电磁场与电磁波期末试题

合集下载

电磁场与电磁波期末试题

电磁场与电磁波期末试题

电磁场与电磁波期末试题一、选择题(10×2=20分)1.产生电场的源为( C )A 位移电流和传导电流;B 电荷和传导电流;C 电荷和变化的磁场;D 位移电流和变化的磁场。

2.在有源区,静电场电位函数满足的方程是( A )A 泊松方程;B 亥姆霍兹方程;C 高斯方程;D 拉普拉斯方程。

3. 如果真空中有一个点电荷q 放在直角坐标系的原点,则坐标),,(z y x 处的电位=Φ( D )A 22241z y xq++πε; B 222041z y x q++πε; C 22241zy x q ++πε; D 22241zy x q ++πε。

4. 某金属在频率为1MHz 时的穿透深度为60m μ,当频率提高到4 MHz 时,其穿透深度为( B )A 15m μ;B 30m μ;C 120m μ;D 240m μ。

5. 在正弦电磁场中,位移电流应与该处电场的方向一致,其相位( C ) A 与电场相同; B 与电场相反; C 超前电场90°; D 滞后电场90°。

6. 一个半径为a 的导体球,球外为非均匀电介质,介电常数为a r 0εε=,设导体球的球心与坐标原点重合,则导体球与无穷远点的电容为( B )A a 04πε; B a 08πε; C a 012πε; D a 02πε。

7.对于非磁性介质,平行极化的均匀平面斜入射到介质分界面上,发生全透射的条件为( B )A 反射波平行极化;B 入射角等于布儒斯特角;C 入射角等于临界角;D 入射波为左旋园极化。

8.麦克思韦提出的( D )的概念,使在任何状态下的全电流都可保持连续A 传导电流;B 时变电流;C 运流电流;D 位移电流。

9. 如图所示的一个电量为q 的点电荷放在060导体内坐标),(d a 处,为求解导体包围空间的电位,需要( C )个镜像电荷A 1个;B 3个;C 5个;D 8个。

10. 已知良导体的电导率磁导率和介电常数分别为σμ和ε,则频率为ω的平面电磁波入射到该导体上时的集肤深度为( A ) Aωμσ2; B 2ωμσ; Cωμσ21;D σωμ2。

《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。

A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。

(完整版)电磁场期末试题

(完整版)电磁场期末试题

电磁场与电磁波期末测验题一、判断题:(对的打√,错的打×,每题2分,共20分)1、标量场在某一点梯度的大小等于该点的最大方向导数。

(√)2、真空中静电场是有旋矢量场。

(×)3、在两种介质形成的边界上,电场强度的切向分量是不连续的。

(×)4、当导体处于静电平衡状态时,自由电荷只能分布在导体的表面。

(√)5、在理想导体中可能存在恒定电场。

(×)6、真空中恒定磁场通过任一闭合面的磁通为零。

(√)7、时变电磁场是有旋有散场。

(√)8、非均匀平面波一定是非TEM 波。

(×)9、任意取向极化的平面波可以分解为一个平行极化波与一个垂直极化波的合成 (√)10、真空波导中电磁波的相速大于光速。

(√)二、简答题(10+10=20分)1、简述静电场中的高斯定律及方程式。

答:真空中静电场的电场强度通过任一闭合曲面的电通等于该闭合曲面所包围的电荷量与真空介电常数之比。

⎰=⋅S S E 0d εq2、写出麦克斯韦方程的积分形式。

答:S D J l H d )(d ⋅∂∂+=⋅⎰⎰S l t S B l E d d ⋅∂∂-=⋅⎰⎰S lt 0d =⋅⎰S S Bq S=⋅⎰ d S D三、计算题(8+8+10+10+12+12)1 若在球坐标系中,电荷分布函数为⎪⎩⎪⎨⎧><<<<=-b r b r a a r 0, ,100 ,03ρ试求b r a a r <<<< ,0及b r >区域中的电通密度D 。

解 作一个半径为r 的球面为高斯面,由对称性可知r e D s D 24d rq q s π=⇒=⋅⎰ 式中q 为闭合面S 包围的电荷。

那么在a r <<0区域中,由于q = 0,因此D = 0。

在b r a <<区域中,闭合面S 包围的电荷量为()3333410d a r v q v -⨯==-⎰πρ 因此, ()r e D 2333310r a r -=- 在b r >区域中,闭合面S 包围的电荷量为()3333410d a b v q v -⨯==-⎰πρ 因此, ()r e D 2333310r a b -=- 2 试证位于半径为a 的导体球外的点电荷q 受到的电场力大小为222302232)(4)2(a f f a f a q F ---=πε 式中f 为点电荷至球心的距离。

