第四届能源科学与化学工程国际学术会议ICESCE2018
各学科重要国际会议目录完整版

各学科重要国际会议目
录
标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]
建筑学院重要国际学术会议一、A类会议
二、B类会议
土木水利学院土木工程系重要国际学术会议一、A类会议
二、B类会议
土木水利学院 建设管理系
重要国际学术会议
一、A 类会议
二、B类会议
土木水利学院水利水电工程系重要国际学术会议
一、A类会议
二、B类会议
环境科学与工程系重要国际学术会议一、A类会议
二、B类会议
机械工程系重要国际学术会议一、A类会议
二、B类会议
精仪系机械工程学科重要国际学术会议一、A类会议
二、B类会议
精仪系仪器科学与技术学科重要国际学术会议一、A类会议
二、B类会议
精仪系光学工程学科重要国际学术会议一、A类会议
二、B类会议
热能工程系重要国际学术会议一、A类会议
二、B类会议
汽车工程系重要国际学术会议一、A类会议
二、B类会议
工业工程系重要国际学术会议一、A类会议
二、B类会议
电机系重要国际学术会议一、A类会议
二、B类会议
电子工程系电子科学与技术一级学科重要国际学术会议汇总一、A类会议
二、B类会议。
我校成功举办中英生物质混燃国际会议

a d te t n fte c u e d n i h mp c o eb l t e man fco n o n r ame t a s ,ie t y t e i a t ft al h i a tr ic me,a d f co st a f c alp o o h f h n a tr h taf t l r — e b
我校 副校 长杨 勇平教授 出席研 讨会 ,来 自Caf l rn ed大学 ,R W 电力公 司,D oa a cc i E osnB bok电力公 司, A dl nai n咨询公 司,清华 大学、中国煤炭研 究总院、国能 生物发 电集团、龙基 电力集 团和 华北电 力大学等
高校 、科研 机构和企业 的专家学者和 企业代表 5 O余人参加 了此次国际会议 。 杨 勇平 副校 长代表 学校致 欢迎 辞,向参加此 次会 议的 国 内外专 家表 示欢迎 ,他 指 出,面对能 源短 缺
Zh n n, L F n a g Ya i e g
(iou o e ln,SaeGi nr eeom n C . Ld ,J ou 50 1 hn ) J zoP w r at t r E eg D vl et o , t. i zo 4 0 ,C ia a P t d y p a 4
和 全 球 气候 变化 ,世 界 各 国都 致 力 于新 能 源 和 可 再 生 能 源 的 开 发 , 中 国积 极 推 动 新 能 源 产 业 的 技 术 进 步
第四届冷原子会议会议安排July 5

[P16]
Jing Qian(钱静)
Efficient production of polar molecular Bose–Einstein condensates via an all-optical R-type atom–molecule adiabatic passage
41
[P17]
31
[P07]
Haichao Zhang(张海潮)
Demonstration of Neutral Atom Guiding via Radio-Frequency Field
32
[P08]
Shuyu Zhou(周蜀渝)
Double-well Array Trapping Atoms Based on Binary Optics ethod
会议安排July 5, Monday
Opening Ceremony
Presider
Liang Liu(刘亮)
8:30-9:00
Yuzhu Wang(王育竹)and Chaohui Ye(叶朝辉)
Opening Remarks
Sec. A
Presider
Li You(尤力)
9:00-9:30
Jun Ye(叶军)
Xing-Dong Zhao(赵兴东)
A magical polarization orientation for canceling the dipole-dipole
interaction in ultracold Bosonic dipolar gases
42
[P18]
Cheng-ling Bian(边成玲)
46
[P22]
K. Zhang(张可烨)
淆华大学师生参加第四届国际风能大会

( 1 ) 2 0 k V 配 电网将有较 高的供 电可靠性 。 当 任何一 路 2 0 k V 线路 因检修或故 障停运 时 , 能通 过 倒 闸操 作 , 经 其他 2 0 k V 线路 继 续 向该线路 的非 检 修或非 故 障段 供 电 。 当任何 一 条线路 2 0 k V 馈 电开 关 因检修或 故障停运 时 , 能通 过 倒 闸操作 , 通 过 其 它 2 0 k V 线路继续供 电。
(2 ) 20 kV 配 电 网将加强 电源 点之 间 的联 络 。 电源点之 问 的 2 0 k V 配 电网主 干线 , 将通 过 配 电所 、 线路分段份 支设备 , 形成环 形 网络 (开 环运 行 ) , 以 保证 当有一 个 电源 点失 去 时 , 可 以 通 过 2 0 kV 配 网 进行 负荷转 移 , 保证 安 全供 电 。
办 的 80 多场专题技术研讨会和
新产品发布会 , 从 多个 角度全 面
披露 了最 新 的风 电技术和 产业
发展 趋势 , 探讨 了洲 际 问和 国家
间在风 能领域 的合作模式 以及
共赢 战略 个 院系 、 以硕 士生和博士生
为主 的 33 名代表 。 这些 充满青
春气息 的莘莘学子 与 国 内外专
联合全球风能理 事会共 同 主 办 的 。 大会 旨在 为 国 内外风 电行业 的专家 学者 、 决策者及 产业 界 制造商 、开 发商 、投资者 提供 交 流 和 展 示 的平
家进 行 了风 能政策 、 技术及 发 展 方 向的广泛 交 流 。 由清华大学 职业 发展协会 和 电机 系研 究生
能源化工管理系统工程国际学术研讨会

余乐安 : 教授 , 博 导。 收稿 日期 : 2 0 1 2 — 1 2 — 1 0
勤 悠
4 9
院士和香港城市大学管理科学 系 K i n K e u n g L a i 教 授共同担任大会主席 。中国石油和化学工业联合会
P r i c e F o r ma t i o n : A Ne w T h e o r e t i c l a F r a me w o r k ” 、 Ki n
本次会议吸引了来 自中国、 美 国、 加拿大等 国家 的专家学者共计 2 0 0 余人参加了此次盛会。会议共 收到论文 2 0 0 余篇, 经审稿后择优录用 1 2 3 篇。 会议
期间,特邀中国科学院数学与系统科学研究院汪寿 阳院士 、 香 港城 市 大 学 的 K i n Ke u n g L a i 教授 、 美 国 德勤公司的 G e o r g e Y u a n教授 、国家杰青华东理工 大学马铁驹教授、中国石化集团长城能源化工有限 公司副总经理何祚云教授 、中国科学院科技政策与
K e u n g L a i 教授的 “ E n e r y g S u p p l y C h a i n M na a g e m e n t :
李永亮处长, 北京化工大学党委副书记关 昌峰教授、 材料科学与工程学院院长杨万泰教授、信息科学与 技术学院院长朱群雄教授、国际交流与合作处处长
海经济研究》 等期刊主编 、 北京师范大学教授、 中国 社会科学院研究员等参加 了会议 ,并积极开展了组 稿、 约稿工作 。研讨会结束后 , 从征文中选择部分优 娶
U
秀论文并推荐至 国内重要经济学、 管理学学术期刊。 通过这 次 国际研讨 会 的平 台 ,营造 浓厚 的科 研学 术 氛围, 开 阔了江南 大学 师 生 的视 野 , 必将对 未来 的学 术发展产生积极和持久的影响。
第四届能源设备科学与工程国际学术会议ICEESE2018

报告题目及摘要/Title&Abstract*
报告人/Author
个人照片
报告题目/Title
摘要/ Abstract
_________________________________________________________________________________________________________________
*Please fill in, save the file and feedback via Email:iceese2018@.
*Registration fees includes conference materials, banquet, lunches, gifts,tea break.
Research Area:
随行人员/ Retinue:
若有随行人员,请复制此表并填写完整后返回.
参会意愿/ Presentation & Preference *
