《高等代数》线性方程组

合集下载

高等代数课件(北大版)第三章-线性方程组§3-1

高等代数课件(北大版)第三章-线性方程组§3-1

例 解下列方程组

5 x1 2 x1

x2 x2
2x3 4x3
x4 7 2x4 1
x1 3x2 6x3 5x4 0
解:对方程组的增广矩阵作初等行变换
5 1 2 1 7 1 3 6 5 0

2 1
1 3
4 6
2 5
asn xn bs
先检查(1)中 x1的系数,若 a11,a21, ,as1全为零, 则 x1没有任何限制,即x1可取任意值,从而方程组
(1)可以看作是 x2 , , xn的方程组来解.
§3.1 2019/8/9 消元法
数学与计算科学学院
如果 x1的系数不全为零,不妨设,a11 0. 分别把第一个方程 ai1 的倍加 到第i个方程 (i 2, ,.s)
1 0



2 5
1 1
4 2
2 1
1 7

1 3 6 5 0 1 3 6 5 0


0 0
7 14
16 32
12 24
1 7



0 0
7 0
16 0
12 0
1 5

从最后一行知,原方程组无解。
§3.1 2019/8/9 消元法
数学与计算科学学院
§3.1 2019/8/9 消元法
数学与计算科学学院
再考虑方程组
a22 x2

a2 n xn b2
(4)
as2 x2 asn xn bs
显然,方程组(4)的一个解代入方程组(3)就得出(3)
的一个解;而方程组(3)的解都是方程组(4)有解。

高等代数第五章知识点总结

高等代数第五章知识点总结

高等代数第五章知识点总结高等代数是数学中的一个重要分支,主要研究代数结构、线性代数、群论等数学领域。

第五章主要涉及线性方程组、矩阵、向量空间、线性变换等知识点。

以下是对这些知识点的总结:1. 线性方程组:线性方程组是一组线性方程的集合,其中每个方程都是一次多项式。

线性方程组的解称为线性方程组的解,可以用矩阵和向量来表示。

2. 矩阵:矩阵是一种特殊的数组,可以表示线性方程组、线性变换和向量空间等数学对象。

矩阵的加法、数乘等运算符合矩阵的定义,并且矩阵具有一些特殊的性质,如行列式、秩等。

3. 向量空间:向量空间是一个线性空间,其中添加了一个标量值域。

向量空间的元素称为向量,向量空间的基和维数是重要概念。

向量空间的加法、数乘等运算符合向量空间的定义。

4. 线性变换:线性变换是一个将一个线性空间映射到另一个线性空间的函数。

线性变换的特征是保持向量空间的加法和数乘运算。

线性变换的矩阵表示是一个方阵,其中每行每列都是一个向量。

5. 特征值和特征向量:特征值和特征向量是两个重要的概念,用于描述矩阵的性质。

矩阵的特征值是指矩阵在乘以某个向量后得到的值,而特征向量是指与特征值相关的向量。

6. 相似矩阵:相似矩阵是指具有相同特征值的矩阵。

相似矩阵之间具有一些相似性质,如行列式、秩等。

相似矩阵可以用来表示线性变换的缩放比例和旋转角度。

7. 克莱默法则:克莱默法则是一个用于求解线性方程组的公式,可以将线性方程组的系数矩阵转换为阶梯形矩阵或行最简矩阵,从而求解线性方程组的解。

8. 特征值分解:特征值分解是将矩阵分解成一组特征向量的乘积,从而求解矩阵的特征值和特征向量。

特征值分解在矩阵的分解和求解中发挥着重要作用。

9. 二次型:二次型是一种特殊的矩阵,其元素是二次多项式。

二次型可以用来表示线性变换的对称矩阵和非对称矩阵,并且具有一些重要的性质,如行列式、秩等。

以上是第五章的主要知识点总结,这些知识点是高等代数中的重要基础,对于理解代数结构、线性代数和群论等数学领域具有重要意义。

厦门大学《高等代数(I)》线性方程组部分 练习题及参考答案

厦门大学《高等代数(I)》线性方程组部分 练习题及参考答案

单元练习:线性方程组部分一、填空题 每空 1分,共 10分1.非齐次线性方程组 AZ = b (A 为 m ×n 矩阵)有唯一解的的充分必要条件是____________。

2.n +1 个 n 维向量,组成的向量组为线性 ____________ 向量组。

3.设向量组 3 2 1 , ,a a a 线性无关,则常数 l , m 满足____________时,向量组 3 1 2 3 1 2 , , a a a a a a -- - m l 线性无关。

4.设 n 阶矩阵 A 的各行元素之和均为零, 且 r (A ) = n -1则 Ax = 0 的通解为________。

5.若向量组 3 2 1 , , a a a 线性无关,则向量组 3 1 2 3 1 2 , , a a a a a a + + + ____________。

6.已知四元非齐次线性方程组 Ax = b ,r (A ) = 3, 3 2 1 , , h h h 是它的三个解向量,其中T T ) 3 , 1 , 0 , 1 ( , ) 2 , 0 , 2 , 1 ( 3 2 2 1 = + = +h h h h , 则齐次线性方程组的通解为­ ____________________________________。

