相似三角形知识点及典型例题
(完整版)相似三角形专题

【一】知识梳理 【1】比例①定义:四个量a ,b ,c,d 中,其中两个量的比等于另两个量的比,那么这四个量成比例 ②形式:a:b=c :d,dcb a = ac=bd ③性质:基本性质:4,比例中项:bcc a = ab c =2【2】黄金分割定义:如图点C 是AB 上一点,若BC AB AC •=2,则点C 是AB 的黄金分割点,一条线段的黄金分割点有两个ACAC BC AB AB BC AB AB AC 618.0215382.0253618.0215≈-=≈-=≈-=注意:如图△ABC,∠A=36°,AB=AC ,这是一个黄金三角形,【3】平行线推比例ABAB BC 618.0215≈-=dcb a =注:比例式有顺序性的,比例线段没有负的,比例数有正有负1、可以把比例式与等积式互化.2、可以验证四个量是否成比例 上比全=上比全,下比全=下比全,上比下=上比下,左比右=左比右全比上=全比上,全比下=全比下 下比上=下比上【4】相似三角形1、相似三角形的判定①AA 相似:∵∠A=∠D, ∠B=∠E ∴△ABC ∽△DEF②‘S A S ’ E B EFBCDE AB ∠=∠=,∴△ABC ∽△DEF③‘S S S ’EFBCDF AC DE AB =∴△ABC ∽△DEF ④平行相似: ∵DE ∥BC ∴△ADE ∽△ABC2、相似三角形的性质①相似三角形的对应角相等,对应边成比例②相似三角形的对应高的比、对应中线的比、对应角平分线的比、对应周长的比都等于相似比 ③相似三角形的面积比等于相似比的平方3、相似三角形的常见图形‘A 型图' ‘ X 型图' ‘K 型图’‘母子图’ ‘一般母子图’ AC 2=AD •AB母子图中的射影定理AC 2=AD •AB BC 2=BD •AB CD 2=AD •BD【二】题型1、求线段的比【例题1】如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1, l 2, l 3于点A,B ,C ;直线DF 分别交l 1, l 2, l 3于点D ,E ,F .AC 与DF 相较于点H ,且AH=2,HB=1,BC=5则EFDE的值为 【例题2】如图,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC,EF ∥AB ,且AD ∶DB = 3∶5,那么CF ∶CB 等于(1) (2)【例题3】如图,点D 是△ABC 的边AB 上一点,且AB=3AD ,点P 是△ABC 的外接圆上的一点,且∠ADP=∠ACB 则PB:PD=【例题4】如图,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E, 如果AE EC=23,那么AB AC=( )A .13B .23C .25D .35(3) (4)【例题5】 已知32==d c ba ,则ba b a 4332-+=32=-a b a ,则ba=【例题6】如图,将矩形纸片ABCD (AD 〉DC )的一角沿着过点D 的直线折叠,使点A 与BC 边上的点E 重合,折痕交AB 于点F.若BE:EC=m:n ,则AF:FB= 。
中考数学《相似三角形》知识点及练习题

相似三角形一. 知识梳理1.平行线分线段成比例定理定理:两条直线被三条平行线所截,所得的对应线段成比例。
推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
2.相似三角形定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形。
相似比:相似三角形对应边的比叫做相似比。
3.相似三角形的判定平行法:平行于三角形一边的直线和其他两边相交,所得的三角形与原三角形相似。
两角法:两角分别相等的两个三角形相似。
边角法:两边成比例且夹角相等的两个三角形相似。
三边法:三边对应成比例的两个三角形相似。
4.相似三角形的性质①相似三角形的对应角相等,对应边成比例;②相似三角形对应边上高的比,对应边上中线的比与对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方。
5.位似图形定义:如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心。
这时的相似比又叫位似比6. 黄金分割:点C 把线段AB 分成两条线段AC 和BC,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC 二.课后作业1.下列图形中不一定属于相似形的是( )A.两个圆B.两个等边三角形C.两个正方形D.两个矩形2.如果两个相似三角形的面积比是1∶4,那么它们的周长比是( )A. 1∶16B. 1∶4C. 1∶6D. 1∶23.已知△ABC ∽△DEF ,且AB:DE=1:2,则△ABC 的周长与△DEF 的周长之比( )A.1:2B.1:4C.2:1D.4:14.如图,给出下列条件:其中,不能单独判定△ABC∽△ACD 的条件为( )A.∠B=∠ACDB.∠ADC=∠ACBC.AC CD =AB BCD.AC AD =AB AC5.如图,DE ∥BC ,且AD=2,BD=5,则△ADE 与△ABC 的相似比为( )A.2:5B.5:2C.2:7D.7:26.如图,在△ABC 中,DE ∥BC ,AD=2,AE=3,BD=4,则AC=( ) A.7 B.8 C.9 D.10 E A D CB A BC DE7.已知△ABC ∽△DEF ,且它们的周长之比为1:2,那么它们的相似比为 。