特邀报告/Keynote Speeches(Upload detailed academic CV)
听众/ Listener
口头报告/Oral
墙报展示/Poster
*Final decision will rest with the Scientific Committee
注册费用/Registration Type & Fee *
Registration Type
注册费(人民币)
Fee(By US Dollar)
听众/Listener
1000RMB/人
第四届能源设备科学与工程国际学术会议(ICEESE2018)
四氟化铂PtF4 美国化学会ACS文献 (1)

Structure and Electron Affinity of Platinum FluoridesRalf Wesendrup and Peter Schwerdtfeger*Department of Chemistry,The University of Auckland,Private Bag92019,Auckland,New ZealandRecei V ed February9,2001The structure,stability,and electron affinity of the even numbered molecular platinum fluorides PtF2n(n)1-4)were studied by scalar relativistic density functional and coupled cluster methods.The di,tetra,and hexafluoridespossess triplet ground states,while PtF8is a singlet.Formation of the latter from PtF6and F2is found to beendothermic.Differences between adiabiatic and vertical electron affinities are only significant for PtF2.IntroductionThe preparation of high oxidation state compounds is still a very active area of research.1The maximum oxidation state is +8,as known for the oxides OsO4,RuO4,and XeO4,but even higher oxidation states may be feasible,as recently proposed by Pyykko¨for uranium oxides.2For the fluorides the maximum oxidation state seems to be+7,as this is the case for IF7,ReF7, or OsF7.3-5These compounds are,however,very unstable and represent powerful fluorination agents.Although OsF8was recently predicted to be a metastable compound,6fluorides in the oxidation state+8are unknown, with the exception of mixed oxofluorides such as XeO2F4.7 Theoretically,relativistic effects could stabilize high oxidation states for the heavy transition elements.8The relativistic stabilization of the valence6s orbital and destabilization of the 5d diminishes the5d-6s gap especially for the elements around Au,i.e.,Hg and Pt.9This has been demonstrated for AuF6-and for the proposed high oxidation state compound of mercury, HgF4.10-13The highest oxidation state for platinum is+6,14and PtO3 has been investigated recently by Andrews and co-workers using matrix infrared spectroscopy.15In the gas phase PtO and PtO3 are open-shell species,15-17while the electronic ground states of isolated PtF2and PtF4are yet unknown.The thermochemistry of the di,tetra,and hexafluoride of platinum has been studied by means of mass spectroscopy,18-21but with the exception of PtF6,their actual gas phase structures have yet to be estab-lished.22PtF6is also one of the molecules with the highest experimentally determined electron affinity,23and high electron affinities are also found for the lower fluorides of platinum.21 Therefore,we investigated the structure and stability of the platinum fluorides PtF n(n)2,4,6,8)with an emphasis on their electron affinities.Computational DetailsFor platinum we used the scalar relativistic energy-consistent small-core pseudopotential of the Stuttgart group to replace the60core electrons.24In the geometry optimization,the Pt basis set described in ref25was reduced to a contracted(9s8p7d)/[7s6p6d]basis set.Two diffuse s functions and an optimized f exponent of1.2178augmented this set for the single point calculations.For fluorine we used the correlation consistent augmented double- basis set of Dunning and co-workers.26This resulted in a total number of248basis functions for the Hartree-Fock(HF)and subsequent coupled cluster single points of PtF8.The orbital space was kept fully active throughout.Geometry optimizations,using tight convergence criteria to detect possible small Jahn-Teller symmetry breaking effects,and frequency calculations*To whom correspondence should be addressed.(1)Bartlett,N.Valency in the Periodic Table-Concerning the Limits ofOxidation of the Elements.In32nd Proceedings of the Robert A.WelchFoundation;Houston,Texas,1988;p259.