中考冲刺30天数学集锦

合集下载

2021年九年级中考数学《三轮冲刺考前30天》精选卷九

2021年九年级中考数学《三轮冲刺考前30天》精选卷九

2021年中考数学《三轮冲刺考前30天》精选题九一、选择题1.下列计算正确的是( )A.a2+a3=a5B.(2a)2=4aC.a2·a3=a5D.(a2)3=a52.在将式子(m>0)化简时,小明的方法是:;小亮的方法是:;小丽的方法是:.则下列说法正确的是( )A.小明、小亮的方法正确,小丽的方法不正确B.小明、小丽的方法正确,小亮的方法不正确C.小明、小亮、小丽的方法都正确D.小明、小丽、小亮的方法都不正确3.如图,为了估计池塘岸边A,B两点间的距离,小玥同学在池塘一侧选取一点O,测得OA=12米,OB=7米,则A,B间的距离不可能是()A.5米B.7米C.10米D.18米4.如图,南京路与八一街垂直,西安路也与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程为( )m.A.400B.600C.500D.7005.某商品的进价为200元,标价为300元,折价销售时的利润率为5%,问此商品是按()折销售的.A.5B.6C.7D.86.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是( )A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,47.如图,在△ABC 中,AB 为⊙O 的直径,∠B=60°,∠BOD=100°,则∠C 的度数为( )A.50°B.60°C.70°D.80°8.如图是二次函数y=ax 2+bx+c (a ≠0)的图象,有下列判断:①b 2>4ac ,②2a+b=0,③3a+c >0,④4a ﹣2b+c <0;⑤9a+3b+c <0.其中正确的是( )A .①②③B .②③④C .①②⑤D .③④⑤ 二、填空题9.若m ,n 是方程x 2+x ﹣2017=0的两个实数根,则m 2+2m+n 的值为 .10.如果一次函数y=(m ﹣2)x+m 的函数值y 随x 的值增大而增大,那么m 的取值范围是 . 11.如图,在矩形ABCD 中,BC=20 cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3 cm/s 和2 cm/s ,则最快________s 后,四边形ABPQ 成为矩形.12.直线434+-=x y 与x 轴、y 轴分别交于点A 、B ,M 是y 轴上一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上,则点M 的坐标为 。

2021年中考数学《三轮冲刺考前30天》精选卷十二(含答案)

2021年中考数学《三轮冲刺考前30天》精选卷十二(含答案)

2021年中考数学《三轮冲刺考前30天》精选题十二一、选择题1.下列运算正确的是( )A.a6÷a3=a3 B.a4•a2=a8 C.(2a2)3=6a6 D.a2+a2=a42.计算:的结果为()3.如图所示,∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F等于( ).A.360°-∠AB.270°-∠αC.180°+∠αD.2∠α4.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有( )A.1对B.2对C.3对D.4对5.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60+x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60+x)=876.某校一年级学生的平均年龄为7岁,方差为3,5年后该校六年级学生的年龄中( )A.平均年龄为7岁,方差改变B.平均年龄为12岁,方差不变C.平均年龄为12岁,方差改变D.平均年龄不变,方差不变7.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为( )A.32° B.31° C.29° D.61°8.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm,60cm,80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架乙共有( )A.1种B.2种C.3种D.4种二、填空题9.若方程x2-2x-1=0的两个根为x1,x2,则x1+x2-x1x2的值为________.10.写出一个一次函数的解析式:,使它经过点A(2,4)且y随x的增大而减小.11.如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A 角翻折,使得点A落在EF上的点A′处,折痕交AE于点G,则EG=______cm.12.如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.三、解答题13.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算m= ;(2)在扇形统计图中,“其他”类所占的百分比为;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.14.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?15.A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.16.已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F.(1)求证:CD与⊙O相切;(2)若⊙O的半径为,求正方形ABCD的边长.17.如图,已知抛物线y1=ax2(a≠0),图象经过点(4,4).F(0,1),直线y2=-1.(1)求抛物线解析式;(2)若点P(x0,y0)在抛物线上,连接PF,过P作直线y2的垂直段,A为垂足.求证:PF=PF. (3)如图2,已知点B(2,5),E为抛物线上一动点,连接BE、EF.当△BEF的周长最小时,求此时点E坐标及△BEF周长的最小值.参考答案1.A.2.A3.D4.C;5.B6.B;7.A.8.C9.答案为:310.答案为:y=﹣x+6.11.答案为:4﹣6.12.答案为:2.解析:如图,连接EC,∵四边形ABCD为矩形,∴∠A=∠D=90°,BC=AD=12,DC=AB=3,∵E为AD中点,∴AE=DE=AD=6由翻折知,△AEF≌△GEF,∴AE=GE=6,∠AEF=∠GEF,∠EGF=∠EAF=90°=∠D,∴GE=DE,∴EC平分∠DCG,∴∠DCE=∠GCE,∵∠GEC=90°﹣∠GCE,∠DEC=90°﹣∠DCE,∴∠GEC=∠DEC,∴∠FEC=∠FEG+∠GEC=×180°=90°,∴∠FEC=∠D=90°,又∵∠DCE=∠GCE,∴△FEC∽△EDC,∴,∵EC===3,∴,∴FE=2,故答案为:2.13.14.解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,(60﹣x﹣40)(300+20x)=6080,解得x1=1,x2=4,又顾客得实惠,故取x=4,即定价为56元,答:应将销售单价定位56元.15.解:AB不穿过风景区.理由如下:如图,过C作CD⊥AB于点D,根据题意得:∠ACD=α,∠BCD=β,则在Rt△ACD中,AD=CD•tanα,在Rt△BCD中,BD=CD•tanβ,∵AD+DB=AB,∴CD•tanα+CD•tanβ=AB,∴CD==(千米).∵CD=50>45,∴高速公路AB不穿过风景区.16.17.解:(1)y=0.25x2;(2)提示:将P(x0,y0)带入y1中,从而推导出x02=4y0.即此时△BEF周长最小,从而算出E(2,1),所以BE+EF=BC+6.BF=52,2.所以△BEF周长最小值为6+5。

