大物B课后题08-第八章 电磁感应 电磁场

合集下载

大物B课后题08-第八章 电磁感应 电磁场

大物B课后题08-第八章 电磁感应 电磁场

习题之阳早格格创做8-6 一根无限少曲导线有接变电流0sin i I t ω=,它中间有一与它共里的矩形线圈ABCD ,如图所示,少为l 的AB 战CD 二边与曲导背仄止,它们到曲导线的距离分别为a 战b ,试供矩形线圈所围里积的磁通量,以及线圈中的感触电动势. 解 修坐如图所示的坐标系,正在矩形仄里上与一矩形里元dS ldx =,载流少曲导线的磁场脱过该里元的磁通量为 通过矩形里积CDEF 的总磁通量为由法推第电磁感触定律有8-7 有一无限少曲螺线管,单位少度上线圈的匝数为n ,正在管的核心搁置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线仄止,设螺线管内电流变更率为dI dt ,球小线圈中感触的电动势.解 无限少曲螺线管里里的磁场为通过N 匝圆形小线圈的磁通量为由法推第电磁感触定律有8-8 部分积为S 的小线圈正在一单位少度线圈匝数为n ,通过电流为i 的少螺线管内,并与螺线管共轴,若0sin i i t ω=,供小线圈中感死电动势的表白式.解 通过小线圈的磁通量为由法推第电磁感触定律有8-9 如图所示,矩形线圈ABCD 搁正在16.010B T -=⨯的匀称磁场中,磁场目标与线圈仄里的法线目标之间的夹角为60α=︒,少为0.20m 的AB 边可安排滑动.若令AB 边以速率15.0v m s -=•背左疏通,试供线圈中感触电动势的大小及感触电流的目标.解 利用动死电动势公式感触电流的目标从A B →.8-10 如图所示,二段导体AB 战BC 的少度均为10cm ,它们正在B 处相接成角30︒;磁场目标笔曲于纸里背里,其大小为22.510B T -=⨯.若使导体正在匀称磁场中以速率11.5v m s -=•疏通,目标与AB 段仄止,试问AC 间的电势好是几? 哪一端的电势下?解 导体AB 段与疏通目标仄止,不切割磁场线,不电动势爆收.BC 段爆收的动死电动势为AC 间的电势好是C 端的电势下.8-11 少为l 的一金属棒ab ,火仄搁置正在匀称磁场B 中,如图所示,金属棒可绕O 面正在火仄里内以角速度ω转动,O 面离a 端的距离为l k .试供a,b 二端的电势好,并指出哪端电势下(设k>2)解 修坐如图所示的坐标系,正在Ob 棒上任一位子x 处与一微元dx ,该微元爆收的动死电动势为Ob 棒爆收的动死电动势为共理,Oa 棒爆收的动死电动势为金属棒a,b 二端的电电势好果k>2,所以a 端电势下.8-12 如图所示,真空中一载有稳恒电流I 的无限少曲导线旁有一半圆形导线回路,其半径为r ,回路仄里与少曲导线笔曲,且半圆形曲径cd 的延少线与少曲导线相接,导线与圆心O 之间距离为l ,无限少曲导线的电流目标笔曲纸里背内,当回路以速度v 笔曲纸里背中疏通时,供:(1)回路中感触电动势的大小;(2)半圆弧导线cd 中感触电动势的大小.解 (1) 由于无限少曲导线所爆收的磁场目标与半圆形导线天圆仄里仄止,果此当导线回路疏通时,通过它的磁通量不随时间改变,导线回路中感触电动势0ε=.(2)半圆形导线中的感触电动势与曲导线中的感触电动势大小相等,目标好异,所以可由曲导线估计感触电动势的大小采用x 轴如图8.7所示,正在x 处与线元dx,dx 中爆收感触电动势大小为其中02I B xμπ= 导线cd 及圆弧cd 爆收感触电动势的大小均为8-13 正在半径0.50R m =的圆柱体内有匀称磁场,其目标与圆柱体的轴线仄止,且211.010dB dt T s --=⨯•,圆柱体中无磁场,试供离启核心O 的距离分别为0.1,0.25,0.50,1.0m m m m 战各面的感死电场的场强.解 变更的磁场爆收感死电场线是以圆柱轴线为圆心的一系列共心圆,果此有 而22,L S B dB E dl E r dS r t dtππ∂•=-•=-∂⎰⎰⎰感感当r R <时, 22dB E r r dtππ=-感 所以0.1r m =时,415.010E V m --=⨯•感;0.25r m=时,.311.310E V m --=⨯•感当r R >时 22dB E r R dtππ=-感 所以0.50r m =时, 312.510E V m --=⨯•感; 1.0r m =时311.2510E V m --=⨯•感8-14 如图所示,磁感触强度为B 的匀称磁场充谦正在半径为R 的圆柱体内,有一少为l 的金属棒ab 搁正在该磁场中,如果B 以速率dB dt 变更,试证:由变更磁场合爆收并效率于棒二端的电动势等于12dB dt 说明 要领一 对接Oa,Ob,设念Oab 形成关合回路,由于Oa,Ob 沿半径目标,与通过该处的感死电场处笔曲,所以Oa,Ob 二段均无电动势,那样由法推第电磁感触定律供出的关合回路Oab 的总电动势便是棒ab 二端电动势.根据法推第电磁感触定律要领二 变更的磁场正在圆柱体内爆收的感死电场为棒ab 二端的电动势为8-15 如图所示,二根横截里半径为a 的仄止少曲导线,核心相距d ,它们载有大小相等、目标好异的电流,属于共一回路,设导线里里的磁通量不妨忽略不计,试说明那样一对于导线少为l 的一段的自感为0ln l d a L aμπ-=. 