平均温度 按红书 3-44 和3-45式

t t m 126.04.0t +=

K

m W ?2/

计算有:

3183106.03304.0=?+?=t m (℃) (2-37)

6.682==h h o

c

(W/2

m ·℃)

5.562h

==h h i

(W/2

m ·℃)

代入2-36式 传热管平均壁温

336.85

.56216.68215.5623186.6825.35711T =+

+=

++=

h

h h t h T

h

c

h

m

c m

w (℃) (2-38) 式中: 1T ——热流体进口温度,℃; 2T ——热流体出口温度,℃; 1t ——冷流体进口温度,℃; 2t ——冷流体出口温度,℃。

壳体壁温,可以近似取为壳程流体的平均温度,即t=357.5℃。 传热管壁温和壳体壁温之差为

7.208.3365.357=-=?t (℃) (2-39)

该温差较大,需设温度补偿器。由于水和水蒸气不容易结垢,不需要经常清洗,因此选用U 型管换热器较为适宜。

2.6.2.2 管程流体阻力 依式(2-29)

12()i p t p p p N F ?=?+? (2-36)

其中 4p =N 1.5t F = 式中 :

p N

——管程数;

i p ?——管程总阻力,Pa ;

t F ——管程结垢校正系数,对mm 5.225?φ的管子,取1.5;

2

2

i i i l u p d ρλ?= (2-37)

由Re=166031 查化原表1-2

传热管绝对对粗糙度 02.0=ξ

传热管相对对粗糙度

查化工原理 图1-27 莫狄 e R —λ图

得 021.0i =λ

s m m /1u /kg 7.7093==,ρ ,将已知数据代入(2-37)得:

i p ?=2

2

i i l u d ρλ

a 5.22352

17.70902.06021.02

P =???= 式中: i λ——摩擦系数; l ——管长,m ;

i d ——传热管径,m ;

ρ——冷流体密度,3

/kg m ;

u ——管流速,/m s ;

i p ?——单程直管阻力,Pa 。 局部阻力按式(2-37)计算,

2

2

r u p ρξ

?= (2-38)

将已知数据代入(2-31)得:

Pa u r 8.15962

17.70932p 2

2

=??==?ρξ

式中: r p ?——局部阻力,Pa ;

ξ——局部阻力系数;

ρ——冷流体密度,3

/kg m ;

001.020

02.0=

u ——管流速,/m s ; 管程总阻力为:

a 6.459875.142)8.15965.2235(p P t =???+=? (2-39) 管程流体阻力在允许围之。

2.6.2.3壳程阻力

按式红书 式 3-50 ~ 3-54计算:

''

12()o s s p p p F N ?=?+? (2-40)

其中 1s N =, 1s F = 式中 o p ?——壳程总阻力,Pa ; '1p ?——流体流过管束的阻力,Pa ;

'

2p ?——流体流过折流板缺口的阻力,Pa ; s F ——壳程结垢校正系数;

s N ——壳程数; 流体流经管束的阻力按(2-41)计算

2'0

1

0(1)

2

c B u p Ff n N ρ?=+ (2-41)

将已知数据代入(2-340)得:

a 1011.12

108.28)123(05.19352.05.0p 52

P o ?=??+???=?

式中 '1p ?——流体流过管束的阻力,Pa ;

F ——管子排列方式为正三角形,所以0.5F =; 0f ——壳程流体的摩擦系数,

352.01.1660315Re 0.5228.0228.0=?==--o o

f

c n ——横过管束中心线的管子数 05.19300

.11N .11.5

00.5T =?==n C ; B N ——折流挡板数23=B N ; ρ——热流体密度,3/kg m ;

0u ——按壳程流通面积计算的流速 s /m 415.4u o =;

流体通过折流板缺口的阻力 依式(2-34)计算:

2

'0

2

2(3.5)2B u B p N D ρ?=- (2-34)

m 25.0=B ,m 7.0=D

将已知数据代入(2-35)得:

a 3.922

108.287.025.025.323p 2

KP i =???-?=?)(

式中 B N ——折流板板数; B ——折流板间距,m ; D ——壳体径,m ; ρ——热流体密度,3/kg m ; 0u ——壳程流体流速,/m s ;

i p ?——流体流过折流板缺口的阻力,Pa ; 总阻力:

Pa KP KPa 51003.2a 3.922.111p ?=+=?