(2)Pyykko¨,P.;Runeberg,N.;Straka,M.;Dyall,K.G.Chem.Phys.Lett.2000,328,413.(3)Bartlett,N.;Yeh,S.;Kourtakis,K.;Mallouk,T.J.Fluorine Chem.1984,26,97.(4)Bartlett,N.;Beaton,S.P.;Reeves,L.W.;Wells,E.J.Can.J.Chem.1964,42,2531.(5)Glemser,O.;Roesky,H.W.;Hellberg,K.H.;Werther,H.U.Chem.Ber.1966,99,2652.(6)Veldkamp,A.;Frenking,G.Chem.Ber.1993,126,1325.(7)Bartlett,N.;Sladky,F.O.The Chemistry of Krypton,Xenon andRadon.In Comprehensi V e Inorganic Chemistry;Trotman-Dickenson,A.F.,Ed.;Pergamon Press:Oxford,1973;Vol1,p213.(8)Pyykko¨,P.Chem.Re V.1988,88,563.(9)Pyykko¨,P.;Desclaux,J.P.Acc.Chem.Res.1979,12,276.(10)Schwerdtfeger,P.;Boyd,P.D.W.;Brienne,S.;Burrell,A.K.Inorg.Chem.1992,31,3411.(11)Seth,M.;Cooke,F.;Pelissier,M.;Heully,J.-L.;Schwerdtfeger,P.J.Chem.Phys.1998,109,3935.(12)Kaupp,M.;von Schnering,H.G.Angew.Chem.,Int.Ed.Engl.1993,32,861.(13)Kaupp,M.;Dolg,M.;Stoll,H.;von Schnering,H.G.Inorg.Chem.1994,33,2122.(14)Weinstock,B.;Claassen,H.H.;Malm,J.G.J.Am.Chem.Soc.1957,79,5832.(15)Bare,W.D.;Citra,A.;Chertihin,G.V.;Andrews,L.J.Phys.Chem.A1999,103,5456.(16)Steimle,T.C.;Jung,K.Y.;Li,B.-Z.J.Chem.Phys.1995,103,1767.(17)Chung,S.-C.;Kru¨ger,S.;Pacchioni,G.;Ro¨sch,N.J.Chem.Phys.1995,102,3695.(18)Korobov,M.V.;Bondarenko,A.A.;Sidorov,L.N.;Nikulin V.V.High Temp.Sci.1983,411.(19)Korobov,M.V.;Nikulin,V.V.;Chilingarov,N.S.;Sidorov,L.N.J.Chem.Thermodyn.1986,18,235.(20)Kuznetsov,S.V.;Korobov,M.V.;Sidorov,L.N.;Sadinova,L.N.;Shipachev,V.A.;Mitkin,V.N.Int.J.Mass Spectrom.Ion Processes 1989,87,1.(21)Kuznetsov,S.V.;Korobov,M.V.;Sidorov,L.N.;Shipachev,V.A.;Mitkin,V.N.Int.J.Mass Spectrom.Ion Processes1989,87,13.(22)Holloway,J.H.;Stanger,G.;Hope,E.G.;Levason,W.;Ogden,J.S.J.Chem.Soc.,Dalton Trans.1988,1341.(23)Gutsev,G.L.;Boldyrev,A.I.Ad V.Chem.Phys.1985,61,169.(24)Stoll,H.;Dolg,M.;Preuss,H.Pseudopotential parameters and basissets;Internal Report,Universita¨t Stuttgart,Stuttgart,1997,and references therein.(25)Wesendrup,R.;Laerdahl,J.K.;Schwerdtfeger,P.J.Chem.Phys.1999,110,9457.(26)Kendall,R.A.;Dunning,T.H.,Jr.;Harrison,R.J.J.Chem.Phys.1992,96,6769.3351Inorg.Chem.2001,40,3351-335410.1021/ic010169t CCC:$20.00©2001American Chemical SocietyPublished on Web06/08/2001were performed at the density functional B3LYP level using Gaussian98followed by a thermodynamical analysis for the various decomposition processes of PtF 2n (n )1,2,3,4).27The optimized structures for the neutral species are all minima as checked by frequency analyses.28The singlet -triplet energy separation was determined for the structures where the triplet state represents the electronic ground state.Quintet states for the neutral and quartet states for the anionic species are too high in energy and were not considered.A comparison of different minimum structures for PtF 2optimized at B3LYP,Møller -Plesset second-order (MP2),and CCSD(T)level reveals a reasonable agreement between the methods and justifies our choice of the less expensive B3LYP method for the geometry optimization.For the higher fluorides,coupled cluster single points were calculated at the B3LYP geometries using the program AcesII.29To obtain the vertical electron affinities (EA),the energies of the anions were calculated at the geometry of the corresponding neutral molecules.For comparison we also optimized the structures of PtF 2-,PtF 4-,and PtF 6-to determine the adiabatic electron affinities.As the difference between both EAs is minute,only the vertical EA was calculated for PtF 8.The doubly charged free species PtF 22-and PtF 42-are not stable with respect to loss of an electron according to our computations and will therefore not be discussed.Although spin -orbit splitting is significant in the platinum atom,its importance generally decreases with increasing number of ligands.Spin -orbit effects were therefore neglected.Results and DiscussionThe optimized B3LYP structures are shown in Figures 1and 2.In the following we discuss the