最新初中数学三角形专题教案资料
三角形教案

三角形教案三角形教案模板(通用5篇)三角形教案1教学设计北师大版义务教育课程标准实验教科书七年级下册第五章第一节第四部分“三角形的高线”。
教材分析:本节是学生在认识了三角形,并且讨论过三角形角平分线,三角形的中线的定义及其性质,学生反反复复地折纸、画线、交流感受其意义,同时也在七年级上学期了解了两直线互相垂直等概念,会过一点作已知直线的垂线的基础上进一步的整理与探究。
“认识三角形的高线”主要研究的就是三角形的高线的定义及其性质,能在具体的三角形中作出它们。
因为有了三角形的角平分线,三角形的中线的定义及其性质作为基础。
在此,学生将进一步熟悉实验探究的基本方法,加深对三角形的理解和认识。
这样,有利于知识的系统化和条理化。
又因为我们研究的方法类似于研究三角形的角平分线和三角形的中线的定义及其性质的方法,所以我们要对照比较学习,找出它们之间的区别及其联系。
在教学中,要充分地给学生动手、动脑的时间,让学生慢慢地思考、总结、归纳,积累数学思维的经验,从而提高学生分析问题和解决问题的能力。
教学内容:认识三角形的高线教学目标:知识与技能:1.认识三角形高线的定义。
2.会在任意一个三角形中画出三角形的三条高线。
通过画图了解三角形三条高的位置随着三角形的形状的不同而不同。
过程与方法:通过观察,操作,想象,推理,交流等活动,发展空间观念,培养学生动手动脑,发现问题及解决问题的能力,以及推理能力和有条理的表达能力。
情感与态度:通过折纸,画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活。
教学重点:理解三角形高线的定义。
会画任意一个三角形的三条高,了解三角形的三条高(或所在的直线)交于一点。
了解三角形三条高的位置随着三角形的形状的不同而不同;锐角三角形的三条高都在三角形的内部;直角三角形的两条高与直角边重合,斜边上的高在三角形的内部;钝角三角形有两条高在三角形的外部,一条高在三角形的内部。
教学难点:1.钝角三角形高的画法及三角形三条高的位置关系与三角形的形状关系的理解。
初中数学三角形教案(最新5篇)

初中数学三角形教案(最新5篇)初中数学三角形教案篇一教学目的1.理解三角形、三角形的边、顶点、内角、外角等概念。
2.会将三角形按角分类。
3.理解等腰三角形、等边三角形的概念。
重点、难点1.重点:三角形内角、外角、等腰三角形、等边三角形等概念。
2.难点:三角形的外角。
教学过程一、引入新课在我们生活中几乎随时可以看见三角形,它简单、有趣,也十分有用,三角形可以帮助我们更好地认识周围世界,可以帮助我们解决很多实际问题。
本章我们将学习三角形的基本性质。
二、新授1.三角形的概念:(1)什么是三角形呢?三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形,这三条线段就是三角形的边。
如图:AB、BC、AC是这个三角形的三边,两边的公共点叫三角形的顶点。
(如点A)三角形约顶点用大写字母表示,整个三角形表示为△ABC.A(顶点)边B C(2)三角形的内角,外角的概念:每两条边所组成的角叫做三角形的内角,如△BAC.每个三角形有几个内角?三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如下图中△ACD是△ABC的一个外角,它与内角△ACB相邻。
A外角B C D与△ABC的内角△ACB相邻的外角有几个?它们之间有什么关系?练习:(1)下图中有几个三角形?并把它们表示出来。
ADB C(2)指出△ADC的三个内角、三条边。
学生回答后教师接着问:△ADC能写成△D吗?△ACD能写成△C吗?为什么?(3)有人说CD是△ACD和△BCD的公共的边,对吗?AD是△ACD和△ABC的公共边,对吗?(4)△BDC是△BCD的什么角?是△ACD的什么角?△BCD是△ACD的外角,对吗?(5)请你画出与△BCD的内角△B相邻的外角。
2.三角形按角分类。
让学生观察以下三个三角形的内角,它们各有什么特点?并用量角器或三角板加以验证。
1 2 3第一个三角形三个内角都是锐角;第二个三角形有一个内角是直角;第三个三角形有一个内角是钝角。