电磁场与电磁波期末复习题

电磁场与电磁波期末复习题

电磁场与电磁波模拟题一、选择题1. 已知:e e e e e e z y x z y x B A 432;543++=++=;计算:A⃗×B ⃗⃗= ( A ) A. e x ⃗⃗⃗⃗+2e y ⃗⃗⃗⃗⃗(10−12)+e z ⃗⃗⃗⃗ B. 4e x ⃗⃗⃗⃗⃗⃗⃗+2e y ⃗⃗⃗⃗⃗⃗⃗+e z ⃗⃗⃗⃗ C. 6e x ⃗⃗⃗⃗−12e y ⃗⃗⃗⃗⃗+20e z ⃗⃗⃗⃗D. 6e x ⃗⃗⃗⃗+12e y ⃗⃗⃗⃗⃗(A y B z −A z B y )+20e z ⃗⃗⃗⃗2. E ⃗⃗=e x ⃗⃗⃗⃗(x 2+bxz )+e y ⃗⃗⃗⃗⃗(xy 2+ay )+e z ⃗⃗⃗⃗(z −z 2+czx −2xyz )为无源场,求a ,b ,c 的值分别为:( B )A. a=3,b=3,c=1B. a=-1,b=2,c=-2C. a= -2 b=2 ,c=1D. a=1 ,b=2 ,c=-2 3. 自由空间中毕澳-萨伐卡定律表述正确的是:( A ) A. B ⃗⃗=μ04π∫J ⃗×R ⃗⃗R 3dV V B. B ⃗⃗=μ04π∮Idl ⃗×R ⃗⃗R 3 S C. B ⃗⃗=μ02π∮Idl ⃗×R ⃗⃗R 2 CD. B ⃗⃗=μ02π∫J S ⃗⃗⃗⃗⃗×R ⃗⃗R 3dS S4.对于线性及各向同性的媒质,电磁场的电场强度、电位移矢量、磁场强度、磁感应强度本构关系不正确的是( D )A. D⃗⃗=εE ⃗⃗ B. B ⃗⃗=μH ⃗⃗ C. J ⃗=σE ⃗⃗ D. H ⃗⃗=μB ⃗⃗ 5.静电场中电场能量存在于整个电场空间中,和电场强度及电位移矢量相关,下面正确的是:(A )A. W e =12∮φD ⃗⃗∙dS ⃗S +12∫E ⃗⃗∙D ⃗⃗dV V B. W e =12∮φD ⃗⃗∙dl ⃗C +12∫E ⃗⃗∙D ⃗⃗dV VC. W e =12∮φD ⃗⃗∙dS ⃗ S +12∮E ⃗⃗∙D ⃗⃗dlCD. W e =12∮φD ⃗⃗∙dl ⃗C +12∮E ⃗⃗∙D ⃗⃗dl C6. 恒定磁场中磁场能量存在于整个磁场空间中,下面正确的是:(A )A. W m =12∫J ⃗∙A ⃗dVV =12∫H ⃗⃗∙B ⃗⃗dV VB. W e =12∫H ⃗⃗∙B ⃗⃗dVVC. W e =12∫J ⃗∙A ⃗dVV =12∫H ⃗⃗∙B ⃗⃗dV V D. W m =12∫J ⃗∙A ⃗dV V +12∫H ⃗⃗∙B ⃗⃗dV V7. 设点电荷2q 在球坐标系中(d ,0,0)处,接地导体球半径为a,的球心在z=0处,两者组成系统中,在r>a处的电位函数为:()A. φ=q4πε[√22d√r2+(a2d)2−2r a2dcosθ]B. φ=q2πε[d√r2+(2d)2−2r2dcosθ]C. φ=q4πε[d√r2+(d)2−2rdcosθ]D. φ=q2πε[√d√r2+(2d)2−2r2dcosθ]8.无界空间中,媒质为线性及各向同性材料,电磁波传播满足的波动方程为:()A. ∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt+∇∙ρε;∇2H⃗⃗−μεð2H⃗⃗ðt2=∇×J⃗B. ∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt+∇∙ρε;∇2H⃗⃗+μεð2H⃗⃗ðt2=∇×J⃗C. ∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt−∇∙ρε;∇2H⃗⃗−μεð2H⃗⃗ðt2=∇∙J⃗D. ∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt−∇∙ρε;∇2H⃗⃗+μεð2H⃗⃗ðt2=∇∙J⃗9.空间区域中电磁能守恒的坡印廷定理为:()A. −ddt ∫wdVV=∫J⃗∙VE⃗⃗dV+∮S⃗∙dS S⃗⃗⃗⃗S SB. ddt ∫wdVV=∫J⃗∙VE⃗⃗dV−∮S⃗∙dS S⃗⃗⃗⃗S SC. ddt ∫wdVV=∫J⃗∙VE⃗⃗dV+∮S⃗∙dS S⃗⃗⃗⃗S SD. −ddt ∫wdVV=∫J⃗∙VE⃗⃗dV−∮S⃗∙dS S⃗⃗⃗⃗S S10.均匀平面波在两种媒质都为理想介质中传播时,其反射系数和透射系数为:()A. Γ=E rmE im =η2−η1η2+η1;τ=E tmE im=1+Γ=2η2η2+η1B. Γ=E rmE im =η2+η1η2−η1;τ=E tmE im=1+Γ=2η2η2+η1C. Γ=E rmE im =η2−η1η2+η1;τ=E tmE im=1+Γ=2η2η2−η1D. Γ=E rmE im =η2+η1η2−η1;τ=E tmE im=1+Γ=2η2η2−η111.