2021年九年级中考数学《三轮冲刺考前30天》精选卷七

2021年九年级中考数学《三轮冲刺考前30天》精选卷七

2021年中考数学《三轮冲刺考前30天》精选题七一、选择题1.下列运算正确的是( )A.3a×2a=6a B.a8÷a4=a2 C.﹣3(a﹣1)=3﹣3a D.(a3)2=a92.下列二次根式的运算:①,②,③,④;其中运算正确的有( )A. 1个B. 2个C.3个D. 4个3.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°4.下列判断中错误..的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确的是( )A.5x-45=7x-3B.5x+45=7x+3C.D.6.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A. B. C. D.7.如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于()A.25°B.30°C.35°D.50°8.如图,在平行四边形ABCD中,AB=9,AD=6,∠ADC的平分线交AB于点E,交CB的延长线于点F,AG⊥DE,垂足为G.若AG=4,则△BEF的面积是( )A. B.2 C.3 D.4二、填空题9.已知关于x的方程ax2+2x﹣3=0有两个不相等的实数根,则a的取值范围是.10.直线y=kx+3经过点A(2,1),则不等式kx+3≥1的解集是.11.如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为.12.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B 落在点B′处.当△CEB′为直角三角形时,BE的长为.三、解答题13.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上.(2)随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“32”的概率为多少?(提示:抽取一张(不放回),再抽取一张时,一定要注意第二次抽取的结果受到第一次结果的影响.)14.2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.15.如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为6米,斜坡BC的坡度i=1:.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E 处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)16.如图,已知半圆O,AB为直径,P为射线AB上一点,过点P作⊙O的切线,切点为C点,D 为弧AC上一点,连接BD、BC.(1)求证:∠D=∠PCB;(2)若四边形CDBP为平行四边形,求∠BPC度数;(3)若AB=8,PB=2,求PC的长度.17.综合与探究如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为.(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案1.C.2.C.3.C4.B5.B6.B.7.A8.B9.答案为:a>且a≠0.10.答案为:x≤211.答案为:5;12.答案为:1.5或3.13.解:能组成的两位数有12,13,21,23,31,32.恰好是“32”的概率为16.14.解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.15.16.解:(1)证明略;(2)30°;(3)连接OC,PC=.17.解:(1)∵OA=2,OC=6∴A(﹣2,0),C(0,﹣6)∵抛物线y=x2+bx+c过点A、C∴解得:∴抛物线解析式为y=x2﹣x﹣6(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3∴B(3,0),抛物线对称轴为直线x=∵点D在直线x=上,点A、B关于直线x=对称∴x D=,AD=BD∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小设直线BC解析式为y=kx﹣6∴3k﹣6=0,解得:k=2∴直线BC:y=2x﹣6∴y D=2×﹣6=﹣5∴D(,﹣5)故答案为:(,﹣5)(3)过点E作EG⊥x轴于点G,交直线BC与点F设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6)∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+∴当t=时,△BCE面积最大∴y E=()2﹣﹣6=﹣∴点E坐标为(,﹣)时,△BCE面积最大,最大值为.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6)∴AC=①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2∴N 1(﹣2,2),N2(﹣2,﹣2),N3(2,0)②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4设N4(﹣2,n)∴﹣n=解得:n=﹣∴N4(﹣2,﹣)综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).。

中考最后30天冲刺——数形结合

中考最后30天冲刺——数形结合

授课类型C数形结合基本应用 C 几何与函数中的应用T 综合应用授课日期及时段教学内容专题透析数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使复杂问题简单化,抽象问题具体化,化难为易,获取简便易行的方法.运用这一数学思想解题,要熟练掌握一些概念和运算的几何意义及常见图形中的代数特征.一、专题精讲题型1在数与式中的应用:例1、文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在() A.玩具店B.文具店C.文具店西边40米D.玩具店东边-60米【答案】 B例2.已知实数a,b在数轴上的对应点依次在原点的右边和左边,那么()A.ab<b B.ab>b C.a+b>0 D.a-b>0【答案】D例3、实数a、b在数轴上的位置如图所示,化简2||a a b+-=_________。

【答案】b例4、如图1,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据a b两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为 A.()2222a b a ab b -=-+ B.()2222a b a ab b +=++C.22()()a b a b a b -=+-D.2()a ab a a b +=+【答案】B题型2. 在方程、不等式中的应用例1、已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是____________。