初中数学教案:三角形全等的判定教案

初中数学教案:三角形全等的判定教案一、教学目标:1. 让学生理解三角形全等的概念,掌握三角形全等的判定条件。
2. 培养学生运用全等三角形的性质解决实际问题的能力。
3. 培养学生的观察能力、动手能力和逻辑思维能力。
二、教学内容:1. 三角形全等的定义:如果两个三角形的所有对应边和对应角都相等,这两个三角形叫做全等三角形。
2. 三角形全等的判定条件:SSS(边-边-边)、SAS(边-角-边)、ASA (角-边-角)、AAS(角-角-边)。
三、教学重点与难点:1. 教学重点:三角形全等的判定条件及其应用。
2. 教学难点:三角形全等判定条件的理解和运用。
四、教学方法:1. 采用直观演示法,让学生通过观察和动手操作,加深对三角形全等概念的理解。
2. 采用案例分析法,让学生通过分析实际案例,掌握三角形全等的判定条件。
3. 采用小组合作学习法,培养学生的团队合作精神和沟通能力。
五、教学步骤:1. 导入新课:通过复习已学的几何知识,引导学生进入三角形全等的新课学习。
2. 讲解三角形全等的定义和判定条件:详细讲解三角形全等的概念,以及SSS、SAS、ASA、AAS四种判定条件。
3. 案例分析:给出几个实际案例,让学生运用判定条件判断三角形是否全等。
4. 动手操作:让学生自行取材,进行三角形全等的实际操作,加深对全等三角形性质的理解。
5. 课堂练习:布置一些有关三角形全等的练习题,巩固所学知识。
6. 总结与反思:对本节课的内容进行总结,引导学生思考如何运用三角形全等的知识解决实际问题。
7. 作业布置:布置一些有关三角形全等的家庭作业,巩固所学知识。
8. 课后反思:对课堂教学进行反思,总结教学过程中的优点和不足,为下一步教学做好准备。
六、教学评价:1. 通过课堂提问、练习和作业,评价学生对三角形全等概念和判定条件的掌握程度。
2. 观察学生在动手操作和小组合作学习中的表现,评价其观察能力、动手能力和团队协作能力。
3. 结合学生的课堂表现和作业完成情况,对学生的学习态度和思维能力进行评价。
全等三角形数学教案优秀5篇

全等三角形数学教案优秀5篇更多全等三角形数学教案资料,在搜索框搜索全等三角形数学教案篇1教学目标一、学问与技能1、了解全等形和全等三角形的概念,把握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并把握全等三角形的对应边相等,对应角相等。
教学难点正确查找全等三角形的对应元素。
教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以查找全等三角形的对应点、对应边、对应角。
课前预备:老师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:老师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义象这样的图片,样子和大小都相同。
你还能说一说自己身边还有哪些样子和大小都相同的图形吗?[学生举例,集体评析] 动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的? [板书:能够完全重合]命名:给这样的图形起个名称————全等形。
[板书:全等形] 刚才大家所举的各种各样的样子大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
(三)全等三角形的定义动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。
三角形的初步认识复习教案

三角形的初步认识复习教案一、教学目标:1. 复习并巩固学生对三角形的基本概念、性质和分类的理解。
2. 提高学生运用三角形知识解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队协作精神。
二、教学内容:1. 三角形的基本概念:三角形的定义、三角形的组成。
2. 三角形的性质:三角形的内角和、三角形的边长关系。
3. 三角形的分类:锐角三角形、直角三角形、钝角三角形。