计算:e n⃗⃗⃗⃗⃗(A⃗⃗∙B⃗⃗)+ A⃗×B⃗⃗=( )A. e n⃗⃗⃗⃗⃗A⃗B⃗⃗(cosθ−sinθ)B. e n⃗⃗⃗⃗⃗A⃗B⃗⃗(cosθ+sinθ)C. e n⃗⃗⃗⃗⃗AB(cosθ+sinθ)D. e n⃗⃗⃗⃗⃗AB(cos θ−sin θ) 12. 计算:∫∇∙F ⃗dV V +∫∇×F ⃗∙dS ⃗S = (A ) A .∮F ⃗∙dS ⃗+∮F ⃗∙dl ⃗C S B .∮F ⃗×dS ⃗+∮F ⃗×dl ⃗C S C .∮∇×F ⃗∙dS ⃗S D .∮∇×F ⃗∙dl ⃗c13.真空中库伦定律的公式,正确的是:( B )A.E r ⃗⃗⃗⃗⃗=12πε0∫ρS R ⃗⃗⃗R 3dS S B.E r ⃗⃗⃗⃗⃗=14πε0∫ρl R⃗⃗⃗R 3dl l C.E r ⃗⃗⃗⃗⃗=14πε0∫ρR ⃗⃗⃗R 2dV V D. E r ⃗⃗⃗⃗⃗=12πε0∫ρR⃗⃗⃗R 3dV V 14.从宏观效应来分析,在电磁场的作用下,媒质会发生极化、磁化和传导三种现象,对应媒质的三种特性的参数分别是: ( A ) A.介电系数ε、磁导率μ、电导率σ B.介电系数σ、磁导率ε、电导率μ C.介电系数μ、磁导率σ、电导率ε D.介电系数μ、磁导率ε、电导率σ15.静电场中,对于点电荷、线电荷、面电荷、体电荷,电位函数与求解公式正确的是:( A )A. φ=14πε∑qiR in i=1+cB. φ=14πε∫ρl dl R 2l +cC. φ=14πε∫ρS dS R 2S+cD. φ=14πε∫ρ dV R 2V+c16.由电流元Idl ⃗产生的恒定磁场,其矢量磁位的公式正确的是:( B ) A. A ⃗=μ4π∫Idl ⃗R 2l +C ⃗ B. A ⃗=μ4π∫Idl ⃗Rl +C ⃗; C.A⃗=μ2π∫Idl⃗R 2 l +C ⃗D. A⃗=μ2π∫Idl⃗Rl +C⃗; 17. 设点电荷2q 在直角坐标系中(0,0,h )处,在z=0处有无限大接地导体,两者组成系统中,在z >0处的电位函数为:( ) A.φ=q2πε[√x 2+y 2+(z−h)2−√x 2+y 2+(z+h)2] B.φ=q 4πε[222−222] C.φ=q2πε[222−222] D.φ=q4πε[222−222]18.无界空间里为线性及各向同性材料,电磁波传播满足的波动方程为:( )A. ∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt+1ε∇ρ∇2H⃗⃗−μεð2H⃗⃗ðt2=∇×j⃗B.∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt+1ε∇ρ∇2H⃗⃗+μεð2H⃗⃗ðt2=∇×j⃗C.∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt−1ε∇ρ∇2H⃗⃗−μεð2H⃗⃗ðt2=∇×j⃗D.∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt−1ε∇ρ∇2H⃗⃗+μεð2H⃗⃗ðt2=∇×j⃗19.无界空间里媒质为线性及各向同性材料,电磁波传播满足的达朗贝尔方程为:( A)A. ∇2A⃗−μεð2A⃗ðt2=−μJ⃗ ; ∇2φ−μεð2φðt2=−ρεB.∇2A⃗−μεð2A⃗ðt2=μJ⃗ ; ∇2φ−μεð2φðt2=ρεC.∇2A⃗+μεð2A⃗ðt2=−μJ⃗ ; ∇2φ+μεð2φðt2=−ρεD. ∇2A⃗+μεð2A⃗ðt2=μJ⃗ ; ∇2φ+μεð2φðt2=ρε20. E⃗⃗⃗=e x⃗⃗⃗⃗⃗E xm cos(ωt−kz+ϕx)+e y⃗⃗⃗⃗⃗E ym sin(ωt−kz+ϕy)复矢量:(A)A. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz+ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz+ϕy−π2)B. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz+ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz+ϕy+π2)C. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz−ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz−ϕy)D. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz−ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz−ϕy)二、填空题1.矢量函数A⃗⃗通量的密度称为散变 ,即div A⃗⃗= ;2.自由电荷在其周边空间中形成的电场称为电磁场,为无旋场;恒定电流在其周边空间形成的磁场称为恒定磁场,为无散场。