【答案】-1≤x <0例2、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A .203210x y x y +-=⎧⎨--=⎩,B .2103210x y x y --=⎧⎨--=⎩,C .2103250x y x y --=⎧⎨+-=⎩,D .20210x y x y +-=⎧⎨--=⎩,【答案】D题型3 在实际问题中的应用例1:某公司推销一种产品,设x (件)是推销产品的数量,y (元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的? (3)果你是推销员,应如何选择付费方案?图1· P (1,1)1 12 23 3-1 -1Ox y【答案】 解:(1)y 1=20x ,y 2=10x+300.(2)y 1是不推销产品没有推销费,每推销10件产品得推销费200元,y 2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y 1的付费方案;否则,选择y 2的付费方案. 【小结】图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2、如图,四边形 ABCD 是边长为 60 cm 的正方形硬纸片,剪掉阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使 A ,B ,C ,D 四个点重合于点 P ,正好形成一个底面是正方形的长方体包装盒 (1)若折叠后长方体底面正方形的面积为 1 250 cm2,求长方体包装盒的高;(2)设剪掉的等腰直角三角形的直角边长为 x(单位:cm),长方体的侧面积为 S(单位:cm2),求 S 与 x 的函数关系式,并求 x 为何值时,S 的值最大.【答案】解:(1)如图Z3-2,设剪掉阴影部分的每个等腰直角三角形的腰长为x cm ,则NP =2x cm ,DP =60-2x2cm ,QM =PW =2×60-2x 2cm.由题意,得60-2x2×22=1250.解得x 1=52,x 2=552(不符合题意舍去).答:长方体包装盒的高为52cm.(2)由题意,得S =4×2×60-2x 2×x =-4x 2+1202x .∵a =-4<0,∴当x =152时,S 有最大值.变式1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图3-3-2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.【答案】解:(1)2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同.【小结】可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.题型4 在概率统计中的应用例、某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:⑴请写出从条形统计图中获得的一条信息;⑵请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点?⑶请你根据上述数据,对该报社提出一条合理的建议。

中考冲刺30天数学集锦

中考冲刺30天数学集锦

中考冲刺30天数学复习攻略一.夯实基础,注意知识点的记忆和解题方法的整理。

依据新课程标准,分析《中考说明》和各地历年的中考试卷,不难发现中考试卷中容易题和中档题是占绝大多数的。

广大考生切忌眼高手低,特别是学习好的学生谨防只埋头钻难题不抓基础,一定要踏踏实实认真对待基本知识、基本技能的训练。

虽然每个选择题填空题分值不大,但考查的都是初中数学三年来的重要知识点,积少成多不可小视。

解答题中单独考查重点知识板块的中档题(如数与式的运算、解方程(方程组)或不等式(不等式)、统计与概率、几何图形的证明与计算、函数图像的性质与应用、视图与投影等等),更是不敢怠慢,一定要确保会做,这样才能使自己的分数在及格线以上。

二.最大限度地减少失误,提高得分率。

各位考生一定要在老师的指导下,认真分析总结每次考试的失误所在,自省自纠,查漏补缺,杜绝再犯同样的错误,尤其是由于粗心造成的“低级错误”坚决不能再犯,努力提高计算的准确性和解题的规范化程度,做到“会而对,对而全”就能使得分在优秀线左右。

三.勇于攀登,提高解综合题的能力。

最后这段时间里,老师在课堂上主要是进行专题训练,如阅读理解型问题、探索型问题,图表信息型问题,方案设计操作型问题和数学建模型问题等等。

这些题目大多都贴近生活,有些紧跟国家政策反映国家大事,题型新,阅读量大,信息点多,每道大题都有好几个小问题,学生最怕这样的压轴题,而这样的题恰恰又是用来区分学生能力强弱和得分高低的。

不过这些题的第一问往往不难,起点较低,后面每一问的难度是递增的。

所以各位考生要克服畏惧心理,敢于攀登,先把能得的分拿到,再一分一分地向上拼。

更何况平常做这些题不受时间限制,既可以独立钻研又可以共同讨论,还可以请教老师,成功后更有成就感,增强自信心。

请考生相信天道酬勤,只要肯钻研、肯总结一定会超越自我,再上台阶,冲刺高分段,取得优异成绩!做好数学中考复习的最后冲刺距离中考只剩下最后二十几天了,怎样在这有限的时间调整好自己的复习状态和心态作最后的冲刺?这是广大教师、初三学生和家长关心的问题。

2021年中考数学《三轮冲刺考前30天》精选卷六(含答案)

2021年中考数学《三轮冲刺考前30天》精选卷六(含答案)