由于该换热器壳程流体的操作压力较高,所以壳程流体的阻力也比较适宜。

2.7 换热器主要结构尺寸和计算结果

换热器主要结构尺寸和计算结果见表2-5。

表2-5 换热器主要结构尺寸和计算结果

换热器计算公式与比热容概要

换热器计算公式与比热容 5 术语和定义 5.1 热侧 废气通道,又称气侧。 5.2 冷侧 冷却液通道,又称水侧。 5.3 气阻 气侧压力降,又称气侧压差。 5.4 水阻 水侧压力降,又称水侧压差。 5.5 换热面积A h 热侧总表面积,单位m2。 5.6 热侧通道面积S h 热侧总横截面积,单位m2。 5.7 放热量Q h 热侧空气放热量,指EGR冷却器稳定工作状态下,热侧空气所放出的热量,单位为kW。其计算公式如下: Q h=G h×Cp h(t hi-t ho)/1000………………………………………………(5-1)式中: G h——空气质量流量,kg/s; Cp h——增压空气比热,kJ/kg℃; t hi——热侧空气进口温度,℃;

t ho——热侧空气出口温度,℃。 5.8 吸热量Q w 冷侧冷却液吸热量,单位kW。其计算公式如下: Q w=G w×Cp w×(t wo-t wi)/1000 ………………………………………(5-2) 式中: G w——水质量流量,kg/s; Cp w——水比热,kJ/kg℃; t wi——冷却水进口温度,℃; t wo——冷却水出口温度,℃。 5.9 热平衡误差δ 计算公式: δ=[( Q h - Q w)÷Q h]×100 % …………………………………………(5-3a) 或 δ=[( Q w - Q h)÷Q w]×100% ………………………………………(5-3b) 式中: δ——热平衡误差,%; 当热平衡误差δ大于±5%,试验参数应重新测量,直到δ不大于±5%。 5.10 散热能力Q 指在规定的工作条件下,空气通过EGR冷却器散发掉的理论散热量,单位为Kw(或W),其计算公式如下: Q=K×A h×△t m ………………………………………………………(5-4) 式中:

化工原理设计:列管式换热器设计

化工原理课程设计 设计题目:列管式换热器的设计班级:09化工 设计者:陈跃 学号:20907051006 设计时间:2012年5月20 指导老师:崔秀云

目录 概述 1.1.换热器设计任务书 .................................................................... - 7 - 1.2换热器的结构形式 .................................................................. - 10 - 2.蛇管式换热器 ........................................................................... - 11 - 3.套管式换热器 ........................................................................... - 11 - 1.3换热器材质的选择 .................................................................. - 11 - 1.4管板式换热器的优点 .............................................................. - 13 - 1.5列管式换热器的结构 .............................................................. - 14 - 1.6管板式换热器的类型及工作原理............................................ - 16 - 1.7确定设计方案.......................................................................... - 17 - 2.1设计参数................................................................................. - 18 - 2.2计算总传热系数...................................................................... - 19 - 2.3工艺结构尺寸.......................................................................... - 19 - 2.4换热器核算 ............................................................................. - 21 - 2.4.1.换热器内流体的流动阻力 (21) 2.4.2.热流量核算 (22)

管壳式换热器的设计和选用的计算步骤

管壳式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力 。根据传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器 结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。 初选换热器的规格尺寸 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重 新计算。计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。 计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。 核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18设计条件数据

换热器计算步骤

第2章工艺计算 2.1设计原始数据 表2—1 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 (10)计算管数 N T (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径 D和壳程挡板形式及数量等 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。

对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3 2.4估算传热面积 2.4.1热流量

换热器设计计算范例

列管式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。根据 传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换 热器必须通过试差计算,按以下步骤进行。 ◎初选换热器的规格尺寸 ◆ 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式, 重新计算。 ◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 估。 ◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排 列。◎计算管、壳程阻力 在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计 算,直到合理为止。 ◎核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 ◎计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的 计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18 设计条件数据 物料流量 kg/h 组成(含乙醇量) mol% 温度℃操作压力 MPa 进口出口 釜液 3.31450.9