解 二根仄止少曲导线正在它们之间爆收的磁感触强度为 脱过二根导线间少为dx 的一段的磁通量为所以,一对于少为的一段导线的自感为8-16一匀称稀绕的环形螺线管,环的仄稳半径为R ,管的横截里积为S ,环的总匝数为N ,管内充谦磁导率为μ的磁介量.供此环形螺线管的自感系数L .解 当环形螺线管中通有电流I 时,管中的磁感触强度为 通过环形螺线管的磁链为则环形螺线管的自感系数为8-17由二薄圆筒形成的共轴电缆,内筒半径1R ,中筒半径为2R ,二筒间的介量1r μ=.设内圆筒战中圆筒中的电流目标好异,而电流强度I 相等,供少度为l 的一段共轴电缆所储磁能为几?解 有安培环路定理可供得共轴电缆正在空间分歧天区的磁感触强度为1r R <时, 10B =12R r R <<时, 022I B rμπ=2r R >时, 30B =正在少为L ,内径为r ,中径为r dr +的共轴薄圆筒的体积2dV rldr π=中磁场能量为所以,少度为l 的一段共轴电缆所储能为补充正在共时存留电场战磁场的空间天区中,某面P 的电场强度为E ,磁感触强度为B ,此空间天区介量的介电常数0εε≈,磁导率0μμ≈.供P 面处电场战磁场的总能量体稀度w . 解 电场能量稀度为磁场能量稀度为总能量稀度为8-19 一小圆线圈里积为21 4.0S cm =,由表面绝缘的细导线绕成,其匝数为150N =,把它搁正在另一半径220R cm =,2100N =匝的圆线圈核心,二线圈共轴共里.如果把大线圈正在小线圈中爆收的磁场瞅成是匀称的,试供那二个线圈之间的互感;如果大线圈导线中的电流每秒缩小50A ,试供小线圈中的感触电动势.解 当大圆形线圈通偶尔2I ,它正在小圆形线圈核心处的磁感触强度大小为若把大圆形线圈正在小圆形线圈中爆收的磁场瞅成是匀称的,则通过小圆形线圈的磁链为二个线圈之间的互感为如果大线圈导线中的电流每秒缩小50A ,则小线圈中的感触电动势为8-20 一螺线管少为30cm .由2500匝漆包导线匀称稀绕而成,其中铁芯的相对于磁导率100r μ=,当它的导线中通有的电流时,供螺线管核心处的磁场能量稀度.解 螺线管中的磁感触强度为螺线管中的磁场能量稀度为8-21 一根少曲导线载有电流I ,且I 匀称天分散正在导线的横截里上,试供正在少度为l 的一段导线里里的磁场能量. 解 有安培环路定理可得少曲导线里里的磁感触强度为 正在少度为l 的一段导线里里的磁场能量8-22一共轴线由很少的曲导线战套正在它表里的共轴圆筒形成,它们之间充谦了相对于磁导率为1r μ=的介量,假定导线的半径为1R ,圆筒的内中半径分别为2R 战3R ,电流I 由圆筒流出,由曲导线流回,并匀称天分散正在它们的横截里上,试供:(1)正在空间各个范畴内的磁能稀度表白式;(2)当12310, 4.0, 5.0,10R mm R mm R mm I A ====时,正在每米少度的共轴线中所储藏的磁场能量.解 (1)有安培环路定理可得正在空间各个范畴内的磁感触强度为1r R <时 01212Ir B R μπ= ;12R r R << 时022I B r μπ=23R r R <<时2203322322I R r B r R R μπ-=-;3r R >时 40B =相映天,空间各个范畴内的磁能稀度为1r R <时222012201128m I r B w R μμπ==;12R r R <<时20228m I w r μπ=; 23R r R <<时2222032222328m I R r w r R R μπ⎛⎫-= ⎪-⎝⎭;3r R >时0m w =.(2) 每米少度的共轴线中所储藏的磁场能量为8-23说明电容C 的仄止板电容器,极板间的位移电流强度d dUI C dt =,U 是电容器二极板间的电势好.说明 由于仄止板中D σ=,所以脱过极板位移电位移通量 仄止板电容器中的位移电流强度8-24 设圆形仄止板电容器的接变电场为()51720sin 10E t V m π-=•,电荷正在电容器极板上匀称分散,且边沿效力不妨忽略,试供:(1)电容器二极板间的位移电流稀度;(2)正在距离电容器极板核心连线为 1.0r cm =处,通过时间52.010t s -=⨯时的磁感触强度的大小.解 (1)电容器二极板间的位移电流稀度为(2)以电容器极板核心连线为圆心,以 1.0r cm =为半径干一圆周.由齐电流安培环路定律有所以通过时间时52.010t s -=⨯,磁感触强度的大小为8-25 试决定哪一个麦克斯韦圆程相称于或者包罗下列究竟:(1)电场线仅起初或者末止与电荷或者无贫近处;(2)位移电流;(3) 正在静电仄稳条件下,导体里里大概有所有电荷;(4)一变更的电场,肯定有一个磁场伴伴它;(5)关合里的磁通量末究为整;(6)一个变更的磁场,肯定有一个电场伴伴它;(7)磁感触线是无头无尾的;(8)通过一个关合里的洁电通量与关合里里里的总电荷成正比;(9)不存留磁单极子;(10)库仑定律;(11)静电场是守旧场.解 1Ni i s D ds q =•=∑⎰⎰相称于或者包罗究竟:(1),(3),(8),(10);L S B E dl dS t ∂•=-•∂⎰⎰⎰相称于或者包罗究竟:(6),(11); 0S B dS •=⎰⎰相称于或者包罗究竟:(5),(7),(9);1N D i i L d H dl I dt φ=•=+∑⎰相称于或者包罗究竟:(2),(4);。