fluorides according to their coordination number.PtF 2.For the electronic ground state of the platinum atom,triplet and singlet electronic states are almost degenerate.30Therefore,both multiplicities need to be considered here.Table 1summarizes the two lowest singlet and triplet states for PtF 2as optimized at the B3LYP,the MP2,and the CCSD(T)levels of theory.The MP2structures,displaying the familiar tendency for overbinding of this method,are characterized by slightly shorter bonds as compared to the B3LYP or CCSD(T)structures.Apart from that,the overall agreement between the geometric parameters is quite satisfactory.Most importantly,all three methods qualitatively reproduce the energetic order of the different structures.The ground state of PtF 2appears to be a linear 3Σg +state with a Pt -F bond length of 1.857Åat the CCSD(T)level.This is in contrast to PtH 2,which has a 1A 1(C 2V )electronic ground state.31The first excited state (3Πu )is also linear and(27)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Zakrzewski,V.G.;Montgomery,J.A.;Stratman,R.E.;Burant,J.C.;Dapprich,S.;Millam,J.M.;Daniels,A.D.;Kudin,K.N.;Strain,M.C.;Farkas,O.;Tomasi,J.;Barone,V.;Cossi,M.;Cammi,R.;Mennucci,B.;Pomelli,C.;Adamo,C.;Clifford,S.;Ochterski,J.;Petersson,G.A.;Ayala,P.Y.;Cui,Q.;Morokuma,K.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,J.B.;Cioslowski,J.;Ortiz,J.V.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.;Komaromi,I.;Gomperts,R.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y.;Nanayakkara,A.;Gonzalez,C.;Challacombe,M.;Gill,P.M.W.;Johnson,B.G.;Chen,W.;Wong,M.W.;Andres,J.L.;Head-Gordon,M.;Replogle,E.S.;Pople,J. A.Gaussian 98,revision A.1;Gaussian,Inc.:Pittsburgh,PA,1998.(28)For future gas-phase spectroscopic studies we list the B3LYP normalfrequencies for the platinum fluorides in their electronic ground state (in cm -1).PtF 2(D ∞h ):138(Πu ),638(Σu +),703(Σg +).PtF 4(D 2h ):161(Au),224(B 2u ),232(B 3u ),249(B 1u ),270(A g ),318(B 3g ),664(A g ),684(B 2u ),692(B 1u ).PtF 6(D 2h ):163(B 2u ),212(B 1u ),218(A g ),225(A g ),233(B 3g ),255(A u ),265(A g )276(B 1u ),285(B 3u ),615(A g ),646(A g ),659(B 3g ),667(B 3u ),680(B 2u ),680(B 1u ).PtF 8(D 4):125(B 1),126(B 2),205(A 1),283(E),301(A 2),316(E),345(E),346(A 1),396(B 2),397(B 1),485(B 2),487(B 1),509(E),583(A 2),585(A 1),595(E).(29)Stanton,J.F.;Gauss,J.;Watts,J.D.;Nooijen,M.;Oliphant,N.;Perera,S.A.;Szalay,P.G.;Lauderdale,W.L.;Gwaltney,S.R.;Beck,S.;Balkova ´,A.;Bernholdt,D.E.;Baeck,K.-K.;Sekino,H.;Bartlett,R.J.ACES II ;University of Florida:Gainesville,1995.(30)Moore,C.E.Atomic Energy Le V els ;US GPO:Washington,1958.Figure 1.B3LYP optimized structures for the neutral platinum fluorides.Distances in Åand angles in degrees.Figure 2.B3LYP optimized structures for the singly charged anionic platinum fluorides.Distances in Åand angles in degrees.PtF 62-is an ideal octahedron,and the Pt -F bond distance is given in parentheses.Table 1:Comparison of Structures,Energies,and Vibrational Frequencies for Some Low-lying States of PtF 2Using Different Methods astate property B3LYP MP2CCSD(T)D ∞h (3Σg +)r e1.862 1.848 1.857ωe (Πu )138136141ωe (Σu +)638679657ωe (Σg +)703729708D ∞h (3Πu )r e1.904 1.895 1.900ωe (Πu )151156163ωe (Σu +)651655664ωe (Σg +)622638639∆E 30.140.247.3C 2V (1Α1)r e 1.870 1.846 1.856θ125.6127.9133.1ωe (A 1)149124116ωe (A 1)638675659ωe (B 1)632755667∆E 98.693.1112.0D ∞h (1Σg +)r e1.951 1.943 1.946ωe (Πu )159180171ωe (Σu +)600598602ωe (Σg +)600627618∆E135.4123.1122.8aEquilibrium bond distances r e in Å,bond angles θin degrees,harmonic frequency ωe in cm -1,and energy difference ∆E in kJ/mol as compared to the linear 3Σg +ground electronic state.3352Inorganic Chemistry,Vol.40,No.14,2001Wesendrup andSchwerdtfegerpossesses with 1.90Åslightly elongated Pt -F bonds.Experi-mentally the structure of platinum difluoride is not known,but