板式换热器选型与计算方法(DOC)

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

换热器及其基本计算

姓名:杜鑫鑫学号:0903032038 合肥学院 材 料 工 程 基 础 姓名: 班级:09无机非二班 学号:\ 课题名称:换热器及其基本计算 指导教师:胡坤宏

换热器及其基本计算 一、换热器基础知识 (1)换热器的定义: 换热器是指在两种温度不同的流体中进行换热的设备。 (2)换热器的分类: 由于应用场合不同,工程上应用的换热器种类很多,这些换热器照工作原理、结构和流体流程分类。 二、几个不同的换热器 (1)管壳式换热器 管壳式换热器又称列管式换热器,是一种通用的标准换热设备。它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。 管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。管内的通道及与其相贯通的管箱称为管程;管外的通道及与其相贯通的部分称为壳程。一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。 而壳管式换热器又可根据不同分为U形管式换热器、固定管板换热器、浮头式换热器、填料函式换热器几类。 (2) 套管式换热器 套管式换热器是用两种尺寸不同的标准管连接而成同心圆套管,外面的叫壳程,内部的叫管程。两种不同介质可在壳程和管程内逆向流动(或同向)以达到换热的效果。 套管式换热器以同心套管中的内管作为传热元件的换热器。两种不同直径的管子套在一起组成同心套管,每一段套管称为“一程”,程的内管(传热管)借U形肘管,而外管用短管依次连接成排,固定于支架上。热量通过内管管壁由一种流体传递给另一种流体。通常,热流体由上部引入,而冷流体则由下部引入。套管中外管的两端与内管用焊接或法兰连接。内管与U形肘管多用法兰连接,便于传热管的清洗和增减。每程传热管的有效长度取4~7米。这种换热器传热面积最高达18平方米,故适用于小容量换热。当内外管壁温差较大时,可在外管设置U形膨胀节或内外管间采用填料函滑动密封,以减小温差应力。管子可用钢、铸铁、陶瓷和玻璃等制成,若选材得当,它可用于腐蚀性介质的换热。这种换热器具有若干突出的优点,所以至今仍被广泛用于石油化工等工业部门。

换热器设计指南汇总

换热器设计指南 1总贝!I i.i目的 为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。 1. 2范围 1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。 1.2.2本规定适用于本公司所有的管壳式换热器。 1.3规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。凡不注日期或修改号 (版次)的引用文件,其最新版本适用于本规定。 GB150-1999钢制压力容器 GB151-1999管壳式换热器 HTRI设计手册 Shell & tube heat exchangers ------- JGC 石油化工设计手册第3卷——化学工业出版社(2002) 换热器设计手册——中国石化出版社(2004) 换热器设计手册——化学工业出版社(2002) Shell and Tube Heat Exchangers Technical Specification ---------- SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997) Shell and Tube Exchanger Design and Selection -------- HEVRON COP. (1989)

HEAT EXCHANGERS——FLUOR DANIEL (1994) Shell and Tube Heat Exchangers ------- TOTAL (2002) 管壳式换热器工程规定——SEI (2005) 2设计基础 2. 1传热过程名词定义 2.1.1无相变过程 加热:用工艺流体或其他热流体加热另一工艺流体的过程。 冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。 换热:用工艺流体加热或冷却另外一股工艺流体的过程。 2.1.2沸腾过程 在传热过程中存在着相的变化一液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。 池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。 流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。 2.1.3冷凝过程 部分或全部流体被冷凝为液相,热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。 纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。 有不凝气的冷凝:用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。 2.2换热器的术语及分类 2.2.1术语及定义 换热器装置:为某个可能包括可替换操作条件的特定作业的一个或多个换热器; 位号:设计人员对某一换热器单元的识别号; 有效表面:进行热交换的管子外表面积; 管程:介质流经换热管内的通道及与其相贯通部分; 壳程:介质流经换热管外的通道及与其相贯通部分;

板式换热器的换热计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: ?总传热量(单位:kW). ?一次侧、二次侧的进出口温度 ?一次侧、二次侧的允许压力降 ?最高工作温度 ?最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