大物b课后题08-第八章电磁感应电磁场

大物b课后题08-第八章电磁感应电磁场

习题8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。

解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为02m id B dS ldx xμφπ=⋅=通过矩形面积CDEF 的总磁通量为0000ln ln sin 222bm ai il I l b bldx t x a aμμμφωπππ===⎰由法拉第电磁感应定律有00ln cos 2m d I l bt dt aφμωεωπ=-=- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt,球小线圈中感应的电动势。

解 无限长直螺线管内部的磁场为0B nI μ=通过N 匝圆形小线圈的磁通量为20m NBS N nI r φμπ==由法拉第电磁感应定律有20m d dIN n r dt dtφεμπ=-=- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。

解 通过小线圈的磁通量为0m BS niS φμ==由法拉第电磁感应定律有000cos m d dinS nSi t dt dtφεμμωω=-=-=- 8-9 如图所示,矩形线圈ABCD 放在16.010B T -=⨯的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=︒,长为0.20m 的AB 边可左右滑动。

若令AB 边以速率15.0v m s -=•向右运动,试求线圈中感应电动势的大小及感应电流的方向。

解 利用动生电动势公式0.20()50.6sin(60)0.30()2B Av B dl dl V πε=⨯•=⨯⨯-︒=⎰⎰感应电流的方向从A B →.8-10 如图所示,两段导体AB 和BC 的长度均为10cm ,它们在B 处相接成角30︒;磁场方向垂直于纸面向里,其大小为22.510B T -=⨯。