our calculated bond length lies in the range of the linear PtF 2fragment as it occurs in hexacoordinated platinum complexes.Here the Pt -F distances range from 1.83Åfor PtF 6to 1.94Åfor trans -[PtX 2(Py)4]2+.32,33In their thermodynamical analysis of PtF 2,Korobov and co-workers assumed a bent structure.18According to our calcula-tions the lowest C 2V minimum lies about 100kJ/mol above the linear global minimum and corresponds to a singlet state.We note,however,that at the experimental temperature of 850-1120K a number of excited electronic states,corresponding to both geometries,will be populated.18If we use a value of 565kJ/mol as the atomization energy for platinum,we obtain -674(25kJ/mol as the experimental enthalpy for the reaction of Pt +F 2f PtF 2.34This agrees excellently with our calculated standard reaction enthalpy of ∆H °)-670kJ/mol derived from CCSD(T)electronic energies and B3LYP harmonic frequencies (see Table 2).The HF results deviate from the correlated energies not only for PtF 2but also for all molecules under investigation.Not surprisingly,correlation is essential to obtain any meaningful results,and we list the HF values for reasons of completeness only,without further discussion.However for PtF 2,also the B3LYP value of 606kJ/mol is significantly too low,even when the large error of the experimental reaction enthalpy and the fact that we neglect anharmonicity effects in our thermochemical analysis are taken into account.For the vertical electron affinity we obtain values between 2.72and 3.13eV,Table 3.The optimized ground state for PtF 2-corresponds to a linear 2Πg state with significantly elongated Pt -F bonds of 1.959Å.Despite this structural difference,the adiabatic electron affinity is only moderately greater than the corresponding vertical values,with deviations between 0.07eV (MP2)and 0.17eV (B3LYP).Naturally,the difference is most pronounced at the B3LYP level,which was used to optimize both the neutral and anionic structures.To the best of our knowledge,the experimental electron affinity of PtF 2has never been published.In light of our results for the higher fluorides,a value of 3.0(0.3eV appears to be reasonable.PtF 4.In contrast to the assumption by Korobov and co-workers,the tetrahedral structure is not a minimum on the PtF 4hypersurface,but a second-order saddle point.18Instead the low-lying singlet and the triplet states of PtF 4correspond to D 4hstructures,or to be more precise a slightly Jahn -Teller distorted D 2h structure.Given the plethora of planar tetracoordinated platinum complexes known,our finding is hardly a surprise.Neither for the singlet or the triplet state any low energy minima of lower symmetry could be found,so we restrain our discussion to the D 4h structure.The orbital situation of the singlet ground state is character-ized by fully occupied HOMOs of e g symmetry and a b 2g LUMO,thus giving rise to a 1A 1electronic ground state.For the triplet state the orbital order is slightly different,as the b 2g orbital lies below the degenerated e g orbitals and above the a 1g orbital.Independent of the exact orbital energies,the distribution of six electrons into these four orbitals can lead to four close lying triplet states.Occupation of b 2g and a 1g and leaving both e g orbitals singly occupied gives rise to a 3A 2g state.Note that the other possible products of e g ×e g result in a symmetric spatial wave function that cannot validly be combined with a triplet spin function.If both e g orbitals are fully occupied,a 3B 2g state results from the combination a 1g ×b 2g .Finally,E g states are obtained from either the occupation e g ×a 1g or from e g ×b 2g .Symmetry arguments suggest that the E g state cannot correspond to a true minimum in D 4h but undergoes Jahn -Teller distortion along a B 1or B 2mode.35Indeed,a careful optimiza-tion reveals