2021年中考数学《三轮冲刺考前30天》精选题六一、选择题1.计算(-2a 2)3的结果是( )A.-6a 2B.-8a 5C.8a 5D.-8a 62.已知m=则有( ) A. 5<m<6 B. 4<m<5 C.-5<m<-4 D.-6<m<-53.如图,在Rt △ABC 中,∠C=90°.D 为边CA 延长线上一点,DE ∥AB ,∠ADE=42°,则∠B 的大小为( )A.42°B.45°C.48°D.58°4.如图所示,在△ABD 和△ACE 中,AB=AC ,AD=AE ,要证△ABD ≌△ACE ,需补充的条件是( )A.∠B=∠CB.∠D=∠EC.∠DAE=∠BACD.∠CAD=∠DAC5.某科普网站从2009年10月1日起,连续登载新中国成立60周年来我国科技成果展,该网站的浏览量猛增.已知2009年10月份该网站的浏览量为80万人次,第四季度总浏览量为350万人次,如果浏览量平均每月增长率为x ,则应列方程为( )A.80(1+x)2=350B.80[1+(1+x)+(1+x)2]=350C.80+80×2(1+x)=350D.80+80×2x=3506.连掷两次骰子,它们的点数都是4的概率是( ) A.61 B.41 C.161 D.361 7.如图,已知圆心角∠BOC=78°,则圆周角∠BAC 的度数是( )A.156°B.78°C.39°D.12°8.如图,二次函数y=ax 2+bx+c (a ≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中﹣1<x 1<0.1<x 2<2.下列结论:4a+2b+c <0;2a+b <0;b 2+8a >4ac ;a<﹣1;其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题9.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x,x2,若x12+x22=4,则m1的值为_______.10.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=(x>0)和y=﹣(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.11.如图,Rt△ABC中,∠BCA=90°,AB=3,AC=2,D为斜边AB上一动点(不与点A、B重合),DE⊥BC,DF⊥AC,垂足分别为E、F,连接EF,则EF的最小值是.12.如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD。

专题方程与不等式国中考考点真题训练中考数学考前30天迅速提分复习方案原卷版

中考数学考前30天迅速提分复习方案(全国通用)专题1.3方程与不等式(全国中考56个考点真题训练)1.方程的解(1)方程的解:解方程就是求出使方程中等号左右两边相等的未知数的值,这个值叫方程的解.注意:方程的解和解方程是两个不同的概念,方程的解是指使方程两边相等的未知数的值,具有名词性.而解方程是求方程解的过程,具有动词性.(2)规律方法总结:无论是给出方程的解求其中字母系数,还有判断某数是否为方程的解,这两个方向的问题,一般都采用代入计算是方法.2.等式的性质(1)等式的性质性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.(2)利用等式的性质解方程利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化.应用时要注意把握两关:①怎样变形;②依据哪一条,变形时只有做到步步有据,才能保证是正确的.3.一元一次方程的定义(1)一元一次方程的定义只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.通常形式是ax+b=0(a,b为常数,且a≠0).一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式.这里a是未知数的系数,b是常数,x的次数必须是1.(2)一元一次方程定义的应用(如是否是一元一次方程,从而确定一些待定字母的值)这类题目要严格按照定义中的几个关键词去分析,考虑问题需准确,全面.求方程中字母系数的值一般采用把方程的解代入计算的方法.4.一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.5.解一元一次方程(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.(2)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(3)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式体现化归思想.将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负.6.含绝对值符号的一元一次方程解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.例如:解方程|x|=2解:去掉绝对值符号x=2或﹣x=2方程的解为x1=2或x2=﹣2.7.同解方程定义:如果两个方程的解相同,那么这两个方程叫做同解方程.(或者说,如果第一个方程的解都是第二个方程的解,并且第二个方程的解也都是第一个方程的解,那么这两个方程叫做同解方程.)8.由实际问题抽象出一元一次方程审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.9.一元一次方程的应用(一)一元一次方程解应用题的类型有:(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.3.列:根据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.10.二元一次方程的定义(1)二元一次方程的定义含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.(2)二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.11.二元一次方程的解(1)定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.(2)在二元一次方程中,任意给出一个未知数的值,总能求出另一个未知数的一个唯一确定的值,所以二元一次方程有无数解.(3)在求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.12.解二元一次方程二元一次方程有无数解.求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.13.由实际问题抽象出二元一次方程(1)由实际问题列方程是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.(2)一般来说,有2个未知量就必须列出2个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.(3)找等量关系是列方程的关键和难点.常见的一些公式要牢记,如利润问题,路程问题,比例问题等中的有关公式.14.二元一次方程的应用二元一次方程的应用(1)找出问题中的已知条件和未知量及它们之间的关系.(2)找出题中的两个关键的未知量,并用字母表示出来.(3)挖掘题目中的关系,找出等量关系,列出二元一次方程.(4)根据未知数的实际意义求其整数解.15.二元一次方程组的定义(1)二元一次方程组的定义:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.(2)二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.16.二元一次方程组的解(1)定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.(2)一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.17.解二元一次方程组(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用的形式表示.18.由实际问题抽象出二元一次方程组(1)由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.(2)一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.(3)找等量关系是列方程组的关键和难点,有如下规律和方法:①确定应用题的类型,按其一般规律方法找等量关系.②将问题中给出的条件按意思分割成两个方面,有“;”时一般“;”前后各一层,分别找出两个等量关系.③借助表格提供信息的,按横向或纵向去分别找等量关系.④图形问题,分析图形的长、宽,从中找等量关系.19.二元一次方程组的应用(一)列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.(二)设元的方法:直接设元与间接设元.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.20.解三元一次方程组(1)三元一次方程组的定义:方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.(2)解三元一次方程组的一般步骤:①首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组.②然后解这个二元一次方程组,求出这两个未知数的值.③再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程.④解这个一元一次方程,求出第三个未知数的值.⑤最后将求得的三个未知数的值用“{”合写在一起即可.21.三元一次方程组的应用在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.(1)把求等式中常数的问题可转化为解三元一次方程组,为以后待定系数法求二次函数解析式奠定基础.(2)通过设二元与三元的对比,体验三元一次方程组在解决多个未知数问题中的优越性.22.一元二次方程的定义(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.23.一元二次方程的一般形式(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.24.一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).25.估算一元二次方程的近似解用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.26.解一元二次方程-直接开平方法形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±.注意:①等号左边是一个数的平方的形式而等号右边是一个非负数.②降次的实质是由一个二次方程转化为两个一元一次方程.③方法是根据平方根的意义开平方.27.解一元二次方程-配方法(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.28.解一元二次方程-公式法(1)把x=(b2﹣4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(2)用求根公式解一元二次方程的方法是公式法.(3)用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.29.解一元二次方程-因式分解法(1)因式分解法解一元二次方程的意义因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).(2)因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.30.换元法解一元二次方程1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.31.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.32.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.33.由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地审清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.34.一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.5.验:检验所求出的根是否符合所列方程和实际问题.6.答:写出答案.35.配方法的应用1、用配方法解一元二次方程.配方法的理论依据是公式a2±2ab+b2=(a±b)2配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.2、利用配方法求二次三项式是一个完全平方式时所含字母系数的值.关键是:二次三项式是完全平方式,则常数项是一次项系数一半的平方.3、配方法的综合应用.36.高次方程(1)高次方程的定义:整式方程未知数次数最高项次数高于2次的方程,称为高次方程.(2)高次方程的解法思想:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.对于5次及以上的一元高次方程没有通用的代数解法和求根公式(即通过各项系数经过有限次四则运算和乘方和开方运算无法求解),这称为阿贝尔定理.换句话说,只有三次和四次的高次方程可用根式求解.37.无理方程(1)定义:方程中含有根式,且开方数是含有未知数的代数式,这样的方程叫做无理方程.(2)有理方程和根式方程(无理方程)合称为代数方程.(3)解无理方程关键是要去掉根号,将其转化为整式方程.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.(4)注意:用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.38.分式方程的解求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.39.解分式方程(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.40.换元法解分式方程1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.41.分式方程的增根(1)增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(3)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.42.由实际问题抽象出分式方程由实际问题抽象出分式方程的关键是分析题意找出相等关系.(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.43.分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.44.不等式的定义(1)不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.(2)凡是用不等号连接的式子都叫做不等式.常用的不等号有“<”、“>”、“≤”、“≥”、“≠”.另外,不等式中可含未知数,也可不含未知数.45.不等式的性质。