(完整版)相似三角形基本知识点+经典例题(完美打印版)

相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b=.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ΛΛ,那么b an f d b m e c a =++++++++ΛΛ.注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
初中相似三角形基本知识点和经典例题

初中相似三角形基本知识点和经典例题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初三相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)在四条线段dc b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即12AC BC AB AC ==简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b db d a c=⇔=.(4)合、分比性质:a c a b c db d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a ccd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ .注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零. ③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:baf d b e c a f e d c b a f e d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或 注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形....三边..对应成比例. ②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,已知AD ∥BE ∥CF,B可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
相似三角形知识点及典型例题

相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2 )平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(3 )判定定理1 :如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
(4 )判定定理2 :如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
(5 )判定定理3 :如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为:三边对应成比例,两三角形相似。
(6 )判定直角三角形相似的方法:①以上各种判定均适用。
②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt △ABC中,/ BAC=90 °, AD是斜边BC上的高,则有射影定理如下:(1)( AD ) 2=BD DC , (2)( AB ) 2=BD •BC ,典型例题:例1 如图,已知等腰厶ABC 中,AB = AC , AD 丄BC 于D , CG IIAB , BG 分别交 AD , AC 于E 、F ,求证:BE 2= EF EG 证明:如图,连结 EC,V AB = AC , AD 丄BC ,•••/ABC = ZACB , AD 垂直平分 BC•••BE = EC ,/1 =/2 , A /ABC- /1 =/ACB- Z2 ,即/3 =/4,又 CG //AB ,「./G = /3 ,二/4 = /GCE EF又v/CEG = /CEF , •••©EF S /EC , • EG = CE•••EC 2 = EG - EF ,故 EB 2=EF EG【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明•而其中利用线段的垂直平分线的性质得到 BE=EC ,把原来处在同一条直线上的三条线段 BE , EF , EC 转换到相似三角形的基本图形中是证明本题的关键。
相似三角形中考考点归纳与典型例题

相似三角形中考考点归纳与典型例题相似三角形是初中数学中常出现的重要概念,它是几何学中研究两个三角形之间形状关系的一个重要内容。
掌握相似三角形的性质和应用是解决几何问题的基础。
相似三角形的重要性质:1. 定义:如果两个三角形的对应角相等,对应边成比例,则它们是相似三角形。
记作ΔABC ~ ΔDEF。
其中A、B、C是ΔABC的顶点,D、E、F是ΔDEF的顶点。