a slightly distorted structure of D 2h symmetry as the global minimum for PtF 4at the B3LYP level,with alternating bond angles of 92.08and 87.92°.Again,the situation is quite different to that of PtH 4,where a 1A”ground state of C s symmetry has been determined.31As summarized in Table 4,the stationary points for PtF 4are quite similar with respect to bond distances and relative energies.Clearly,further studies,including spin -orbit coupling within a multireference procedure,would be necessary to determine accurately the ground-state structure of PtF 4.However,it appears(31)Andrews,L.;Wang,X.;Manceron,L.J.Chem.Phys.2001,114,1559.(32)Brisdom,A.K.;Holloway,J.H.;Hope,E.G.;Levason,W.;Ogden,J.S.;Saad,A.K.J.Chem.Soc.,Dalton Trans.1992,139.(33)Drews,H.-H.;Preetz,W.Z.Anorg.Allg.Chem.1997,623,509.(34)Lias,S.G.;Liebman,J.F.;Levin,R.D.;Kafafi,S.A.NIST StandardReference Database,Positi V e Ion Energetics ,Version 2.01;January,1994.(35)Jotham,R.W.;Kettle,S.F.A.Inorg.Chim.Acta 1971,5,183.Table 2:Calculated and Experimental Reaction Energies in KJ/mol for the Reaction of PtF 2n +F 2(n )0-3)amethod Pt +F 2f PtF 2PtF 2+F 2f PtF 4PtF 4+F 2f PtF 6PtF 6+F 2f PtF 8HF -562.6-238.785.8577.4MP2-688.8-352.9-289.290.2CCSD -663.5-308.9-113.4304.4CCSD(T)-677.7-337.6-172.1229.7B3LYP -606.2-335.4-183.9306.4∆G °-692.3-379.3-233.4281.0∆S °74.2-139.9-167.4-183.1∆H °-670.2-335.4-160.7226.5∆H °(exp.)-674(25-414(50-155(53-aExperimental values from refs 18,19,and 34.Calculated energy differences in kJ/mol,standard enthalpies,∆H °,and Gibbs free energies,∆G °,in kJ/mol,and entropies,∆S ,in J/K for the reaction of PtF 2n +F 2(n )0-3)at standard conditions (1atm pressure and 298.15K).For the thermodynamic data,CCSD(T)energies and thermal corrections from B3LYP frequency calculations were used.Table 3:Calculated and Experimental Electron Affinities in eV for the Platinum Fluorides a molecule HF MP2CCSD CCSD[T]B3LYP exp Pt 0.55 1.65 1.69 1.85 2.02 2.12F 1.39 3.54 3.13 3.23 3.60 3.40PtF 22.093.01 2.73 2.72 3.13PtF 2(ad.) 2.33 3.08 2.87 2.86 3.30-PtF 45.38 5.48 5.47 5.24 5.12PtF 4(ad.) 5.25 5.51 5.48 5.29 5.35 5.50(0.25b PtF 68.66 6.507.577.01 6.68PtF 6(ad.)8.30 6.437.43 6.95 6.787.00(0.35c PtF 6- 1.370.190.760.370.36 3.9(0.6c PtF 87.325.966.656.236.62-aAdiabatic electron affinities using optimized structures of the corresponding anions are denoted by (ad.).b Reference 20.c Reference 21.Structure and Electron Affinity of Platinum FluoridesInorganic Chemistry,Vol.40,No.14,20013353certain that the ground state of PtF4is a triplet state.Fortunately,the near degeneracy of the different states implies that the actualnature of the ground state is less important for the calculationof reaction enthalpies and electron affinities.All our calculatedenergy differences for the reaction PtF2+F2f PtF4are below the experimental value of414kJ/mol(Table2).This may wellindicate that the correct experimental value lies at the lowerend of the substantial error margin of50kJ/mol.Both vertical and adiabatic EAs agree excellently with thereported experimental values of5.50eV.The optimized structurefor PtF4-is a2B2g state of square-planar symmetry with Pt-Fbonds of1.935Å.As expected,the structural changes uponaddition of an electron are less pronounced in PtF4as comparedto PtF2.PtF6.Unlike the di and tetrafluoride,platinum hexafluorideis a volatile molecule even at room temperature and has beenreported as early as1957.14Since then it has been the subjectof numerous experimental and some theoretical studies.19,21,32,36-40It is generally described as octahedral monomer,but smalldistortions from octahedral symmetry were found in the solidstate.38The ground-state configuration of octahedral PtF6is(5dt2g)4,corresponding to a triplet ground state.Of the possiblecombinations resulting from t2g×t2g,only the3T1g state is symmetry allowed and has been postulated as