4. 三角形的画法:如何准确地画出一个三角形。
5. 三角形在实际生活中的应用:举例说明三角形在现实生活中的应用。
三、教学重点与难点:1. 教学重点:三角形的基本概念、性质和分类,以及三角形在实际生活中的应用。
2. 教学难点:三角形内角和、边长关系的理解和运用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过思考和讨论来复习三角形的相关知识。
2. 利用实物模型、图片等教学资源,帮助学生直观地理解三角形的性质和分类。
3. 设计具有挑战性的练习题,激发学生的学习兴趣,提高学生解决问题的能力。
五、教学过程:1. 导入:通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。
2. 讲解:详细讲解三角形的基本概念、性质和分类,并通过实物模型、图片等进行展示。
3. 练习:设计一些具有针对性的练习题,让学生独立完成,巩固所学知识。
4. 讨论:组织学生进行小组讨论,分享彼此的学习心得和解决问题的方法。
5. 总结:对本节课的主要内容进行总结,强调三角形的内角和、边长关系等关键知识点。
6. 作业布置:布置一些有关三角形应用的问题,让学生在课后思考和解决。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组讨论表现,评估学生的学习积极性。
2. 练习题评价:对学生的练习题进行批改,评估学生对三角形基本概念、性质和分类的掌握程度。
3. 课后作业评价:对学生的课后作业进行批改,了解学生对三角形在实际生活中应用的理解和运用能力。
初中数学《全等三角形》教案优秀6篇

教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
三角形教案(7篇)

三角形教案(7篇)作为一名为他人授业解惑的教育工作者,就有可能用到教案,编写教案有利于我们科学、合理地支配课堂时间。
那么教案应该怎么写才合适呢?以下是漂亮的小编为大家整编的三角形教案(较新7篇),欢迎参考阅读,希望大家能够喜欢。
初中数学三角形教案篇一学习目标:(1) 知识与技能:掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。
(2) 过程与方法:通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
逐渐由实验过渡到论证。
通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。
(3)情感态度与价值观:通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。
使学生主动探索,敢于实验,勇于发现,合作交流。
一、自主预习二、回顾课本1、三角形的内角和是多少度?你是怎样知道的?2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。
3、回忆证明一个命题的步骤①画图②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。
③分析、探究证明方法。
4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?①平角,②两平行线间的同旁内角。
5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。
如何把三个角转化为平角或两平行线间的同旁内角呢?① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。
② 如图1,延长BC,过C作CE△AB③ 如图2,过A作DE△AB④ 如图3,在BC边上任取一点P,作PR△AB,PQ△AC。
初中数学章节专项《三角形》教案

三角形一、本章的学习目标1、了解与三角形有关的线段(边、高、中线、角平分线)。
2、理解三角形两边之和大于第三边,会根据三条线段的长度判断它们能否构成三角形,会画出任意三角形的高、中线、角平分线。
3、了解三角形的稳定性。