电磁场与电磁波期末考试试题库

电磁场与电磁波期末考试试题库

《电磁场与电磁波》自测试题1.介电常数为ε的均匀线性介质中,电荷的分布为()r ρ,则空间任一点E ∇= ____________, D ∇= _____________。

2. /ρε;ρ1. 线电流1I 与2I 垂直穿过纸面,如图所示。

已知11I A =,试问1.l H dl =⎰__ _______;若.0lH dl =⎰, 则2I=_____ ____。

2. 1-; 1A1. 镜像法是用等效的 代替原来场问题的边界,该方法的理论依据是___。

2. 镜像电荷; 唯一性定理1. 在导电媒质中, 电磁波的相速随频率改变的现象称为_____________, 这样的媒质又称为_________ 。

2. 色散; 色散媒质1. 已知自由空间一均匀平面波, 其磁场强度为0cos()y H e H t x ωβ=+, 则电场强度的方向为__________, 能流密度的方向为__________。

2. z e ; x e -1. 传输线的工作状态有________ ____、_______ _____、____________三种,其中________ ____状态不传递电磁能量。

2. 行波; 驻波; 混合波;驻波 1. 真空中有一边长为的正六角 形,六个顶点都放有点电荷。

则在图示两种情形 下,在六角形中心点处的场强大小为图中____________________;图中____________________。

2. ;1. 平行板空气电容器中,电位(其中 a 、b 、c 与d 为常数), 则电场强度__________________,电荷体密度_____________________。

2.;1. 在静电场中,位于原点处的电荷场中的电场强度线是一族以原点为中心的__________________ 线, 等位线为一族_________________。

2. 射 ; 同心圆1. 损耗媒质中的平面波 , 其传播系数 可表示为__________ 的复数形式,其中表 示衰减的为___________。

《电磁场与电磁波》期末考试试卷一

《电磁场与电磁波》期末考试试卷一

一、选择题(5小题,共15分)(3分)[1] 比较位移电流与传导电流,下列陈述中,不正确的是: A. 位移电流与传导电流一样,也是电荷的定向运动 B. 位移电流与传导电流一样,也能产生涡旋磁场 C. 位移电流与传导电不同,它不产生焦耳热损耗(3分)[2] 恒定电流场中,不同导电媒质交界面上自由电荷面密度0σ=的条件是 A 、1122γεγε> B 、1122γεγε= C 、1122γεγε< (3分)[3] 已知电磁波的电场强度为)sin()cos(),(z t e z t e t z E y x βωβω---=,则该电磁波为A 、左旋圆极化波B 、右旋圆极化波C 、椭圆极化波(3分)[4] xOz 平面为两种媒质的分界面,已知分界面处z y x e e e H26101++=,z y e e H242+=,则分界面上有电流线密度为:A 、z S e J 10=B 、z x S e e J 410+=C 、z S e J 10-=(3分)[5] 若介质1为理想介质,其介电常数102εε=,磁导率10μμ=,电导率10γ=;介质2为空气。