the ground state for PtF6based on its magnetic moment.41However,octahedral molecules of3T1g symmetry are subject to a first-order Jahn-Teller effect and distort along an E g or T2g vibrational mode.35 This prediction is reproduced by our calculations.The optimized octahedral PtF6has a bond length of1.887Å;this is somewhat longer than the experimental value,which varies between1.839 and 1.853Å,depending on the respective experimental method.36-40More importantly however,the calculated octa-hedral structure is a second-order saddle point,and the frequency analysis reveals a doubly degenerated imaginary frequency of 70i cm-1and thus an E g distortion.Optimization along these coordinates leads to a true minimum of D2h symmetry that lies only4kJ/mol below the octahedral geometry.Clearly,this energy difference is too small to be experimentally detectable. Under most experimental conditions-with the exception of matrix experiments-PtF6will be fluctuating between degener-ated D2h minima via transition states close to the octahedral symmetry,thus yielding an averaged experimental result.The lowest singlet state of PtF6corresponds to C2h symmetry and can be regarded as a slightly distorted octahedron,too.The triplet-singlet gap amounts to72kJ/mol.Several minima of lower symmetry could also be located for both spin states,but they lie significantly higher in energy.Our calculated values for the reaction PtF4+F2f PtF6are spread over a wide range,but the B3LYP and CCSD(T)values match the experimental result quite nicely.We note that MP2 performs less well for higher oxidation states and for PtF6 deviates drastically from CCSD(T)results as this was found previously for the Group11fluorides.11We conclude that CCSD(T)calculations are indeed necessary to obtain reliable energies for the platinum fluorides.Our calculated electron affinities lie around7eV,which is in excellent agreement with the most recent experimental value by Korobov et al.21Clearly,earlier values of8.0and9.06eV can be discarded.36,42Not surprisingly,the difference between the calculated vertical and adiabatic EAs is even smaller for PtF6than for PtF4.The optimized structure for octahedral PtF6-has a bond length of1.927Å.Like the neutral hexafluoride, PtF6-is subject to a Jahn-Teller effect.It distorts to D4h geometry with elongated axial bonds of1.960Åand equatorial bonds of1.908Å.Interestingly,the dianion PtF62-is also thermodynamically stable.With a configuration of(5d t2g6),it has a1A1g ground state of perfect octahedral symmetry and Pt-F bonds of1.990Å.For comparison,in the solid state,two additional electrons increase the Pt-F bond length from1.85Åfor PtF6to1.92Åfor PtF62-.43In the crystal the differences between the neutral and the dianion are moderated by the influence of the lattice and,therefore,are less pronounced than for isolated gas-phase molecules,as calculated here.The calculated second EA of PtF6is0.37eV at CCSD(T)and0.36 eV at B3LYP,slightly higher than a recent density functional result of0.l eV,39with our MP2and CCSD values scattered around that number.It is therefore safe to conclude that the reported experimental value of3.9eV is much too high,possibly due to excited states of the singly charged PtF6-involved in the experiment.21PtF8.Unlike the lower fluorides,PtF8has a singlet ground state.The global minimum appears to be of D4symmetry,a slightly distorted square antiprism.Although no imaginary frequencies appear in the frequency analysis and PtF8represents a true minimum,the compound is only metastable.Decomposi-tion to PtF6and molecular fluorine is exothermic by306kJ/ mol at the B3LYP level and by90kJ/mol even at the MP2 level.The low stability of PtF8is reflected by the Pt-F bond length of1.937Å,which is significantly longer as compared to the lower oxidation state platinum fluorides.Not surprisingly, the EA of PtF8lies with values between5.96eV(MP2)and 7.73eV(HF)below the corresponding values of the hexafluo-ride.Accordingly,the anion will be even less stable toward loss of F2than neutral PtF8.It is therefore most unlikely that PtF8 will ever be observed experimentally. Acknowledgment.This work was supported by Deutsche Forschungsgemeinschaft(Bonn,Germany),the Marsden Fund (Wellington),and the Auckland University Research Committee. IC010169T(36)(a)Bloor,J.E.;Sherrod,R.E.J.Am.Chem.Soc.1980,102,4333.