河海大学大二上大学物理答案--第8章-电磁感应

河海大学大二上大学物理答案--第8章-电磁感应
电池
合上闸刀开关后,此灯缓慢变亮 自感 线圈
电阻
BATTERY
电池
拉开闸刀后此灯先亮后暗
BATTERY
电池
自感 线圈
拉开闸刀后此灯先亮后暗
BATTERY
电池
自感 线圈
拉开闸刀后此灯先亮后暗
BATTERY
电池
自感 线圈
拉开闸刀后此灯先亮后暗
BATTERY
电池
自感 线圈
B I ,又Ψ B
LI
L称为自感系数简称自感。 单位:“亨利”(H)
1H 1Wb A1
1H 103 mH 106 μH
自感系数 L 取决于回路线圈自身的性质(回路大 小、形状、周围介质等)
L
d dt
d(LI ) dt
(L
dI dt
I
dL ) dt
如果回路自身性质不随时间变化,则:
L
L
dI dt
结论 : 回路中的自感系数,在量值上等于电流随
i
d
dt
i 0
0
d 0
dt
i 0
Φ0
d 0
dt
i 0
Φ0
d 0
dt
i 0
由N 匝导线构成的线圈时:
i
d dt
(1
2
N )
d dt
(
N i 1
i
)
d
dt
N
全磁通: i i 1
磁通链数: N
i
N
d
dt
伏特 1V 1Wb s1
设闭合线圈回路的电阻为R
感应电流:
Ii
i
R
1 R
i
l2
2
r

大学物理学第五版马文蔚高等教育出版社电磁感应2

大学物理学第五版马文蔚高等教育出版社电磁感应2

d m i dt
=
或 i E感 d l

f 洛
电子枪
v

E感
隐含着对称的感生电场的 E涡的计算方法。
R2 R1 dr
I
二. 互感应(Mutual Induced Phenomenon) 二. 互感应(Mutual Induced Phenomenon) 互感电动势两个线圈相互在对方 互感现象:
C1 C2 回路激起感应电动势的现象。 设两长直螺线管 ,长度均为 l C1 N1 匝;C2 N2 匝;设 C1通电 I1 , i N1 互感系数 0 I1 r 2 穿过C2每匝线圈的磁通量 l 总磁通链数 Φ21 N 2 ( 0 N1 I1 r 2 ) M 21I1 (8-9a) MI1 l d 互感电动势 21 d Φ21 0 N1 N 2 r 2 d I1 M 21d II11 (8-10a) M dt l dt d tt d N2 2 反之,设C2通电 I2 ,则穿过C1每匝线圈的磁通量 0 I 2 r l N2 2 MI 穿过C1总磁通链数 Φ12 N1 ( 0 I 2 r ) M12 I22 (8-9b) l ddII dΦ NN dI C1中互感电动势 12 12 0 1 2 r 2 2 M 12 22 (8-10b) M ddtt dt l dt
d AC E感 d l

A
E感
r dB 1 dB cos d l hdl 2 dt 2 dt 1 dB R 2 (l0 2) 2 d l 2 dt C l dB 2 证毕! AC d AC 0 R (l0 2) 2 A 2 dt 若 l0 =2R, AC=0 因 E感 d l

第八章电磁感应电磁场习题解答-感生电场习题

第八章电磁感应电磁场习题解答-感生电场习题

第八章电磁感应电磁场习题解答8 —6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为G =8.0 10^5sin100二t(Wb),求在t =1.0 10 2 s时,线圈中的感应电动势.分析由于线圈有N匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数d①dΨ和,在此情况下,法拉第电磁感应定律通常写成;=-N d d,其中弓-NG称为dt dt磁链.解线圈中总的感应电动势dΦ;-- N 2.51cos(100二t)dt当t =1.0 102s 时,;:-2.51V .8 —7有两根相距为d的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以W 的变化率增长•若有一边长为d的正方形线圈与两导线处于同一平面内,如图所dt示.求线圈中的感应电动势.题8-7 ≡d①分析本题仍可用法拉第电磁感应定律来求解.由于回路处在非均匀磁场中,磁dt通量就需用①= B d S来计算(其中B为两无限长直电流单独存在时产生的磁感强度B1 S与B 2之和).为了积分的需要,建立如图所示的坐标系.由于B仅与X有关,即B=B(X),故取一个平行于长直导线的宽为d X、长为d的面元d S,如图中阴影部分所示,贝U dS =ddx ,所以,总磁通量可通过线积分求得(若取面元dS =dxdy ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式E^- -M ~~求解.dttlx解1穿过面元dS的磁通量为再由法拉第电磁感应定律,有dΦP od I 3 [di;= —Indt ]2兀4_dt解2当两长直导线有电流I通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为①M= —:I∖d3= In2 二4当电流以d~变化时,线圈中的互感电动势为dtIKfl dij0d 3;--M —0 Indt 2 二48 - 10如图(a)所示,把一半径为R的半圆形导线OP置于磁感强度为B的均匀磁场中,当导线以速率V水平向右平动时,求导线中感应电动势E的大小,哪一端电势较高?^S-IO 圈分析本题及后面几题中的电动势均为动生电动势,除仍可由构造一个闭合回路),还可直接用公式;=I(V B) d 1求dΦ = B d S = B1d S + B2J√∙d S = 0ddx2兀(x + d)%:ddx2二X因此穿过线圈的磁通量为dx 一严。