7.设向量组 3 2 1 , , b b b 由向量组 3 2 1 , , a a a 的线性表示式为 ï îï í ì + + - = - + = + - = 3 2 1 3 3 2 1 2 3 2 1 1 a a a b a a a b a a a b ,则 向量组 3 2 1 , ,a a a 由向量组 3 2 1 , ,b b b 的线性表示式为____________。

8.设秩(A ) = r, 秩(B ) = s ,则秩 ÷ ÷ ø ö ç ç è æ B A 0 0 ____________,秩 ÷ ÷ øö ç ç è æ B A ____________ 9.设 A 是 n 阶方阵,秩 (A ) = n -2,则秩 * A ____________。

高等代数3.6 线性方程组解的结构

高等代数3.6 线性方程组解的结构
j 1
又设 ( l1 , l2 , … , ln ) 是导出组 (1) 的一个解,即
n
aijl j 0 (i 1,2,, s) ,
j 1
显然
n
n
n
aij (k j l j ) aijk j aijl j
j 1
j 1
j 1
bi 0 bi (i 1,2,, s) .
推论 在非齐次线性方程组有解的条件下,解
是唯一的充分必要条件是它的导出组只有零解.
证明 充分性 如果方程组 (9) 有两个不同的
解,那么它的差就是导出组的一个非零解. 因此, 如果导出组只有零解,那么方程组有唯一解.
必要性 如果导出组有非零解,那么这个解 与方程组 (9) 的一个解 (因为它有解) 的和就是 (9) 的另一个解,也就是说,(9) 不止一个解. 因之, 如果方程 (9) 有唯一解,那么它的导出组只有零解.

x3 x3

4 3
, ,
x1 2 bx 2 x3 4 .
讨论方程组的解的情况与参数 a, b 的关系,有解时 求其解.
单击这里开始求解
三、直线平面间的位置关系的判断
平面和直线之间的位置关系是指平面与平面、 平面与直线、直线与直 线之间的位置关系. 由于 平面和直线在直角坐标系下的方程,是三元线性 方程 a1x1 + a2x2 + a3x3 = b 和两个三元线性方程组成 的方程组,因此,讨论它们之间的位置关系 ( 如平 行、重合、相交等 ),可用线性方程组的解的理论 阐明.
方程组 (9) 的解与它的导出组 (1) 的解之间有密 切的关系:
1) 线性方程组 (9) 的两个解的差是它的导出组 (1) 的解.

《高等代数》考试大纲

《高等代数》考试大纲

《高等代数》考试大纲(一)多项式考试内容数域;一元多项式;整除的概念及性质;最大公因式及辗转相除法;互素的概念及性质;不可约多项式的概念及性质;因式分解及唯一性定理。

考试要求1。

掌握数域、一元多项式的概念,了解一元多项式的运算及性质。

2。

掌握多项式整除的概念,了解相关的性质。

3。

掌握最大公因式的概念,了解辗转相除法。

4。

理解互素的概念,掌握两个一元多项式互素的充分必要条件。

5。

了解不可约多项式的概念及其性质。

6。

了解一般系数的多项式的因式分解定理,掌握复系数与实系数多项式的因式分解定理。

(二)行列式考试内容行列式的概念和基本性质;行列式计算;行列式按行(列)展开;拉普拉斯(Laplace)定理及行列式的乘法法则。

考试要求1。

理解行列式的概念,掌握行列式的性质,了解拉普拉斯(Laplace)定理及行列式的乘法法则。

2。

会应用行列式概念计算行列式,会利用行列式的性质和行列式按行(列)展开定理计算行列式,会运用矩阵的初等行(列)变换计算行列式。

(三)向量和矩阵考试内容向量的线性组合和线性表示;向量组的等价;向量组的线性相关与线性无关;向量组的极大线性无关组;向量组的秩;向量组的秩与矩阵的秩之间的关系。

矩阵的概念;矩阵的基本运算;矩阵的转置、伴随矩阵、逆矩阵的概念和性质;矩阵可逆的充分必要条件;矩阵的初等变换和初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算考试要求1。

理解n维向量、向量的线性组合与线性表示等概念。

2。

理解向量组线性相关、线性无关的定义、熟练掌握判断向量组线性相关、线性无关的方法。

3。

理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。

4。

理解向量组等价的概念、清楚向量组的秩与矩阵秩的关系。

5。

理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,熟悉它们的基本性质。

6。

掌握矩阵的数乘、加法、乘法、转置等运算。

掌握方阵的多项式概念。

7。

高等代数Ⅰ第二章 线性方程组测试题

高等代数Ⅰ第二章 线性方程组测试题

η1,η2 ,",ηn−1 线性无关。(10 分)
八、已知α1
=
(0,1,0),α 2
=

(−
3,2,2)
是方程组
⎪ ⎨
x1 − x2 + 2x3 = −1 3x1 + x2 + 4x3 = 1
的两个解,求此方程的
⎪⎩ax1 + bx2 + cx3 = d
一般解。(10 分)
九、设α1,α2 ,",αt 是齐次方程组②的基础解系, β1 = α2 + α3 + "+ αt , β2 = α1 + α3 +
β4
= α4
− α1 ,那么,
β
1
,
β
2
,
β
3
,
β
必线相关
4