平面电磁波由介质1向分界平面上斜入射,入射波电场强度与入射面平行,若入射角/4θπ=,则介质2 ( 空气) 中折射波的折射角'θ为 A 、/4π B 、/2π C 、/3π二、填空题(5小题,共20分)(4分)[1] 恒定磁场中不同媒质分界面处, H 与B 满足的边界条件是:( ), ( ) 或( ),( )。

(4分)[2] 静电比拟是指( ), 静电场和恒定电流场进行静电比拟时,其对应物理量间的比似关系是( )。

(4分)[3] 镜像法的理论根据是( )。

镜像法的基本思想是用集中的镜像电荷代替( ) 的分布。

(4分)[4] 如图所示,导体杆ab 在磁感应强度0sin B B t ω=的均匀磁场中,以速度v 向右平移。

设t=0 时导体杆ab 与cd 重合,则在t πω=时刻,导体杆上的感应电动势e =( ),方向由( )。

《电磁场与电磁波》期末考试参考题

《电磁场与电磁波》期末考试参考题

1、一半径为a 的均匀带电圆环,电荷总量为q ,求圆环轴线上离环中心o 点为z 处的电场强度E。

解:设圆环电荷线密度为λ,再在圆环上任取微元dl ,则dl dq λ=∴圆环上点电荷元dq 在p 处产生的电场强度为204RdqE d πε=根据对称性原理可,整个圆环在p 点产生的场强为沿轴线方向分量之和,即()232202044cos za dl z RzR dq E d E d z +===πελπεθ∴ ()⎰+=lz dl za z E 232204πελ又a dl lπ2=⎰ λπa q 2=∴ ()232204za zq E z +=πε2、在介电常数为ε的无限大约均匀介质中,有一半径为a 的带电q 的导体球,求储存在介质中的静电能量。

解:导体在空间各点产生的电场为)(4)0(02a r r q E a r E r w >=<<=πε故静电能量为a q dr r r q dV E dV E D W V V πεππεεε844212121202222=⎪⎭⎫ ⎝⎛==•=⎰⎰⎰∞ 3、一电荷面密度为σ的“无限大”平面,在距离平面a 的一点的场强大小的一半是由平面上的一个半径为R 的圆面积范围内的电荷所产生。

圆半径的大小。

解:电荷面密度为σ的“无限大”平面,在其周围任意点的场强为:2εσ=E 以图中O 点为圆心,取半径为r 的环形圆,其电量为:rdr dq πσ2=它在距离平面为a 的一点处产生的场强为:()2/32202ra ardrdE +=εσ则半径为R 的圆面积内的电荷在该点的场强为:()⎪⎪⎭⎫⎝⎛+-=+=⎰22002/322122R a a r ardra E Rεσεσ 0220412εσεσ=⎪⎪⎭⎫ ⎝⎛+-R a a∴ a R 3=4、已知两半径分别为a 和)(a b b >的同轴圆柱构成的电容器,其电位差为V 。

试证:将半径分别为a 和b ,介电常数为ε的介质管拉进电容器时,拉力为abV F ln )(20εεπ-=证明:内外导体间的电场为ab r V E r ln=插入介质管后的能量变化为a b zV dz dr r a b r B dV E W z b a v ln )(ln 2)(21)(21200222020εεππεεεε-=⎪⎭⎫ ⎝⎛-=-=⎰⎰⎰ 式中z 为介质管拉进电容器内的长度。