2. 判定定理:(1) AA相似定理:如果两个三角形的两个对应角相等,则它们是相似的。
(2) AAA相似定理:如果两个三角形的三个对应角相等,则它们是相似的。
3. 边比例关系:相似三角形的对应边成比例。
即对于ΔABC ~ΔDEF,有AB/DE = BC/EF = AC/DF。
4. 高比例关系:相似三角形的高线成比例。
即对于ΔABC ~ΔDEF,有h1/h2 = AB/DE = BC/EF = AC/DF。
5. 相似三角形的性质:(1) 对应角相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
(2) 对应边成比例,即AB/DE = BC/EF = AC/DF。
(3) 相似三角形的顶角相等,边比例相等,它们的面积比例也相等。
(4) 相似三角形的高线间成比例。
相似三角形的典型例题:例题1:如图,在直角三角形ABC中,∠B = 90°,BM是AC的中线,求比值AB/BC。
解:由与直角三角形的垂直关系可知∠A = ∠CBM,∠C = ∠ABM。
所以∠ABC ~ ∠CBM。
根据相似三角形的性质可得AB/BC = CB/BM = 2/1,即AB/BC = 2。
例题2:如图,上底AE = 4cm,下底BC = 8cm,连结CD,且CD = AE,点F是AE的中点,连接BF,求比值∠AFB/∠ACD。
解:由AE = CD可得∠A = ∠C。
又由BF = FE可得∠B = ∠AFE。
所以∠AFB ~ ∠ACD。
根据相似三角形的性质可得∠AFB/∠ACD = AB/AD= BC/CD = 2。
第27章相似三角形知识点总结及典型题目精选全文完整版

可编辑修改精选全文完整版相似三角形知识点总结1. 比例线段的有关概念:b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。
把线段AB分成两条线段AC和BC,使AC2=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。
2. 比例性质:3. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。
②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
4. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似5. 相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方一.选择题:1、下列各组数中,成比例的是( )A .-7,-5,14,5B .-6,-8,3,4C .3,5,9,12D .2,3,6,122、如果x:(x+y)=3:5,那么x:y =( )A. B. C. D. 3、如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( ) A 、21 B 、31 C 、32 D 、41 4、下列说法中,错误的是( )(A )两个全等三角形一定是相似形 (B )两个等腰三角形一定相似 (C )两个等边三角形一定相似 (D )两个等腰直角三角形一定相似5、如图,RtΔABC 中,∠C=90°,D 是AC 边上一点,AB =5,AC =4,若ΔABC∽ΔBDC,则CD = . A .2 B .32 C .43 D .94二、填空题6、已知a =4,b =9,c 是a b 、的比例中项,则c = .7、如图,要使ΔABC∽ΔACD,需补充的条件是 .(只要写出一种)8、如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为ABCD(第7题)238332589、一公园占地面积约为8000002m ,若按比例尺1∶2000缩小后,其面积约为 2m .10、如图,点P 是R tΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点P 作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条. 三、解答题11、如图18—95,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm ,梯上点D 距墙70cm ,BD 长55cm .求梯子的长.12、如图,已知AC⊥AB,BD⊥AB,AO =78cm ,BO =42cm ,CD =159cm ,求CO 和DO .13、如图,在正方形网格上有111C B A ∆∽222A C B ∆,这两个三角形相似吗?如果相似,求出222111A C B A C B ∆∆和的面积比.CBAP(第10题)14、已知:如图,在△ABC 中,点D 、E 、F 分别在AC 、AB 、BC 边上,且四边形CDEF 是正方形,AC =3,BC =2,求△ADE、△EFB、△ACB 的周长之比和面积之比.15、如图所示,梯形ABCD 中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P 的位置,使得以P,A,D 为顶点的三角形与以P,B,C 为顶点的三角形相似.16、如图,□ABCD 中,:2:3AE EB =,DE 交AC 于F . (1)求AEF ∆与CDF ∆周长之比;(2)如果CDF ∆的面积为220cm ,求AEF ∆的面积.PAB DCABECDF。