180,了解三角4、了解三角形有关的角,会用平行线的性质与平角的定义说明三角形内角和等于︒形外角的性质。
5、了解多边形有关概念,探索并掌握多边形的内角与外角和的公式。
6、通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。
二、本章知识结构概念内角内角和定理角概念外角推论:三角形的一个外角等于和它不相邻的两个内角和三角形的一个外角大于和它不相邻的任意一个内角两边之和大于第三边边两边之差小于第三边直角三角形三角形按角分类斜三角形三角形的分类等腰三角形按边分类不等边三角形角平分线:线段,交于一点,平分角三类重要线段中线:线段,交于一点,平分边高:∆:直角顶点180多边形的内角和:( n-2)︒多边形360多边形的外角和:︒基础知识1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
这条线段就是三角形的三条边,相邻两边组成的角叫做三角形的内角,简称三角形的角。
2.三角形的外角:在三角形中的内角的一边与另一边的反向延长线所组成的角,叫做三角形的外角。
3.三角形的顶点:在三角形中,每两条边的交点,叫做三角形的顶点。
4.三角形的内角和定理:三角形的内角和等于180︒5. 三角形的角的关系:三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角。
6. 三角形的三边关系:三角形的两边之和大于第三边 三角形的两边之差小于第三边7. 三角形的高线:从三角形的一个顶点出发向它的对边所在的直线作垂线,顶点到垂足之间的距离叫做三角形的高。
8. 三角形的中线:在三角形中,连接一个顶点和它对边中点的线段,叫做三角形的中线9. 三角形的角平分线:三角形一个角的平分线与这个角的对边相交,顶点与交点之间的线段,叫做三角形的角平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形
四边形
正多边形的计算转 化为解直角三角形 问题
应用三角形全等知识 证明特殊四边形性质
应用三角形内角和 求多边形的内角和
三角形的外接圆 三角形的内切圆
三角形
圆
由平行四边形的性质证 明了三角形的中位线定 理。由三角形中位线定 理又能得到梯形中位线 定理。
由矩形的性质得到” 直角三角形斜边上的 中线等于斜边的一半
位似中心是原点 对应点的坐标比
为k或-k
册 对应边平行
九年级下册 第二十八章 锐角三角三角函数
sin a
1
2
2
2
coas 3
2
2
2
正 弦
余 弦
正 切定义tana Nhomakorabea3
3
1
特殊值的运算
锐角三角函数
3 2
1 2
求求 边角
3
计算
解直角三角形
方
俯仰 角角
位 角
坡 度
应用
第28章锐角三角三角函数
九 年 级 下 册
上分1两析、点:.注,由且已重A知AE联可=C系用FA′ S实S求S证证际△:AABBFC=≌D发到EA△引实′ C入际DA概生念活,中并。将如所,学用知全识等应和用相
B
B′ C C′
∠DAC=∠BCA
B
或
似的知识解决测量问题。
C B′
D
∠DCA=∠BAC
C F
A
2、△让BCB学F≌生△D经CA′ E历或△B数′ AB学F≌知△识CDCE的形成E 过程
联系和综合
角
形
专
题
八上 第11章全等三角形 第12章轴对称 等腰三角形
八下第18章勾股定理
论证几何开始
论证几何向 计算几何过渡
实验为主 出现推理
七下 第7章三角形
各年级的 侧重点不同
三 角 形 专 题
淡化证明 回归自然
九下第27章相似 第28章锐角三角函数
七年级下册 第七章三角形
两边之和大 于第三边
三、体例安排
体例安排
四、内容结构
直角三角形 三角形
三角形之间 的关系
知识内容 三 角 形 专 题
三角形与其它 图形的关系
五、立体整合
三角形知识内容之间的关系
相似三角形
拓展 和 延伸
相似比 为1时
全等三角形
等边三角形
解直角三角形
等腰三角形
特殊三角形
锐角三角函数 勾股定理
三角形
函数
领域间的
三
初中数学三角形专题
一、课标要求 二、编写意图
三角形
三、体例安排 四、内容结构
五、立体整合 六、教学建议 七、评价建议 八、资源整合