电磁场与电磁波期末考试题库

电磁场与电磁波期末考试题库

电磁场与电磁波期末考试题库一、选择题1.静电场是指:– A. 电荷在电场中不断运动的状态– B. 电荷在电场中静止的状态– C. 电场中没有电荷存在的状态– D. 电场中电势为零的状态2.电场强度的定义式是:– A. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r^2}$– B. $E = \\varepsilon_0\\frac{q}{r^2}$– C. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r}$– D. $E = \\varepsilon_0\\frac{q}{r}$3.电场线的特点是:– A. 线的密度表示电场强度的大小– B. 线的颜色表示电场强度的大小– C. 线的方向表示电场强度的方向– D. 线上的点表示电场强度的大小4.关于电场线的说法正确的是:– A. 电场线一定是直线– B. 电场线一定是曲线– C. 电场线既可以是直线也可以是曲线– D. 电场线没有特定的形状5.电场中的带电粒子受到的力是由以下哪些因素决定的?– A. 粒子的电荷大小– B. 粒子所处位置的电场强度– C. 粒子的质量– D. 粒子的电荷大小和所处位置的电场强度二、填空题1.电场强度的单位是\\\\。

2.静电势能的单位是\\\\。

3.感应电场的方向与引起它的磁场的变化方式\\\\。

4.麦克斯韦方程组包括\\\_\_个方程。

三、计算题1.一根长为10cm的直导线通有1A的电流,求导线周围某点的磁场强度。

2.一个带电粒子在电场中受到的力为5N,电荷大小为2C,求电场强度的大小。

3.两个带电粒子相距1m,电荷分别为1C和-2C,求它们之间的电势能。

四、问答题1.什么是电磁场?2.什么是电磁波?3.静电场和感应电场有什么区别?4.麦克斯韦方程组描述了什么?五、实验题设计一个实验,验证库仑定律。

以上是《电磁场与电磁波期末考试题库》的题目内容,包括选择题、填空题、计算题、问答题和实验题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(10×2=20分)1.产生电场的源为( C )A 位移电流和传导电流;B 电荷和传导电流;C 电荷和变化的磁场;D 位移电流和变化的磁场。

2.在有源区,静电场电位函数满足的方程是( A )A 泊松方程;B 亥姆霍兹方程;C 高斯方程;D 拉普拉斯方程。

3. 如果真空中有一个点电荷q 放在直角坐标系的原点,则坐标),,(z y x 处的电位=Φ( D )A 22241z y xq++πε; B 222041z y x q++πε; C 22241zy x q ++πε; D 22241zy x q ++πε。

4. 某金属在频率为1MHz 时的穿透深度为60m μ,当频率提高到4 MHz 时,其穿透深度为( B )A 15m μ;B 30m μ;C 120m μ;D 240m μ。

5. 在正弦电磁场中,位移电流应与该处电场的方向一致,其相位( C ) A 与电场相同; B 与电场相反; C 超前电场90°; D 滞后电场90°。

6. 一个半径为a 的导体球,球外为非均匀电介质,介电常数为a r 0εε=,设导体球的球心与坐标原点重合,则导体球与无穷远点的电容为( B )A a 04πε; B a 08πε; C a 012πε; D a 02πε。

7.对于非磁性介质,平行极化的均匀平面斜入射到介质分界面上,发生全透射的条件为( B )A 反射波平行极化;B 入射角等于布儒斯特角;C 入射角等于临界角;D 入射波为左旋园极化。

8.麦克思韦提出的( D )的概念,使在任何状态下的全电流都可保持连续A 传导电流;B 时变电流;C 运流电流;D 位移电流。

9. 如图所示的一个电量为q 的点电荷放在060导体内坐标),(d a 处,为求解导体包围空间的电位,需要( C )个镜像电荷A 1个;B 3个;C 5个;D 8个。

10. 已知良导体的电导率磁导率和介电常数分别为σμ和ε,则频率为ω的平面电磁波入射到该导体上时的集肤深度为( A )Aωμσ2; B 2ωμσ; Cωμσ21; D σωμ2。

60q二、填空题(18分,每空1分) 1. 设A =ya xy ˆ ,A⋅∇ =x ,A⨯∇ =ˆz ya ,=⨯∇⨯∇Aˆx a 。

2. 已知标量场为1)2s i n (),,(3++=y x z y x f ,则通过点)1,0,1(的等值面方程为1)2sin(3=-+y x 。

3. 在空间中外加恒定的电场和磁场,电场强度和磁感应强度分别为E和B 。

如果有一个带电q 的粒子以速度v通过该空间,那么它受到的洛伦兹力为=F ()q v +⨯ E B 。

4. 当平面波入射到两层非磁性介质的分界面上时,如果介质1与介质2的介电常数分别为1ε和2ε,入射角和透射角分别为iθ和tθ,那么折射定律的表达式为 12sin sin εεθθ=ti。