换热器设计计算步骤

换热器设计计算步骤 1. 管外自然对流换热 2. 管外强制对流换热 3. 管外凝结换热 已知:管程油水混合物流量 G ( m 3/d),管程管道长度 L (m),管子外径do (m), 管子内径di (m),热水温度 t ℃, 油水混合物进口温度 t 1’, 油水混合物出口温度 t 2” ℃。 1. 管外自然对流换热 1.1 壁面温度设定 首先设定壁面温度,一般取热水温度和油水混合物出口温度的平均值,t w ℃, 热水温度为t ℃,油水混合进口温度为'1t ℃,油水混合物出口温度为"1t ℃。 "w 11 t ()2 t t =+ 1.2 定性温度和物性参数计算 管程外为水,其定性温度为1()K -℃ 21 ()2 w t t t =+ 管程外为油水混合物,定性温度为'2t ℃ ''"2111 ()2t t t =+ 根据表1油水物性参数表,可以查得对应温度下的油水物性参数值 一般需要查出的为密度ρ (3/kg m ),导热系数λ(/())W m K ?,运动粘度2(/)m s ,体积膨胀系数a 1()K -,普朗特数Pr 。

表1 油水物性参数表 水 t ρ λ v a Pr 10 999.7 0.574 0.000001306 0.000087 9.52 20 998.2 0.599 0.000001006 0.000209 7.02 30 995.6 0.618 0.000000805 0.000305 5.42 40 992.2 0.635 0.000000659 0.000386 4.31 50 998 0.648 0.000000556 0.000457 3.54 60 983.2 0.659 0.000000478 0.000522 2.99 70 997.7 0.668 0.000000415 0.000583 2.55 80 971.8 0.674 0.000000365 0.00064 2.21 90 965.3 0.68 0.000000326 0.000696 1.95 100 958.4 0.683 0.000000295 0.00075 1.75 油 t ρ λ v a Pr 10 898.8 0.1441 0.000564 6591 20 892.7 0.1432 0.00028 0.00069 3335 30 886.6 0.1423 0.000153 1859 40 880.6 0.1414 9.07E-05 1121 50 874.6 0.1405 5.74E-05 723 60 868.8 0.1396 3.84E-05 493 70 863.1 0.1387 0.000027 354 80 857.4 0.1379 1.97E-05 263 90 851.8 0.137 1.49E-05 203 100 846.2 0.1361 1.15E-05 160 1.3 设计总传热量和实际换热量计算 0m v Q Cq t Cq t ρ=?=?v v C q t C q t αρβρ=?+?油油水水 C 为比热容/()j kg K ?,v q 为总体积流量3 /m s ,αβ分别为在油水混合物中 油和水所占的百分比,t ?油水混合物温差,m q 为总的质量流量/kg s 。 实际换热量Q 0Q Q *1.1/0.9= 0.9为换热器效率,1.1为换热余量。 1.4 逆流平均温差计算

换热器计算

热解工艺水-气换热装置(卧式)设计 摘要 城市生活垃圾是指城市居民日常生活中或为城市日常生活提供服务的活动中产生的固体废弃物。城市生活垃圾具有二重性,如果经过合理的资源化处理,可转化为可再生利用的能源,但是如果不加以利用和合理处置将造成环境的污染。随着城市化进程的加快和人民生活水平的提高,源源不断的城市生活垃圾将会产生出来。城市生活垃圾的收集、运输和处理过程会产生大量的有害成分,从而对大气、土壤、水等造成污染,不仅严重破坏城市景观,而且传播疾病,威胁人类的健康甚至生命安全。城市生活垃圾已成为社会公害之一,是我国和世界各大城市面临的重大环境问题。 本设计对环境污染概况和城市垃圾进行了详细的介绍,由城市垃圾处理引申出垃圾热解技术。并且针对垃圾碳化热解装置的配套换热装置进行设计。通过对换热器的规格要求,特性参数,设计出热解交换器,并且绘制出工艺流程图来简单化的展示垃圾热解的处理方式及流程。 关键词:城市垃圾垃圾热解技术换热器