初三相似三角形知识点以及经典例题

初三相似三角形知识点以及经典例题相似三角形是指形状相同但大小不同的三角形。
它是相似多边形中最简单的一种。
如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就是相似三角形。
相似三角形对应边长度的比叫做相似比或相似系数。
比例线段是指四条线段a、b、c、d中,如果a与b的比等于c与d的比,那么这四条线段就是成比例线段,简称比例线段。
需要注意的是,比例线段是有顺序的,而且有比例式的定义。
在比例式中,a、d叫比例外项,b、c叫比例内项,a、c叫比例前项,b、d叫比例后项。
如果b=c,即a:b=c:d,那么b叫做a、d的比例中项,此时有b=ad。
比例有一些基本性质和定理。
比如,a:b=c:d等价于ad=bc;a:b=b:c等价于b=ac/b;同时,比例的分母不能为0.还有更比性质、反比性质、合、分比性质等。
需要注意的是,由一个比例式只能化成一个等积式,而一个等积式共可化成八个比例式,如ad=bc,除了可化为a:b=c:d等。
比例线段也有一些相关定理,如三角形中平行线分线段成比例定理和平行线分线段成比例定理。
其中,三角形中平行线分线段成比例定理指的是平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例;而平行线分线段成比例定理指的是三条平行线截两条直线,所截得的对应线段成比例。
例题1:已知线段a=6 cm,b=2 cm,则a、b、a+b的第四比例项是18 cm,a+b与a-b的比例中项是3 cm。
例题2:若(a+b)/(b+c)=(a-c)/(c-a),则m=1.相似三角形是指对应角相等,对应边成比例的三角形。
用符号“∽”表示,读作“相似于”。
对应角和对应边可以通过对应顶点的字母来表示,这样更容易找到相似三角形的对应角和对应边。
相似三角形的对应边的比叫做相似比(或相似系数)。
相似三角形对应角相等,对应边成比例。
相似三角形有三个等价关系:反身性、对称性和传递性。
反身性是指任何三角形都与自己相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为:三边对应成比例,两三角形相似。
(6)判定直角三角形相似的方法:①以上各种判定均适用。
②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)2=BD·DC,(2)(AB)2=BD·BC ,(3)(AC)2=CD·BC 。
注:由上述射影定理还可以证明勾股定理。
即(AB)2+(AC)2=(BC)2。
典型例题:例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF∴EC 2=EG· EF,故EB 2=EF·EG 【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。
例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点,∴ED=21AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD(1)又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA(2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD(1)∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2)由(1)(2)两式得:BA FB =AC FD,证毕。
【解题技巧点拨】本题证法中,通过连续两次证明三角形相似,得到相应的比例式,然后通过中间比“AD BD”过渡,使问题得证,证法二中是运用平行线分线段成比例定理的推论,三角形的中位线的判定,线段的垂直平分线的判定与性质使问题得证.一、如何证明三角形相似例1、如图:点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,则△AGD∽∽。
例2、已知△ABC中,AB=AC,∠A=36°,BD是角平分线,求证:△ABC∽△BCD例3:已知,如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD求证:△DBE∽△ABC例4、矩形ABCD中,BC=3AB,E、F,是BC边的三等分点,连结AE、AF、AC,问图中是否存在非全等的相似三角形请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式例5、△ABC中,在AC上截取AD,在CB延长线上截取BE,使AD=BE,求证:DF•AC=BC•FE例6:已知:如图,在△ABC中,∠BAC=900,M是BC的中点,DM⊥BC于点E,交BA的延长线于点D。
求证:(1)MA2=MD•ME;(2)MDMEADAE=22例7:如图△ABC中,AD为中线,CF为任一直线,CF交AD于E,交AB于F,求证:AE:ED=2AF:FB。
ABCDEM12AB CDEFG1234AB CDAB CDEFKAB CDE F三、如何用相似三角形证明两角相等、两线平行和线段相等。