2021年中考数学考前30天迅速提分复习方案专题3.4 初中数学图形运动解题技巧(课件)


图形的平移
B
B'
A
C A'
C'
图形的旋转
A
B
C B' O
C'
A'
知识梳理 平移旋转作图
平移 作图 步骤
( 1 )确定平移的方向和距离; ( 2 )根据平移的性质作出各关键点的对应点; ( 3 )按原图形的连接方式顺次连接各点.
旋转 作图 步骤
( 1 )确定旋转中心,旋转方向和旋转角; ( 2 )根据旋转的性质作出各关键点的对应点; ( 3 )按原图形的连接方式顺次连接各点.
向左平移a个单位长度,向下平移b个单位长度 x a, y b
一个图形依次沿x轴方向、y轴方向平移后所得的图形,可以看成是由原来 的图形经过一次平移得到的。
专项练习三 平移与坐标
1.点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )
√ A.(1,﹣8) B.(1,﹣2) C.(﹣6,﹣1)
∠ABC=100°,则∠CBE的度数为( )
√ A.50° B.40° C.30° D.100°
对应点所连的线段平行(或共线)且相等; 对应线段平行(或共线)且相等,对应角相等。
专项练习一 概念与性质
3.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,
D.(0,﹣1)
2.△ABC与△A'B'C'在平面直角坐标系中的位置如图所示.
( 1 )分别写出下列各点的坐标:A' (﹣3,1); B'(﹣2,﹣2);C' (﹣1,﹣1).
( 2 )说明△A'B'C'由△ABC经过怎样的平移得到?