Pyrolysis process water - gas heat exchanger unit (horizontal) Design ABSTRACT MSW is the daily life of urban residents in activities or providing services for the city everyday solid waste generated. MSW has a duality, if after a reasonable treatment resources, can be converted to the use of renewable energy, but if you do not take advantage and reasonable disposition will cause environmental pollution. With the acceleration of urbanization and people's living standards improve, a steady stream of municipal solid waste will be generated out. Municipal solid waste collection, transportation and treatment process will generate a lot of harmful ingredients, resulting in the pollution of air, soil, water, etc., not only seriously undermine the urban landscape, and the spread of disease, the threat to human health or safety. MSW has become one of the social nuisance, are major environmental problems facing the country and the world's major cities. The design overview of environmental pollution and urban waste carried out a detailed description, come out of the garbage from the municipal waste pyrolysis technology. And heat transfer device is designed for supporting garbage pyrolysis carbonization device. Through the heat exchanger specifications, parameters, pyrolysis exchanger design

列管式换热器的设计计算

列管式换热器的设计计算 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换 热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用 多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和 流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。 在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2. 流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。 此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准; 单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3. 流体两端温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。一般来说,设计时可采取冷却水两端温差为5~10℃。缺水地区选用较大的温度 差,水源丰富地区选用较小的温度差。 4. 管子的规格和排列方法 选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采用较大的管径。我国目前试用的列管式换热器系列标准中仅有φ25×2.5mm及φ19×mm两种 规格的管子。 管长的选择是以清洗方便及合理使用管材为原则。长管不便于清洗,且易弯曲。一般出厂的标准钢管长为6m,则合理的换热器管长应为1.5、2、3或6m。系列标准中也采用这四种管长。此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些)。 如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第五节中图4-25所示。等边三角形排列的优点有:管板的强度高;流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高;相同的壳径内可排列更多的管子。正方形直列排列的优点是便于清洗列管的外壁,适用于壳程流体易产生污垢的场合;但其对流传热系数较正三角排列时为低。正方形错列排列则介于上述两者之间,即对流传热系数(较直列排列的)可以适当地提高。 管子在管板上排列的间距(指相邻两根管子的中心距),随管子与管板的连接方法不同而异。通常,胀管法取t=(1.3~1.5)do,且相邻两管外壁间距不应小于6mm,即t≥(d+6)。焊接法取t=1.25do。 5. 管程和壳程数的确定当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小。为了提高管内流速,可采用多管程。但是程数过多,导致管程流体

换热器热量及面积计算公式

换热器热量及面积计算 一、热量计算 1、一般式Q=Q c=Q h Q=W h(H h,1- H h,2)= W c(H c,2- H c,1) 式中: Q为换热器的热负荷,kj/h或kw; W为流体的质量流量,kg/h; H为单位质量流体的焓,kj/kg; 下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。 2、无相变化 Q=W h c p,h(T1-T2)=W c c p,c(t2-t1) 式中: c p为流体平均定压比热容,kj/(kg.℃); T为热流体的温度,℃; t为冷流体的温度,℃。 3、有相变化 a.冷凝液在饱和温度下离开换热器,Q=W h r = W c c p,c(t2-t1) 式中: W h为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s) r为饱和蒸汽的冷凝潜热(J/kg) b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热

Q=W h[r+c p,h(T s-T w)] = W c c p,c(t2-t1) 式中: c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃) 二、面积计算 1、总传热系数K 管壳式换热器中的K值如下表: 注: 1 w = 1 J/s = 3.6 kj/h = 0.86 kcal/h 1 kcal = 4.18 kj 2、温差

(1)逆流 热流体温度T:T1→T2 冷流体温度t:t2←t1 温差△t:△t1→△t2 △t m=(△t2-△t1)/㏑(△t2/△t1) (2)并流 热流体温度T:T1→T2 冷流体温度t:t1→t2 温差△t:△t2→△t1 △t m=(△t2-△t1)/㏑(△t2/△t1) 对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值。( 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热。) 对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型计算所以出来一个相对准确的数值, 当△T1/△T2>1.7时用公式: △Tm=(△T1-△T2)/㏑(△T1/△T2). 如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2 二种流体在热交换器中传热过程温差的积分的平均值。 逆流时△T1=T1-t2 △T2=T2-t1 顺流时△T1=T1-t1 △T2=T2-t2 其中: T1 ——热流进口温度℃ T2——热流出口温度