大学物理第八章课后习题答案

大学物理第八章课后习题答案

大学物理第八章课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章电磁感应电磁场8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大23分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).48 -5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ. 8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.5分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和). 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tl M E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xI μx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B 因此穿过线圈的磁通量为()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd =-+==⎰⎰⎰ 再由法拉第电磁感应定律,有6tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为 43ln π20dI μΦ=线圈与两长直导线间的互感为 43ln π20d μI ΦM == 当电流以tl d d 变化时,线圈中的互感电动势为 tI d μt I M E d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入t ΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =tξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少7分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱. 解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R RNBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.8分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r ISμN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为 V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为tΦE d d -= 8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高9分析 本题及后面几题中的电动势均为动生电动势,除仍可由tΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向. 解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高. 解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.10 解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-= 8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律t ΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E v l αB l o d cos 90sin ⎰=v()()l θB θωl o d 90cos sin ⎰-=l()⎰==L θL B ωl l θB ω022sin 21d sin 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E t ΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-= 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高. 解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以 V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰ 相应电动势为()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即()A A F F =v .根据牛顿运动定律,此时线框的运动微分方程为()tv v d d m F mg A =-,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式.解 (1) 根据分析,在1t t ≤时间内,线框为自由落体运动,于是()11t t gt ≤=v 其中1t t =时,gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为v Rl B IlB F A 22== 根据牛顿运动定律,可得线框运动的微分方程tv m v d d 22=-R l B mg 令mRl B K 22=,整理上式并分离变量积分,有 ⎰⎰=-t t t g 110d d vv Kv v 积分后将gh 210=v 代入,可得()()[]1212t t K e gh K g g K----=v (3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v 8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率t d d B 在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为td d π4B d ρm I =式中ρ 为铜的电阻率,d 为铜的密度. 解 圆形回路导线长为πR 2,导线截面积为2πr ,其电阻R ′为22rR ρS l ρR ==' 在均匀磁场中,穿过该回路的磁通量为BS Φ=,由法拉第电磁感应定律可得回路中的感应电流为t t t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='= 而2ππ2r R d m =,即dm Rr π2π2=,代入上式可得 td d π4B d ρm I = 8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率td d B 为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如1s T 010.0d d -⋅=tB ,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率td d B 等)密切相关,即S B l E d d ⋅∂∂-=⎰⎰S S k t .在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当0d d <t B 时,电场线绕向与B 方向满足右螺旋关系;当0d d >t B 时,电场线绕向与前者相反.解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R , tB r t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r E k d d 2-= r >R , t B R t r E E k lk d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r R E k d d 22-= 由于0d d >tB ,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此tB r R E k d d 22-= 将r 、R 、tB d d 的数值代入,可得15m V 100.4--⋅⨯-=k E ,式中负号表示E k 的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk E l E d 计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有 22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 证2 由题8 -17可知,在r <R 区域,感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E l k k PQ -=-==⋅=⎰⎰x E 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势 该如何求解8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20=由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为 12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L I ΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度R I μN B B 200=穿过小线圈A 的磁链近似为 A B A A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RS μN N I ψM A B A A (2)V 1014.3d d 4-⨯=-=tI M E A 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πdR R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍. 8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===S N Rqc I n μμB r 相对磁导率1991102==I n μS N Rqc μr8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少 磁能密度是多少*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感l S N L 2=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管。