2021年中考数学《三轮冲刺考前30天》精选卷三

2021年中考数学《三轮冲刺考前30天》精选题三一、选择题1.计算(ab2)3的结果是( )A.3ab2B.ab6C.a3b5D.a3b62.化简的结果是()3.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍4.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DFB.∠A=∠DC.AC=DFD.∠ACB=∠F5.已知一个两位数,十位上的数字x比个位上的数字y大1,若互换个位与十位数字的位置,得到的新数比原数小9,求这个两位数所列出的方程组中,正确的是()6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( )A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.27.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.128.如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A.6πB.3πC.2πD.2π二、填空题9.已知方程x2+kx﹣2=0的一个根是1,则另一个根是,k的值是.10.已知m是整数,且一次函数y=(m+4)x+m+2的图像不经过第二象限,则m=_______.11.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为.12.如图,已知矩形ABCD中,AB=4,AD=3,P是以CD为直径半圆上的一个动点,连接BP,则BP最大值是.三、解答题13.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.14.某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.15.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,E在同一直线上).(cos80°≈0.018,sin80°≈0.98,≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?16.如图,在△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O分别交于AC,BC于点D,E,过点E 作O的切线EF交AC于点F,连接BD.(1)求证:EF是△CDB的中位线;(2)求EF的长.17.如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线:与y轴交于点A,与直线OP交于点B.过点P 作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:y=a/x2+b/x+c/,抛物线F′与x轴的另一个交点为C.⑴当a=1,b=-2,c=3时,求点C的坐标(直接写出);⑵若a、b、c满足了b2=2ac.①求b:b′的值;②探究四边形OABC的形状,并说明理由.参考答案1.D.2.A3.C4.C.5.D6.D.7.C8.A.9.答案为:x1=﹣2,k=1.10.答案为:-311.答案为:5或6.12.答案为: +2.13.解:(1)因为有A,B,C3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是;故答案为.(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率==.14.解:(1)∵8x+6y+5(20﹣x﹣y)=120,∴y=20﹣3x.∴y与x之间的函数关系式为y=20﹣3x.(2)由x≥3,y=20﹣3x≥3,即20﹣3x≥3可得3≤x≤5,又∵x为正整数,∴x=3,4,5.故车辆的安排有三种方案,即:方案一:甲种3辆乙种11辆丙种6辆;方案二:甲种4辆乙种8辆丙种8辆;方案三:甲种5辆乙种5辆丙种10辆.(3)设此次销售利润为W百元,W=8x•12+6(20﹣3x)•16+5[20﹣x﹣(20﹣3x)]•10=﹣92x+1920.∵W随x的增大而减小,又x=3,4,5∴当x=3时,W最大=1644(百元)=16.44万元.答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.15.解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∵∠FGK=80°,∴FN=100•sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66•cos45°=33≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm. (2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66•sin45°≈46.53,∴PH≈46.53,∵GN=100•cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.16.解:(1)连结AE,∵AB为O的直径,∴∠AEB=90,又AB=AC,∴BE=EC,即E为BC中点,连结OE,可得OE为△ABC的中位线,∴OE∥AC,∴∠DFE=∠OEF=90°,∵AB为直径∴∠ADB=90°,∴EF∥BD,∵E为BC中点,∴F为DC中点,∴EF为△BDC的中位线.(2)在Rt△ABE中,AE=错误!未找到引用源。

(倒计时一日一总结)中考数学 倒计30日回扣押题23(含思路点拨+完美解答+考点延伸)

2014届中考倒计30日回扣押题:23(含思路点拨+完美解答+考点延伸)如图1,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P 的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标.图1思路点拨1.第(2)题探究平行四边形,按照AP 为边或者对角线分两种情况讨论.2.第(3)题是典型的“牛喝水”问题,构造点B 关于“河流”AC 的对称点B ′,那么M 落在B ′D 上时,MB +MD 最小,△MBD 的周长最小. 满分解答(1)由y =-x 2+2x +3=-(x +1)(x -3)=-(x -1)2+4, 得A (-1, 0)、B (3, 0)、C (0, 3)、D (1, 4).直线AC 的解析式是y =3x +3.(2)Q 1(2, 3),Q 2(13-),Q 3(13-).(3)设点B 关于直线AC 的对称点为B ′,联结BB ′交AC 于F . 联结B ′D ,B ′D 与交AC 的交点就是要探求的点M . 作B ′E ⊥x 轴于E ,那么△BB ′E ∽△BAF ∽△CAO .在Rt △BAF中,13AF BF ==AB =4,所以BF =. 在Rt △BB ′E中,'13B E BE =='2BB BF ==12'5B E =,365BE =. 所以3621355OE BE OB =-=-=.所以点B ′的坐标为2112(,)55-.因为点M 在直线y =3x +3上,设点M 的坐标为(x , 3x +3).由''''''DD MM B D B M =,得''''yD yB yM yB xD xB xM xB --=--.所以1212433552121155x x -+-=++. 解得935x =.所以点M 的坐标为9132(,)3535.图2 图3考点伸展第(2)题的解题思路是这样的:①如图4,当AP 是平行四边形的边时,CQ //AP ,所以点C 、Q 关于抛物线的对称轴对称,点Q 的坐标为(2, 3).②如图5,当AP 是平行四边形的对角线时,点C 、Q 分居x 轴两侧,C 、Q 到x 轴的距离相等.解方程-x 2+2x +3=-3,得1x =±Q 的坐标为(13-)或(13-).图4 图5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考冲刺30天数学复习攻略一.夯实基础,注意知识点的记忆和解题方法的整理。

依据新课程标准,分析《中考说明》和各地历年的中考试卷,不难发现中考试卷中容易题和中档题是占绝大多数的。

广大考生切忌眼高手低,特别是学习好的学生谨防只埋头钻难题不抓基础,一定要踏踏实实认真对待基本知识、基本技能的训练。

虽然每个选择题填空题分值不大,但考查的都是初中数学三年来的重要知识点,积少成多不可小视。

解答题中单独考查重点知识板块的中档题(如数与式的运算、解方程(方程组)或不等式(不等式)、统计与概率、几何图形的证明与计算、函数图像的性质与应用、视图与投影等等),更是不敢怠慢,一定要确保会做,这样才能使自己的分数在及格线以上。

二.最大限度地减少失误,提高得分率。

各位考生一定要在老师的指导下,认真分析总结每次考试的失误所在,自省自纠,查漏补缺,杜绝再犯同样的错误,尤其是由于粗心造成的“低级错误”坚决不能再犯,努力提高计算的准确性和解题的规范化程度,做到“会而对,对而全”就能使得分在优秀线左右。