列管式换热器的计算

四、列管式换热器的工艺计算 4.1、确定物性参数: 定性温度:可取流体进口温度的平均值 壳程油的定性温度为 T=(140+40)/2=90℃ 管程流体的定性温度为 t=(30+40)/2=35℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据煤油在定性温度下的物性数据: ρo=825kg/m3 μo=7.15×10-4Pa?S c po=2.22KJ/(Kg?℃) λo=0.14W/(m?℃) 循环冷却水在35℃下的物性数据: ρi=994kg/m3 C pi=4.08KJ/(kg.℃) λi=0.626W/(m.℃) μi=0.000725Pa.s 4.2、计算总传热系数: m o=[(15.8×104)×103]/(300×24)=21944Kg/h

Q o=m o c po t o=21944×2.22×(140-40)=4.87×106KJ/h=1353KW 4.2.1.2、平均传热温差 4.2.1.3、冷却水用量 W i=Q o/C piΔt=4.87×106/(4.08×(40-30))=119362 Kg/h 4.2.2、总传热系数K =0.023××× =4759W/(.℃﹚ 壳程传热系数:假设壳程的传热系数 污垢热阻 管壁的导热系数λ=45W/﹙m.℃﹚ 则总传热系数K为: 4.3、计算传热面积 S’=Q/(KΔt)= (1353×103)/(310×39)=111.9m2 考虑15%的面积裕度,S=1.15×S’=128.7 m2 4.4、工艺结构尺寸 选用φ25×2.5传热管(碳钢),取管内流速μi=1m/s 依据传热管内径和流速确定单程传热管数 =(119362/(994×3600) 0.785×0.022×1 =106.2≈107根 按单程管计算,所需的传热管长度为

列管式换热器课程设计(含有CAD格式流程图和换热器图)

X X X X 大学 《材料工程原理B》课程设计 设计题目: 5.5×104t/y热水冷却换热器设计 专业: ----------------------------- 班级: ------------- 学号: ----------- 姓名: ---- 日期: --------------- 指导教师: ---------- 设计成绩:日期:

换热器设计任务书

目录 1.设计方案简介 2.工艺流程简介 3.工艺计算和主体设备设计 4.设计结果概要 5.附图 6.参考文献

1.设计方案简介 1.1列管式换热器的类型 根据列管式换热器的结构特点,主要分为以下四种。以下根据本次的设计要求,介绍几种常见的列管式换热器。 (1)固定管板式换热器 这类换热器如图1-1所示。固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。 (2)U型管换热器 U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。此外,其造价比管定管板式高10%左右。 (3)浮头式换热器 浮头式换热器的结构如下图1-3所示。其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。其缺点是结构较复杂,用材量大,造价高;浮头盖与浮动管板间若密封不严,易发生泄漏,造成两种介质的混合。

换热器的传热计算

换热器的传热计算 换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对已知换热面积的换热器,核算其传热量、流体的流量或温度。这两种计算均以热量衡算和总传热速率方程为基础。 换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。Q=W c p Δt ,若流体有相变,Q=c p r 。 热负荷确定后,可由总传热速率方程(Q=K S Δt )求得换热面积,最后根据《化工设备标准系列》确定换热器的选型。 其中总传热系数K= 0011 h Rs kd bd d d Rs d h d o m i i i i ++++ (1) 在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。在选用这些推荐值时,应注意以下几点: 1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。 2. 设计中流体的性质(粘度等)和状态(流速等)应与所选的流体性质和 状态相一致。 3. 设计中换热器的类型应与所选的换热器的类型相一致。 4. 总传热系数的推荐值一般范围很大,设计时可根据实际情况选取中间的 某一数值。若需降低设备费可选取较大的K 值;若需降低操作费用可取较小的K 值。 5. 为保证较好的换热效果,设计中一般流体采用逆流换热,若采用错流或 折流换热时,可通过安德伍德(Underwood )和鲍曼(Bowman )图算法对Δt 进行修正。 虽然这些推荐值给设计带来了很大便利,但是某些情况下,所选K 值与实际值出入很大,为避免盲目烦琐的试差计算,可根据式(1)对K 值估算。 式(1)可分为三部分,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。由此,K 值估算最关键的部分就是对流传热系数h 的估算。