大学物理同步训练第08章电磁感应

大学物理同步训练第08章电磁感应

(D)线圈中感应电流方向不确定
答案:B
分析:利用极限法,可将离金属线圈较远的直导线忽略不计,只考虑离金属线圈较近的直导
线。由右手定则可知,金属线圈内的磁场垂直直面向外,随着电流 I 增加,穿过金属线圈的
向外的磁通量增加;根据楞次定律可知,金属线圈产生的感应电流要阻止磁通量的增加(即
产生相反的磁场),由右手定则可知,感应电流的方向为顺时针,答案 B 正确。
故 B 选项正确。
������1: ������2 = ������1: ������2 = ������12: ������22 = 1: 16
二、填空题
1. 半径为 r 的无限长密绕螺线管,单位长度上的匝数为 n,通以交变电流������ = ������������cos������������,则 围在管外的同轴圆形回路(半径为 R)上的感生电动势为________。
2. 如图 2 所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流 i,
下列哪一种情况可以做到?
(A)载流螺线管向线圈靠近
(B)载流螺线管离开线圈
(C)载流螺线管中电流减小
(D)抽出载流螺线管中的铁芯
答案:A
分析:(1)B、C、D 选项都会使得穿过线圈的磁通量减小,故 A 选项正确(单项选择题的
4/7
同步训练答案
第八章 电磁感应
许照锦
电动势为最小。
答案:导线端点;导线中点
分析:(参考选择题 4)设转轴位置与长为 L 导线一端的距离为 x(0 ≤ ������ ≤ ������),则导线的电
动势大小为
|������|
=
1 |2
������������[������2

大物 上海交大课后答案 第八章

大物 上海交大课后答案 第八章

习题88-1.如图所示,金属圆环半径为R ,位于磁感应强度为B的均匀磁场中,圆环平面与磁场方向垂直。

当圆环以恒定速度v在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端a 、b 间的电势差。

解:(1)由法拉第电磁感应定律i d dtεΦ=-,考虑到圆环内的磁通量不变,所以,环中的感应电动势0i ε=; (2)利用:()aab bv B dl ε=⨯⋅⎰,有:22ab Bv R Bv R ε=⋅=。

【注:相同电动势的两个电源并联,并联后等效电源电动势不变】8-2.如图所示,长直导线中通有电流A I 0.5=,在与其相距cm 5.0=d 处放有一矩形线圈,共1000匝,设线圈长cm 0.4=l ,宽cm 0.2=a 。

不计线圈自感,若线圈以速度cm/s 0.3=v 沿垂直于长导线的方向向右 运动,线圈中的感生电动势多大?解法一:利用法拉第电磁感应定律解决。

首先用0lB dl I μ⋅=∑⎰ 求出电场分布,易得:02I B rμπ=, 则矩形线圈内的磁通量为:00ln22x axI I l x al dr r xμμππ++Φ=⋅=⎰, 由i d Nd t εΦ=-,有:011()2i N I l d x x a x dtμεπ=--⋅+ ∴当x d =时,有:041.92102()i N I l a v V d a μεπ-==⨯+。

解法二:利用动生电动势公式解决。

由0lB dl I μ⋅=∑⎰ 求出电场分布,易得:02I B rμπ=, 考虑线圈框架的两个平行长直导线部分产生动生电动势, 近端部分:11NB l v ε=, 远端部分:22NB lv ε=, 则:12εεε=-=00411() 1.921022()N I N I al v l v V d d a d d a μμππ--==⨯++。

8-3.如图所示,长直导线中通有电流强度为I 的电流,长为l 的金属棒ab 与长直导线共面且垂直于导线放置,其a 端离导线为d ,并以速度v平行于长直导线作匀速运动,求金属棒中的感应电动势ε并比较U a 、U b 的电势大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。

解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为02m id B dS ldx xμφπ=⋅= 通过矩形面积CDEF 的总磁通量为 0000ln ln sin 222bm ai il I l b bldx t x a aμμμφωπππ===⎰由法拉第电磁感应定律有00ln cos 2m d I l bt dt aφμωεωπ=-=- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt,球小线圈中感应的电动势。

解 无限长直螺线管内部的磁场为0B nI μ= 通过N 匝圆形小线圈的磁通量为20m NBS N nI r φμπ==由法拉第电磁感应定律有20m d dIN n r dt dtφεμπ=-=- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。

解 通过小线圈的磁通量为0m BS niS φμ==由法拉第电磁感应定律有000cos m d dinS nSi t dt dtφεμμωω=-=-=- 8-9 如图所示,矩形线圈ABCD 放在16.010B T -=⨯的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=︒,长为0.20m 的AB 边可左右滑动。

若令AB 边以速率15.0v m s -=•向右运动,试求线圈中感应电动势的大小及感应电流的方向。

解 利用动生电动势公式0.20()50.6sin(60)0.30()2B Av B dl dl V πε=⨯•=⨯⨯-︒=⎰⎰感应电流的方向从A B →.8-10 如图所示,两段导体AB 和BC 的长度均为10cm ,它们在B 处相接成角30︒;磁场方向垂直于纸面向里,其大小为22.510B T -=⨯。