例8:已知:如图E 、F 分别是正方形ABCD 的边AB 和AD 上的点,且31==AD AF AB EB 。
求证:∠AEF=∠FBD例9、在平行四边形ABCD 内,AR 、BR 、CP 、DP 各为四角的平分线, 求证:SQ ∥AB ,RP ∥BC例10、已知A 、C 、E 和B 、F 、D 分别是∠O 的两边上的点,且AB ∥ED ,BC ∥FE ,求证:AF ∥CD例11、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG例12、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BFABCDE FGA B CDS P RQ OA B C D EFABCDEFO 123A BC DF G E课后作业一、填空题1.已知:在△ABC 中,P 是AB 上一点,连结 CP ,当满足条件∠ACP=____或∠APC= _____或 AC 2=______时, △ACP ∽△ABC .2.两个相似三角形周长之比为4∶9,面积之和为291,则面积分别是____________。
3.如图,DEFG 是Rt △ABC 的内接正方形,若CF =8,DG =42,则BE =__________。
4.如图,直角梯形 ABCD 中,AD ‖BC ,AD ⊥CD ,AC ⊥AB ,已知AD =4,BC =9,则 AC =____________。
5.△ABC 中,AB =15,AC =9,点D 是AC 上的点,且AD=3,E 在AB 上,△ADE 与△ABC 相似,则AE 的长等于_____________。
6.如图,在正方形网格上画有梯形ABCD ,则∠BDC 的度数为______________。
7.△ABC 中,AB =AC ,∠A =36°,BC =1,BD 平分∠ABC 交于D ,则BD =_______,AD =______,设AB =x,则关于x 的方程是______________.8.如图,已知D 是等边△ABC 的BC 边上一点,把△ABC 向下折叠,折痕为MN ,使点A 落在点D 处,若BD ∶DC =2∶3,则AM ∶MN=_________________。
二、选择题9.如图,在正△ABC 中,D 、E 分别在AC 、AB 上,且31AC AD ,AE=BE ,则有() A .△AED ∽△BEDB .△AED ∽△CBDC .△AED ∽△ABDD .△BAD ∽△BCD10.如图,在△ABC 中,D 为AC 边上一点,∠DBC =∠A ,BC=6,AC =3,则CD 的长为( )B.23 D.25 11.如图,□ABCD 中,G 是 BC 延长线上一点,AG 与 BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( ) A .3对B .4对C .5对D .6对12. P是Rt△ABC的斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A.1条条C.3条D.4条13.如图,在直角梯形 ABCD中,AB=7,AD=2,BC=3,若在 AB上取一点P,使以P、A、D为顶点的三角形和以P、B、C为顶点的三角形相似,这样的P点有()A.1个B.2个C.3个D.4个三、解答下列各题14.如图,长方形ABCD中,AB=5,BC=10,点P从A点出发,沿AB作匀速运动,1分钟可以到达B点,点Q从B点出发,沿BC作匀速直线运动,1分钟可到C点,现在点P点Q同时分别从A点、B点出发,经过多少时间,线段PQ恰与线段BD垂直15.已知:如图,正方形DEFG内接于Rt△ABC,EF在斜边BC上,EH⊥AB于H.求证:(1)△ADG≌△HED;(2)EF2=BE·FC(答案)例1分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。
本例除公共角∠G外,由BC∥AD可得∠1=∠2,所以△AGD∽△EGC。
再∠1=∠2(对顶角),由AB∥DG可得∠4=∠G,所以△EGC∽△EAB。
例2分析:证明相似三角形应先找相等的角,显然∠C是公共角,而另一组相等的角则可以通过计算来求得。
借助于计算也是一种常用的方法。
证明:∵∠A=36°,△ABC是等腰三角形,∴∠ABC=∠C=72°又BD平分∠ABC,则∠DBC=36°在△ABC和△BCD中,∠C为公共角,∠A=∠DBC=36°∴△ABC∽△BCD例3分析:由已知条件∠ABD=∠CBE,∠DBC公用。
所以∠DBE=∠ABC,要证的△DBE和△ABC,有一对角相等,要证两个三角形相似,或者再找一对角相等,或者找夹这个角的两边对应成比例。
从已知条件中可看到△CBE∽△ABD,这样既有相等的角,又有成比例的线段,问题就可以得到解决。
证明:在△CBE和△ABD中,∠CBE=∠ABD, ∠BCE=∠BAD∴△CBE∽△ABD∴BCAB=BEBD即:BCBE=ABBD△DBE和△ABC中,∠CBE=∠ABD, ∠DBC公用∴∠CBE+∠DBC=∠ABD+∠DBC∴∠DBE=∠ABC且BCBE=ABBD∴△DBE∽△ABC例4分析:本题要找出相似三角形,那么如何寻找相似三角形呢下面我们来看一看相似三角形的几种基本图形:(1)如图:称为“平行线型”的相似三角形(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“相交线型”的相似三角形。