5. 写出欧姆定律的微分形式J E σ= 焦耳定律的微分形式p J E =⋅ 。

6. 写出时变电磁场的坡印亭矢量S=⨯ E H 和时域的坡印亭定理2221122V SVH E dV d E dV t μεσ∂⎛⎫-+=⨯+ ⎪∂⎝⎭⎰⎰⎰E H S 。

或1122VSVdV d dV t ∂⎛⎫-+=⨯+⎪∂⎝⎭⎰⎰⎰B H E D E H S J E7. 写出时变电磁场边界条件的矢量形式()21ˆ0nE E ⨯-=, ()21ˆSn D D ρ⋅-= ,()21ˆs nH H J ⨯-= ,()21ˆ0nB B ⋅-= 。

8. 均匀平面波由空气(z<0)斜入射到理想导体平面(z=0),已知入射波的磁场为]/[ˆ1.0)22(4m A e z x j +-=πyia H则入射波的电场强度)22(40)ˆˆ(26ˆz x j z x ik i e a a H aE +--=⨯-=ππη;反射波电场强度为)22(4)ˆˆ(26z x j z x r e a aE --+-=ππ。

9. 均匀平面电磁波由空气(z<0)入射到无限大理想介质界面(z=0),入射波的电场复矢量为)3(2)ˆˆ3(z x j zxie -+=πa aE(V/m ),已知理想介质区域(z>0)的相对磁导率1=rμ,相对介电常数25.2=rε,请计算入射角iθ030=;透射波的相位常数2k 6π= 1/m;三、计算题(1×10=10分)内、外半径分别为a 、b 的无限长空心圆柱中均匀分布着轴向电流I ,求柱内外的磁感应强度。

解:使用柱坐标系,使圆柱轴线在z 轴,电流密度矢量沿轴向ˆzJa=J ,大小为22,0,(),0r a J I a r b J b a r b J π<=<<=->=(2分)根据问题的对称性,可知磁场强度B只有圆周φ方向的分量,φφaB B ˆ=使用安培环路定理计算不同区域的磁场强度 ⎰⎰⋅=⋅SCSd J l d B 0μ (2分)取轴线为圆心,半径为r 的圆环ar <时, φπrB l d B C2=⋅⎰,0=⋅⎰SS d J μ,可得0=B (2分)br a <<时,φπrB l d B C2=⋅⎰,22220220000a b a r I a r J JdS S d J r S--=-==⋅⎰⎰μπμμμ)(可得φπμa a b r a r I B ˆ)()(222202--= (2分)br >时,φπrB l d B C2=⋅⎰, 可得rI B πμ20=(2分)四、概念题(1×10=10分)在无源区,在均匀、线性、各向同性介质中,写出正弦电磁场的麦克斯韦方程组复数形式,并推导电场强度和磁场强度满足的波动方程。

解:对于正弦电磁场,可由复数形式的麦克斯韦方程导出复数形式的波动方程,无源区麦克斯韦方程组为00H j D E j B B D ωω⎧∇⨯=⎪∇⨯=-⎪⎨∇⋅=⎪⎪∇⋅=⎩本构关系⎩⎨⎧==HB EDμε, 可得00H j E E j H H E ωεωμ⎧∇⨯=⎪∇⨯=-⎪⎨∇⋅=⎪⎪∇⋅=⎩(1) (2) (3) (4) (5分)对(1)式左右两端取旋度2()H H H j E ωε∇⨯∇⨯=∇∇⋅-∇=∇⨯将(2)式和(3)式代入可得 022=+∇H Hμεω同理可得 022=+∇E E μεω令μεω=k ,可得波动方程为02222=+∇=+∇E k E H k H (5分)五、计算题(1×10=10分)一个截面如图所示的长槽,向y 方向无限延伸,两侧边的电位为零,槽内∞→y ,0=ϕ,底部电位为ax Ux πϕ300sin),(=,求槽内电位。