若使导体在均匀磁场中以速率11.5v m s -=•运动,方向与AB 段平行,试问AC 间的电势差是多少? 哪一端的电势高?解 导体AB 段与运动方向平行,不切割磁场线,没有电动势产生。

BC 段产生的动生电动势为1.10230() 1.5 2.510cos 60 1.910()C Bv B dl dl V ε--=⨯•=⨯⨯⨯︒=⨯⎰⎰AC 间的电势差是31.910()AC U V ε-=-=-⨯C 端的电势高。

8-11 长为l 的一金属棒ab ,水平放置在均匀磁场B 中,如图所示,金属棒可绕O 点在水平面内以角速度ω旋转,O 点离a 端的距离为l k 。

试求a,b 两端的电势差,并指出哪端电势高(设k>2)解 建立如图所示的坐标系,在Ob 棒上任一位置x 处取一微元dx ,该微元产生的动生电动势为()d v B dx xBdx εω=⨯•=- Ob 棒产生的动生电动势为22011(1)2l l kOb xBdx Bl kεωω-=-=--⎰同理,Oa 棒产生的动生电动势为 2122012Oa l xBdx Bl kεωω=-=-⎰金属棒a,b 两端的电电势差22222211112(1)(1)222ab ab Oa Obl U Bl Bl Bl k k kεεεωωω=-=-=---=- 因k>2,所以a 端电势高。

8-12 如图所示,真空中一载有稳恒电流I 的无限长直导线旁有一半圆形导线回路,其半径为r ,回路平面与长直导线垂直,且半圆形直径cd 的延长线与长直导线相交,导线与圆心O 之间距离为l ,无限长直导线的电流方向垂直纸面向内,当回路以速度v 垂直纸面向外运动时,求:(1)回路中感应电动势的大小;(2)半圆弧导线cd 中感应电动势的大小。

解 (1) 由于无限长直导线所产生的磁场方向与半圆形导线所在平面平行,因此当导线回路运动时,通过它的磁通量不随时间改变,导线回路中感应电动势0ε=。

(2)半圆形导线中的感应电动势与直导线中的感应电动势大小相等,方向相反,所以可由直导线计算感应电动势的大小选取x 轴如图8.7所示,在x 处取线元dx,dx 中产生感应电动势大小为 ()d v B dl ε=⨯• 其中02IB xμπ=导线cd 及圆弧cd 产生感应电动势的大小均为00ln22l rl r l rl r Iv Iv dx l rvBdx x l rμμεππ++--+===-⎰⎰ 8-13 在半径0.50R m =的圆柱体内有均匀磁场,其方向与圆柱体的轴线平行,且211.010dB dt T s --=⨯•,圆柱体外无磁场,试求离开中心O 的距离分别为0.1,0.25,0.50,1.0m m m m 和各点的感生电场的场强。

解 变化的磁场产生感生电场线是以圆柱轴线为圆心的一系列同心圆,因此有LSBE dl dS t∂•=-•∂⎰⎰⎰感 而22,LSB dB E dl E r dS r t dtππ∂•=-•=-∂⎰⎰⎰感感 当r R <时, 22dB E r r dt ππ=-感 12dBE r dt=-感所以0.1r m =时,415.010E V m --=⨯•感;0.25r m =时,。

311.310E V m --=⨯•感当r R >时 22dBE r R dtππ=-感 22R dBE r dt=-感所以0.50r m =时, 312.510E V m --=⨯•感; 1.0r m =时311.2510E V m --=⨯•感8-14 如图所示,磁感应强度为B 的均匀磁场充满在半径为R 的圆柱体内,有一长为l 的金属棒ab 放在该磁场中,如果B 以速率dB dt 变化,试证:由变化磁场所产生并作用于棒两端的电动势等于12dB dt 证明 方法一 连接Oa,Ob,设想Oab 构成闭合回路,由于Oa,Ob 沿半径方向,与通过该处的感生电场处垂直,所以Oa,Ob 两段均无电动势,这样由法拉第电磁感应定律求出的闭合回路Oab 的总电动势就是棒ab 两端电动势。

根据法拉第电磁感应定律12ab OabdB dB S dt dt εε==-= 方法二 变化的磁场在圆柱体内产生的感生电场为 12dB E r dt=-感 棒ab 两端的电动势为11cos 22l l lab dB E dx E dx dt εθ=•==-=⎰⎰⎰感感8-15 如图所示,两根横截面半径为a 的平行长直导线,中心相距d ,它们载有大小相等、方向相反的电流,属于同一回路,设导线内部的磁通量可以忽略不计,试证明这样一对导线长为l 的一段的自感为0lnl d aL aμπ-=。