⒉等价的向量组有相同的极大关组。
() ()
⒊设 A是n级方阵, 那么A的行向量线性无关当且仅当 A 的列向量线性无关。( )
⒋如果非齐次线性方程组①的系数矩阵的秩小于 n ,那么①的基础解系一定存在,但未
必是唯一的。
()
⒌非齐次线性方程组的任意两个解向量的和仍是它的解。
⒊设齐次线性方程组
⎪⎪⎨a21x1 ⎪
+
a22 x2 + "+ a2n xn """"
=
0

⎪⎩a s1 x1 + as2 x2 + "+ asn xn = 0
只有零解, A 表示其系数矩阵,那么( )
(A) A 的列向量线性相关;
(B) A 的列向量性无关;

高等代数04线性方程组

高等代数04线性方程组

最后一个矩阵所对应的线性方程组为 x1+ 7x3 = 1 , x26x3 = 1 . 它与原方程组同解,取 x3 = C, 得 x1 = 17C, x2 = 1+6C, x 1= 1 7C , 即原方程组解为 x2 = 1+ 6C, 其中 C 为任意实数. x3 = C , 将解写成向量形式 ( x1, x2, x3 )T = (17C , 1+6C, C )T.
定义1 定义1 由st个数cij 排成的一个 行t列的表 个数 排成的一个s行 列的表
c11 c12 L c21 c22 L L L cs1 cs 2 L c1t c2t L cst
叫作一个s行 列矩阵 c 列矩阵。 叫作一个 行t列矩阵。 ij 叫作这个矩阵的元素
注意: 注意:矩阵和行列式虽然形式上有些类似,但有完全不同的意义。 一个行列式是一些数的代数和,而一个矩阵仅仅是一个表。
例2

x1 – x2 + 5x3 – x4 = 0 , x + x2 – 2x3 + 3x4 = 0 , 求下列线性方程组的解: 1 3x1 – x2 + 8x3 + x4 = 0 , x1 + 3x2 – 9x3 + 7x4 = 0 .
1 1 1 1 1 5 0 2 7 4 3 → 0 → 0 0 2 7 4 1 7 0 4 14 8 0
并且用B表示 B 的前n列作成的矩阵。那么由定理4.2.1得: 秩A=秩B= r,秩A =秩B 现在设线性方程组(1)有解。那么或者r = m,或者r < m,而
dr+1 =L= dm = 0,这两种情形都有秩B=0,于是由(4)得,
B 反过来,设秩 A =秩B 。那么由(4)得, 的秩也是 r。由此得,或 者r = m,或者r < m 而 dr+1 =L= dm = 0 ,因而方程组(1)有解。

高等代数第3章线性方程组

高等代数第3章线性方程组
第 3 章
3.1 消元法
线性方程组
3.1.1 高斯消元法及矩阵表示 3.1.2 矩阵表示 3.1.3 一般情形
3.1.1 高斯消元法
分析:用消元法解下列方程组的过程. 分析:用消元法解下列方程组的过程. 引例 求解线性方程组
2 x1 − x2 − x3 + x4 = 2, x + x − 2 x + x = 4, 1 2 3 4 4 x1 − 6 x2 + 2 x3 − 2 x4 = 4, 3 x1 + 6 x2 − 9 x3 + 7 x4 = 9,
1 2
3
4 1 2
3
3
4
↔4 −23
4
用“回代”的方法求出解: 回代”的方法求出解:
x1 = x3 + 4 x2 = x3 + 3 其中 为任意取值 . 其中x3 于是解得 x = −3 4
或令x3 = c , 方程组的解可记作
x1 = c + 4 x = c + 3 2 x3 = c x 4 = −3
阶 矩 : 行 梯 阵
(1)元素全为0的行全在下方; 元素全为0的行全在下方; 行的第一个非0元素的 (2)对于非零行,第i+1行的第一个非 元素的 对于非零行, 行的第一个非 列标大于第i行的第一个非 行的第一个非0元素的列标 列标大于第 行的第一个非 元素的列标
1 0 0 0 1 −2 1 4 1 −1 1 0 0 0 1 − 3 0 0 0 0
3.1.3 一般情形
a11 x1 + a12 x 2 + L + a1n x n = b1 a x + a x +L+ a x = b 21 1 22 2 2n n 2 线性方程组 LLLLLLLLLLLL a m 1 x1 + a m 2 x 2 + L + a mn x n = bm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档