三.勇于攀登,提高解综合题的能力。

最后这段时间里,老师在课堂上主要是进行专题训练,如阅读理解型问题、探索型问题,图表信息型问题,方案设计操作型问题和数学建模型问题等等。

这些题目大多都贴近生活,有些紧跟国家政策反映国家大事,题型新,阅读量大,信息点多,每道大题都有好几个小问题,学生最怕这样的压轴题,而这样的题恰恰又是用来区分学生能力强弱和得分高低的。

不过这些题的第一问往往不难,起点较低,后面每一问的难度是递增的。

所以各位考生要克服畏惧心理,敢于攀登,先把能得的分拿到,再一分一分地向上拼。

更何况平常做这些题不受时间限制,既可以独立钻研又可以共同讨论,还可以请教老师,成功后更有成就感,增强自信心。

请考生相信天道酬勤,只要肯钻研、肯总结一定会超越自我,再上台阶,冲刺高分段,取得优异成绩!做好数学中考复习的最后冲刺距离中考只剩下最后二十几天了,怎样在这有限的时间调整好自己的复习状态和心态作最后的冲刺?这是广大教师、初三学生和家长关心的问题。

我们知道数学中考复习有三个阶段,第一阶段是复习基础知识,掌握基本技能和基本方法,建立知识网络,做到牢固掌握,灵活运用;第二阶段是专题复习阶段,在复习中归纳、总结常见的解题方法和规律,领会数学思想方法,把“三基”推向高潮,在整个复习中起“画龙点晴”的作用,达到开拓思路,发展思维,提高分析问题和解决问题的能力,做到能灵活应用一些重要的数学思想方法如数形结合、分类讨论、函数思想、方程思想、运动变换思想、化归思想等来解决代数、几何的综合问题;掌握以二次函数为基本框架,一元二次方程为基本框架,以三角形、四边形和圆为基本框架的综合题的解题规律。

有目的地培养学生将较综合的题目分解为较简单的几个小题目的能力,做到举一反三,化繁为简,分步突破。

现在我们进入了中考复习的第三阶段,这一阶段是心理和智力的综合训练阶段,是整个中考复习的升华阶段,是不可缺少的最后一环。

一、掌握应试技巧,处理好四个关系:1.审题和解题的关系:克服对审题重视不够,匆匆一看急于下笔的不严谨的做法,要吃透题目的条件与要求,更要挖掘题目中隐含条件,达到启发解题思路。

只有耐心仔细地审题,准确地把握题目中的关键词和量(如“至少”“a>0”,自变量的取值范围等等)才能从中获取多的信息,才能迅速找准解题方向。

2.“会做”与“得分”:要将你的解题思路转化为得分点,主要靠准确、完整的推理和精确、严密的计算,要克服卷面上大量出现的“会而不对”“对而不全”的情况。

只有重视解题过程的严密推理和精确计算“会做”的题才能“得分”。

3.快与准的关系:在目前题量大,时间紧的情况下,“准”字则尤为重要。

只有“准”才能得分,只有“准”才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。

如去年中考数学中“卢浦大桥问题”大部分考生都能列出它的数学模型y=ax2的函数关系式,但很多考生在匆忙中把a 计算错了,尽管后继部分解题思路正确又花时间去算,但也得不到分,这是十分可惜的。

适当地慢一点,准一点,可多得一点分;相反,快一点,错一片,花了时间还得不到分。

4.难题与容易题的关系:做中考试题要按先易后难,先简后繁的顺序作答,要合理安排时间,不要在某个卡住的题上打“持久战”,这样会造成既耗费时间又拿不到分,会做的题目又被耽误了的严重后果。

把会做的题目先做完,再去攻不会做的题,这样既能得分,又能产生心理上的胜利效果,平静下来再做难题可能就迎刃而解了。

二、做到“二个加强,三个突出”完成第三轮复习:根据近几年中考数学试题稳中有变,变中求新的特点和今年把最后一题难度降下来的呼声,但又要保证中考有选拔功能的现状。

因此,第三阶段复习我们要做到二个“加强”1.加强客观题正确率的强化训练,尤其要重视填空题和多项选择题中的能力要求,中考数学命题和毕业考不同它要有选拔功能,因此要充分重视分类讨论,数形结合的能力要求,考虑问题要全面周到。

重视例如“一个三角形两边长为7cm和5cm,第三边上的高为3cm,则第三边长为 cm”此类的填充题。

2.要加强代数、几何的有机联系,克服“各自为战”的现象,重视每题为“十分”的简答题的得分率,做到会做,还要得满分。

把模拟试卷相关专题进行整理反思找出运动类问题、探索类问题、应用类问题、图表信息类问题、几何类问题的规律做到对中考心中有数。

第三阶段复习还要做到三个“突出”:1.突出基础知识的灵活运用:“基础知识的灵活运用就是能力”,虽然中考数学试题总体分析难度要降下来,但基础性更强了,能力上的要求上去了,加强能力的途径之一就是提高知识的灵活运用,让“题海战术”“死记硬背”“硬套模式”的学习方法下去,让“重视分析”“注重方法”“思维灵活”的学习方法上来。