解 两根平行长直导线在它们之间产生的磁感应强度为 ()0022I IB x d x μμππ=+- 穿过两根导线间长为dx 的一段的磁通量为()00022ln d ad am aaI I B dS ldx x d x lI d aaμμφππμπ--⎡⎤=•=+⎢⎥-⎣⎦-=⎰⎰所以,一对长为的一段导线的自感为0lnml d aL I aφμπ-==8-16一均匀密绕的环形螺线管,环的平均半径为R ,管的横截面积为S ,环的总匝数为N ,管内充满磁导率为μ的磁介质。

求此环形螺线管的自感系数L 。

解 当环形螺线管中通有电流I 时,管中的磁感应强度为 2INB nI Rμμπ== 通过环形螺线管的磁链为22m m IN SN Rμψφπ==则环形螺线管的自感系数为22mN S L I Rψμπ== 8-17由两薄圆筒构成的同轴电缆,内筒半径1R ,外筒半径为2R ,两筒间的介质1r μ=。

设内圆筒和外圆筒中的电流方向相反,而电流强度I 相等,求长度为l 的一段同轴电缆所储磁能为多少?解 有安培环路定理可求得同轴电缆在空间不同区域的磁感应强度为1r R <时, 10B = 12R r R <<时, 022IB rμπ=2r R >时, 30B =在长为L ,内径为r ,外径为r dr +的同轴薄圆筒的体积2dV rldr π=中磁场能量为22020124m I l B dW dV dr rμμπ==所以,长度为l 的一段同轴电缆所储能为 21220021ln 44R m R I r I l R W dr r R μμππ==⎰补充在同时存在电场和磁场的空间区域中,某点P 的电场强度为E ,磁感应强度为B ,此空间区域介质的介电常数0εε≈,磁导率0μμ≈。

求P 点处电场和磁场的总能量体密度w 。

解 电场能量密度为2012e w E ε= 磁场能量密度为212m B w μ=总能量密度为22001122e m B w w w E εμ=+=+8-19 一小圆线圈面积为21 4.0S cm =,由表面绝缘的细导线绕成,其匝数为150N =,把它放在另一半径220R cm =,2100N =匝的圆线圈中心,两线圈同轴共面。

如果把大线圈在小线圈中产生的磁场看成是均匀的,试求这两个线圈之间的互感;如果大线圈导线中的电流每秒减少50A ,试求小线圈中的感应电动势。

解 当大圆形线圈通有2I 时,它在小圆形线圈中心处的磁感应强度大小为 022222I B N R μ=若把大圆形线圈在小圆形线圈中产生的磁场看成是均匀的,则通过小圆形线圈的磁链为 0212112122m I N B S N N S R μψ==两个线圈之间的互感为74612012250100410 4.010 6.2810()220.2mN N S M H I R ψμπ---⨯⨯⨯⨯⨯====⨯⨯如果大线圈导线中的电流每秒减少50A ,则小线圈中的感应电动势为646.281050 3.1410()diMV dtε--=-=⨯⨯=⨯ 8-20 一螺线管长为30cm 。

由2500匝漆包导线均匀密绕而成,其中铁芯的相对磁导率100r μ=,当它的导线中通有2.0A 的电流时,求螺线管中心处的磁场能量密度。

解 螺线管中的磁感应强度为00r r N B nI I lμμμμ== 螺线管中的磁场能量密度为25301 1.7410/2m rB w J m μμ==⨯ 8-21 一根长直导线载有电流I ,且I 均匀地分布在导线的横截面上,试求在长度为l 的一段导线内部的磁场能量。

解 有安培环路定理可得长直导线内部的磁感应强度为 022IrB Rμπ=在长度为l 的一段导线内部的磁场能量2222002400122416R m I r I l B W dV rldr R μμπμππ===⎰⎰⎰⎰8-22一同轴线由很长的直导线和套在它外面的同轴圆筒构成,它们之间充满了相对磁导率为1r μ=的介质,假定导线的半径为1R ,圆筒的内外半径分别为2R 和3R ,电流I 由圆筒流出,由直导线流回,并均匀地分布在它们的横截面上,试求:(1)在空间各个范围内的磁能密度表达式;(2)当12310, 4.0, 5.0,10R mm R mm R mm I A ====时,在每米长度的同轴线中所储存的磁场能量。

相关文档
最新文档