列管式换热器设计的基本步骤

列管式换热器设计的基本步骤 (一)新设计换热器的设计计算步骤 由化工工艺计算热负荷以确定换热器所需之传热速率,及流体进出口温度。确定流体计算所用的定性温度,查取与计算流体的物性数据,如定压比热容,重度或密度,粘度,导热系数等。 确定流体流入的空间,并确定两流体的流向,再进行平均温差的计算。选取管径和管内线速度。按经验数据选择传热系数值,或初步计算值,即先计算或估计管内管外流体的传热系数,再计算值。在计算管外流体时需先确定壳体直径,但此时结构与尺寸还未定。为方便起见,亦可假设管外的值,以计算值。根据初估的值再计算出传热面积。为安全起见取实际面积为初始计算值的倍。 进行总体结构设计。即选择管长,计算管数,排列管子,计算壳径,并根据系列尺寸进行圆整。不考虑管程分程时,应使管数及在管板上的排列与系列相同。 兴管程与壳程线速度,根据管内流速确定是否分程,若分程后影响到管板上管子的排列,则要重新考虑排列管子。兴管内管外传热系数,估计垢层热阻,复算传热系数。兴(修正)平均温差。 核算传热面积。若与初步计算的面积相符即可,若不相符,且相差较大,则需对管数、程数或管子长度等进行调整,重复的计算,直至计算相符。 计算管程与壳程的压力降。 (二)选型的计算步骤 以上的计算过程适合于一般设计之用,对于常见的石墨换热器,原化工部已制订了系列标准,提高了设计与制造的效率。一般情况下应该根据具体的工艺过程的要求,在石墨换热器系列中选择合适的型号,这时可按如下的方法进行计算与选型。 根据化工生产工艺过程要求的热负荷,选择流入空间,确定管内管外的流向,计算平均温差。根据生产经验数据初步估算所需之传热面积。根据初步估算之传热面积(并需考虑适当的裕度),在产品系列中选择热面积最为接近的型号。查阅所选定的定型产品结构参数,按其结构参数进行传热计算。即计算管程与壳程流体的流速,计算传热系数和,计算传热系数值,复算传热面积与所选产品型号是否相符(要求所选型号的面积比计算出的面积大)。若相差太大均需重新选型与重新复算,直到满足要求为止。最后仍需计算流体阻力,以评定操作中的经济性能。如果压力降太大,则需重新选型,直到传热要求与压力降要求均可满足为止。 九、关于块孔式石墨换热器传热计算中的一些问题 块孔式石墨换热器的传热计算与列管式有很多相似之处,例如它们的传热原理与传热系数的计算方法是一致的,可以采用式一类的关联式计算传热系数。在计算中应注意到孔道长度与孔道直径之比常翅小于,流体在孔道中不断改变运动方向,有强化传热的作用,因此应对传热系数的计算值乘上一个大于的修正系数。当该系数小于若不考虑修正,对计算结果影响也不大。此外,块孔换热器还有不少自身的特殊性。例如在平均温差计算的修正以及块孔传热壁厚度的计算中需予以特殊处理。平均温差的校正对于孔道平行型的石墨块孔,当由多个块孔单元组合成时,由于两种流体的流动方向是平行的,可以做成全逆流或全并流的形式。此外也可以做成一种流体为单程,另一种为多程的,或两种流体均为多程的。除全逆流和全并流不需进行平均温差的校正计算.之外,其余均可近似地按列管式换热器相应的流动方式进行平均温差的校正,即按图进行校正。对于孔道相互垂直型块孔石墨换热器的温差校正计算较为繁复。这是因为孔道相互垂直型块孔换热器就其某一块孔单元来说属于错流传热,而且两个流体均不自相混合,但就多个块孔单元组合后就形成如图所示的流向,所以总体上就不是简单的错流,而成为非常复杂的错流流动,这就不能按图所示的曲线来校正平均温差。这需要采用传热单元数(-)的方法进行。

相关文档
最新文档