2.突出阅读分析能力训练:在解决实际问题的应用题中往往试题叙述较长,同学们往往束手无策,要加强读题、审题、作图、列式的训练,重视从图像、图表中获取信息能力的训练。

3.突出开放探索性问题的研究:学会“实验——猜想——论证”的探索方法,以提高探究能力。

三、稳定心态,增加信心,提高速度,规范解答:1.对中考数学“考什么”“怎样考”应有一个全面了解;2..不要过多研究难题,以保证自己高度的自信和旺盛的斗志;3.保持自己平时的学习和生活节奏,适当减轻复习的密度和难度,这正是为了收到“退一步,进两步”的效果,保持大脑皮层中等的兴奋度(既不过分放松,也不过分紧张)在冲刺倒计时阶段保持良好的心态。

4.每隔一天做份中考数学练习卷,以培养应试的感觉。

5.浏览已完成的模拟试卷,重点反思过去做错的题目,找出原因防止重犯类似错误。

6.勤于总结,把握自我,针对自己平时训练中和各次模拟考试中存在的问题和自己的薄弱环节,适当进行强化训练,做到查漏补缺。

7.讲究方法,提高效率;经过第一轮的系统复习和第二轮的专题复习,此时应做到“四化”即序化、类化、活化、深化。

序化是指知识的网络化和条理化;类化就是将问题归类;活化就是将知识进行迁移和联想,分解和组合,灵活变通;深化就是融合多方面的知识,运用多种数学手段和运算来解决综合性的题目。

第三阶段复习要实现:⑴变由老师介绍、讲解解题方法为自己正确选择方法,突出解法的发现和运用;⑵变全面覆盖复习为重点突破,突出中考数学的“热点”问题;⑶变以量为主到以质取胜,突出套题训练,通过练、评、思,突出数学思想方法,掌握解题方法。

中考数学热点问题的梳理与预测一、科学记数法是每年中考必考的内容之一,虽说这种知识的考查只有一道题,且题型为选择题或填空题,而一旦赋予其不同的数学情境,并与精确度和有效数字组合在一起时,正确结论的获得也决非显而易见的。

在复习中把科学记数法设计成一个小专题,提醒学生在比较复杂的问题情境中确定出问题的主攻方向,准确给出问题结论,无疑会帮助学生驱除茫然、模糊、失落情绪。

二、平面图形在定直线上按顺(逆)时针方向进行无滑动翻滚的问题,从 2004 年至 2006 年的数学试卷中我们都会发现其踪影。

2004 年所取翻滚平面图形是等边三角形; 2005 年所取翻滚平面图形是直角三角形; 2006 年所取翻滚平面图形是长方形,题目的情境令命题者难以割舍,所求问题局限在计算几段圆弧线之和或几个扇形面积之和。

若今年的命题者继续垂青这种类型的题目,所选择的翻滚平面图形已所剩无几,建议教师在复习此类题目时一定要讲清“动点”在运动变化时形成的轨迹是什么,从而确定计算的依据,这样才能使学生的思维处于一种严阵以待的状态。

三、平面图形折叠问题在历届中考试卷中屡见不鲜,除去把一个平面图形经过折叠后围成一个符合条件的几何体或把一个几何体表面展开成为一个相应的平面图形外(包括圆柱、圆锥侧面展开图问题),另一种命题特征无论是一个角的折叠,还是多边形的折叠(一般是四边形)都遵守一个原则,那就是折叠前的图形和折叠后的图形仍是平面图形。

一定要向学生请讲清楚折叠前后的两个图形是全等形且具有对称性,以便于我们寻找相等关系(对应边、对应角)组合成对问题结论有帮助的思维途径。

特别是长方形的折叠问题,已在近三年的中考试卷中反复出现,而且贯穿在选择题、填空题、解答题三种题型之中,命题的思路从两个方面进行,一是平面几何中的命题结构;二是平面解析几何的命题结构(将折叠图形放置在平面直角坐标系内), 2005 年中考试卷的最后一题即以这种命题结构结尾完成整个试卷的呈现形式的。

四、函数是数学中考命题重要的组成部分,由于函数应用广泛与实际生活有密切关系,故在命题取材空间上张弛自如,尤以函数图象作为选择支见长。

正比例函数,一次函数,反比例函数,二次函数(初中教材中三角函数尚未出现解析式与图象的一一对应关系)成了命题者的素材来源。

无论是模拟样题,还是中考选拔考试,函数与物理学科的联手出击,也逐渐得到大家的一致认可,联想到改换版本(人教版)教材,我们更有理由相信,函数分段的表达形式也是中考命题的应用范围,对于函数求解析式问题,更要引起思维上的高度重视。

一旦函数与应用问题结合在一起,探求变量之间的存在的状态时,灵活运用所给的已知条件就是思维经历把文字语言转化成符号语言抉择的过程。

实际上,求具体情境下的函数关系问题,把两个变量看作两个未知量,解决问题运用的就是方程思想,运用方程思想探求函数解析式,易于被学生接受。

教师在复习引领中,既要注重函数解析式的不同求解思路,还要注意向学生强调列方程和确定函数解析式的严谨层次。

根据课程标准中“能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值”的具体要求,命题者一定会在函数解析式和实际问题的对接中,对自变量的取值范围加以界定,并会作为考查学生思维的一个命题分支有所设计。

相关文档
最新文档