0=ϕxya=ϕax U πϕ30sin=第七题用图解:分离变量为()()y Y x X =ϕ根据x 坐标的周期边界要求,选取 ()xk a x ka x X x xcos sin 21+= (3分)根据边界条件由 0,(0,)0x y ϕ== ,得02=a ;由 ,(0,)0x a y ϕ== ,得/(1,2,3,.....)xkn a n π==根据y 坐标的无限边界要求,可选取()1x k yY y c e -=(3分) 可得基本乘积解为()()sin n y an n n n n X x Y y C xeaππϕ-==为满足边界条件,选取基本解的叠加构成电位的表达式为 11sin n y an n n n n C xea ππϕϕ∞∞-====∑∑ (2分)由 000U x y ==),(,ϕ,可得∑∞==103n n xa n C a x U ππsin sin利用三角函数的正交归一性,可知只有当3=n 时,03U C =,其余系数()03=≠n C n最终可得槽中电位为303sin ya U x e aππϕ-⎛⎫=⎪⎝⎭(2分)六、计算题(1×10=10分) 在1=rμ,9=rε的理想介质中传播着磁场强度)]cos[)ˆˆˆ.(Az y x t a a aH z y x +----=ππωπ51121(m /A )的均匀平面电磁波,试求:1)常数ω和A ; 2)波的传播方向,电磁波的波长和频率; 3)求平面电磁波电场强度的复数形式; 解:1)可以写出磁场强度的复数形式 )()ˆˆˆ.(Az y x j z y x e a a aH -+---=ππ51121可知传播矢量为 ()z y x a A a ak ˆˆˆ-+=π根据均匀平面波的定义 0=⋅H k()11()(1.5) 1.5101212x y z x y z k H A A ππ=+---=-+=aa a a a a即 50.-=A (2分)传播矢量为()z y x a a ak ˆ.ˆˆ50++=π1/m , 波数 1.5(1/)k k m π==而 8/2 1.510/sec)r kc f rad ωεππ===⨯ ( (2分)2) 波矢量 z y x ka a a a ˆ31ˆ32ˆ32ˆ++=,波长m k 342==πλ,频率77.510f Hz =⨯(3分) 3)若已知9=rε,且1=rμ,可得波阻抗040()r rμμηηπεε===Ω 电场强度复数形式mV e a a a H aE z y x j z y x k /)ˆ10ˆ7ˆ2(95ˆ)5.0(++-+-=⨯-=πη (3分)时域形式 mV z y x t a aa E z y x/)]5.0(102cos[)ˆ10ˆ7ˆ2(958++-⨯+-=ππ七、计算题(1×10=10分) 给出以下均匀平面波表达式1)jkz y jkz x e a je aE --+=22ˆˆ; 2)()y x jk z y xe a j aaE 6854310--+=)ˆˆˆ(;3)()θθθsin cos cos sin ˆz jk x xe k E j a E 02=;4)()kz t a kz t aE y x+-⎪⎭⎫ ⎝⎛++=ωπωsin ˆcos ˆ4435)()()t kz x aE a t kz x a a k E a E y xωπωππ-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=cos cos ˆsin sin ˆ0。

1)、请将复数形式表示的场矢量,变换为瞬时值,或做相反的变换。

2)、请判定它们的极化形式,如果是圆极化波或者椭圆极化波请说明旋向。

解:(1)复数域到时域()()()()()/2,Re (22)2cos /22cos 2sin 2cos j jkz jkz j tx y x y x y t e e e e t kz t kz t kz t kz πωωπωωω--⎡⎤=+=-++-⎣⎦=--+-E r a a a a a a xE 和yE 不相同,且x E 落后yE 相位2π,电磁波+z 方向传播,故为右旋圆极化波;(2分)(2)复数域到时域()()()()()()()()86,Re 10(345)1034cos 8650cos 86/21034cos 8650sin 86jk x y j t x y z x y z x y z t j e e t kx ky t kx ky t kx ky t kx ky ωωωπωω-⎡⎤=+-⎣⎦=++--+-+=++-++-E r a a a a a a a a a[]r ak j z xy r a k j z y x k k e a j a e a j a a E ⋅-⋅-⋅-=⋅⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=ˆˆˆˆˆˆˆ101050545350可知传播方向矢量 )ˆ53ˆ54(ˆy x ka a a +-=在垂直于ka 的平面上,将电场强度分解为xya ˆ和za ˆ两个相互垂直的分量,这两个分量振幅相等,且xy a ˆ超前z a ˆ相位090,k z xya aa ˆˆˆ-=⨯,因此是左旋圆极化。

相关文档
最新文档