(b)Gutsev,G.L.;Boldyrev,A.I.Chem.Phys.Lett.1983,101,441.(37)McDowell,R.S.Spectrochim.Acta,1986,42A,1053.(38)Marx,R.;Seppelt,K.;Ibberson,R.M.J.Chem.Phys.1996,104,7656.(39)Macgregor,S.A.;Moock,K.H.Inorg.Chem.1998,37,3284.(40)Richardson,A.D.;Hedberg,K.;Lucier,G.M.Inorg.Chem.2000,39,2787.(41)Moffit,W.;Goodman,G.L.;Weinstock,B.Mol.Phys.1959,2,109.(42)Nikitin,M.I.;Sidorov,L.N.;Korobov,M.V.Int.J.Mass Spectrom.Ion Processes1981,39,13.(43)Graudejus,O.;Wilkinson,A.P.;Chaco´n,L.C.;Bartlett,N.Inorg.Chem.2000,39,2794.Table4:Single Point Energies for Some Low-lying States of PtF4Using Different Methods astate B3LYP MP2CCSD(T)D2h(3B2g)r e 1.875D4h(3E g)b r e 1.879∆E 6.3-2.8-2.3D4h(3A2g)r e 1.887∆E10.80.810.6D4h(3B2g)r e 1.903∆E70.437.955.9D4h(1A1g)r e 1.870∆E77.318.261.5a Bond distances r e inÅ,differences in energy∆E in kJ/mol ascompared to the D2h ground state.b Second-order saddle point.3354Inorganic Chemistry,Vol.40,No.14,2001Wesendrup and Schwerdtfeger。
第四届亚洲混合会议报导

交流 , 推动中国流体混合技术研究与国际的合作 。1 2日 晚上 , 大会安排 了欢迎晚宴, 大会主席高正明教授邀
请 了 中 国石油 和化 工勘 察 设计 协会 化 学工 程设 计专 业 委 员会 主 任委 员 、 华 陆工 程科 技 有 限责 任公 司总 工程 师 山 秀丽 , 英 国伯 明翰 大学 A l v i n N i e n o w教授 , E a g l e B u r g ma n n ( 中国 ) 执 行 总裁 郭 锡 明分 别 致祝 酒 辞 。山 秀 丽 主任 委员 代 表化 学工 程 专委会 对 参会 各 国专 家教 授 在混 合 领 域做 出的贡 献 表达 了敬 意 , 对 高教 授 及 其带 领 的 团队在 组 织此 次会 议 中 的辛 苦 付 出表 达 了谢意 。 本 次会 议共 有来 自中国 、 美 国、 英国、 德 国、 荷兰 、 日本 、 澳 大利 亚 、 韩国、 马来 西亚 等 国家 的流体 混合 领域 的8 0名 知名 学者 参 加 , 其 中海外 学 者 4 0名 。参会 人 员 中 , 既 有来 自高等 院 校 、 研 究 院所 的 著名 的学 者 如英 国 伯 明翰 大 学 的 A l v i n N i e n o w教 授 、 澳大 利亚 纽 卡 斯 尔 大 学 的 G .M.E v a n s教授 、 日本 山形 大 学 K o j i T a k a —
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四届能源科学与化学工程国际学术会议(ICESCE 2018)
时间:2018年8月3-5日地点:昆明理工大学国际交流中心
网址:https:///ICESCE2018邮箱:icesce@
参会回执表
__________________________________________________________________________________________________________________
Research Area:
随行人员/ Retinue:
若有随行人员,请复制此表并填写完整后返回.
会议信息来源/Where to Get the Conference Information
(AEIC官方渠道、邮箱、科学网、知网、学者网…)
其他渠道/
Other Way
参会意愿/ Presentation & Preference *
豪华单间Deluxe Single Room RMB 371/ night (about USD 60/ night). (One beds, Internet and two breakfast included )
豪华双间Deluxe double Room RMB 383/ night (about USD 60/ night). (Two beds, Internet and two breakfast included )
Registration Type
注册费(人民币)
Fee(By US Dollar)
听众/Listener
1200RMB/人
180 USD / per person
*已投稿者根据投稿费用缴费即可,无需另缴参会费;
*非投稿者及其他随行人员如需参会须缴纳1200元参会费。
房间预订/Hotel Reservation *
基本信息/Personal Information *
稿件编号/
Manuscript Number:
姓名/ Name:
性别/Gender:
职称/ Title:
职务/ Position:
国家/Country:
微信/WeChat:
电话/ Phone:
邮箱/ E-mail:
学校/University:
研究领域/
* The above room type include the Internet and breakfast.
*入住价格请在酒店前台以会议主办方的名义按优惠价入住即可.
报告题目及摘要/Title&Abstract*
报告人/Author
个人照片
报告题目/Title
摘要/ Abstract
_________________________________________________________________________________________________________________
特邀报告/Keynote Speeches(Upload detailed acadeபைடு நூலகம்ic CV)
听众/ Listener
口头报告/Oral
墙报展示/Poster
*Final decision will rest with the Scientific Committee
注册费用/Registration Type & Fee *
*Please fill in, save the file and feedback via Email: icesce@
*Registration fees includes conference materials, banquet, lunches, gifts, tea break.
房间类型/Room Type
房间数量/Room Quantity
入住日期/Check-in Time
退房日期/Check-out Time
会议地点:昆明理工大学国际交流中心- Academic Exchange Center of Kunming University of Science and Technology (Wenhui Hotel)(click)