一、课标要求
在探索图形的性 质中,初步建立 空间观念,发展 几何直觉。
数学思考
解决问题
尝试从不同角度 寻求解决问题的 方法并能有效地 解决问题;体会 在解决问题的过 程中与他人合作 的重要性。
二、编写意图
教材设置了思考、探究、
讨论等栏目引导学生自主
探索,激发学生进行思考,
促进合作交流。
加
大
了
探
索
通过让学生观察 实际生活中的图 形,加强对图形
交 流
的直观认识和感
的
受,从中“发现” 几何图形,归纳 出几何图形的基
空 间
本特征,从而更
好地“把握图
形”。
编写意图
老教材偏重于逻辑推 理,纯理论题占大多数; 新教材对于推理能力的 培养,按照“说点儿 理”“说理”“简单推 理”“符号表示推理” 等不同层次分阶段地安 排,逐步达到《课标》 要求。在七年级主要采 取渗透说理的方式,从 八年级上学期的“全等 三角形”开始正式出现 “证明”。
A字型 X字型
平行
两角对 应相等
相似三角形 的性质
相似三角形 的判定
相似三角形
三边对应 成比例
两边成比例 且夹角相等
图形的相似
相似形 相似多边形
对应角相等, 对应边成比例, 周长的比=相似比 面积的比=相似比的平方
第27章相似
位似 用坐标表示
画法、性质 位似变换
九 年 级 下
两图形位似 对应顶点的连线 交于一点
与三角形有关的角
中线 高
三角形的 主要线段
角平分线
与三角形有 关的线段
三角形的 稳定性
第7章三角形
七 年 级 下 册
定义 多边形及 其内角和
镶嵌
多边形 外角和
八年级上册 第十一章全等三角形
对应边相等
对应角相等
三角形全等的条件
HL
全等三角形的性质
全等三角形
全等三角形的概念
第11章全等三角形
八 年 级 上 册
知识与技能
课标要求
情感与态度
经历探索三角形基本性质的 过程;掌握三角形的基本性 质;掌握基本的识图、作图 等技能;体会证明的必要性,
三 角 形
能证明三角形的基本性质;
掌握基本的推理技能。
认识通过观察、实验、 归纳、类比、推断可以 获得数学猜想;体验数 学活动充满着探索性和 创造性;感受证明过程 的严谨性以及结论的确 定性。
角平分线的性质
性质
判定
八年级上册 第十二章第三节等腰三角形
顶 角 和 底
腰 和 底 边
角
等三 边线 对合 等一 角
性质
定 义
等 角 对
等
边
判定
相关概念 等腰三角形
600 600
每
一 个 角 都 等
三 线 合 一
性质
的三 三个 角角 形相
等
有
的 三 角 形
一 个 角 是
判定
等边三角形
第12章等腰三角形
B
B′
全等证明不容C 易,三组元C素′ 要齐备A.
B
要想证明如A 变等简腰要单三A′ 证,角明尽形B量“F=找等DE出边A′相对等等边角.”、“三线合一
3、还公两差 共 边注BC′ 条边一重A件角角”形线′ 分不对要性,段CB用顶正析质并和′ B急角确的进相思A,,,得一等′ 路利直须出步的A B用接是,,利角′C 等应两可用,让B 角用边以轴发学来不和先对现A生补用夹让称等A′ C齐说角学的腰学B...生性三′ 会剪质角思出思形等考的考腰相性问三等质题角的。
图三 形角 的形 关与 系其
他
垂径定理的计算转 化为解直角三角形 问题
利用圆周角定理、切 线长定理可得到等腰 三角形和直角三角形
”
六、教学建议
以画思路图的方式说明证明题丰的富思多考彩方的法图(形如世:界给三角形的
顺推、逆推、两头凑)启发学生学自习己提说供思了路大。量真实的素材,教
例题:已知:如图,AB=CD 学BC时=D要A注意E、联F系是实AC际,从实际出
八 年 级 上 册
八年级下册 第十八章勾股定理
已知两边 求第三边
赵爽弦图 毕答哥拉斯 茄菲尔德
证明
内容
互逆命题 内容
全等
证明
应用
勾股定理
勾股定理的逆定理
知三边 定形状
应用
第18章勾股定理
八 年 级 下 册
九年级下册 第二十七章 相似
对应角相等 对应边成比例
对应中线的比=对应高的 比=对应角平分线的比= 相似比 周长的比=相似比 面积的比=相似比的平方
利用边角由证操全作等过,程反得之到全启等发证:边通角过.做出等腰三角形
的对称轴得到两个全等三角形,从而利用全
4、善于总结技等证术明口等决腰三和角基形本的性图质形。