二阶常系数齐次线性方程解法-----特征方程法

合集下载

二阶常系数齐次特征方程

二阶常系数齐次特征方程

二阶常系数齐次特征方程二阶常系数齐次特征方程是指一个二阶线性常微分方程的特征方程,其中常系数是指方程中的系数是常数。

在本文中,将介绍二阶常系数齐次特征方程的定义、求解方法以及其应用。

让我们来看看什么是二阶常系数齐次特征方程。

二阶常系数齐次特征方程可以写成如下形式:a*d^2y/dt^2 + b*dy/dt + c*y = 0其中,a、b、c为常数,y是未知函数,t是自变量,d^2y/dt^2表示y对t的二阶导数,dy/dt表示y对t的一阶导数。

接下来,我们将讨论如何求解二阶常系数齐次特征方程。

为了解这个方程,我们需要找到它的特征根。

特征根可以通过求解方程的特征方程得到,特征方程可以通过将方程中的y替换为e^(rt)来得到,其中r是特征根。

特征方程可以写成如下形式:a*r^2 + b*r + c = 0通过求解这个二次方程,我们可以得到两个特征根r1和r2。

特征根的值将决定方程的解的形式。

如果特征根是实数,那么方程的解将包含指数函数和常数项。

如果特征根是复数,那么方程的解将包含正弦函数、余弦函数和常数项。

接下来,我们来看一个例子来说明如何求解二阶常系数齐次特征方程。

假设我们有一个二阶常系数齐次特征方程为:2*d^2y/dt^2 - 5*dy/dt + 2*y = 0我们可以通过求解特征方程来得到特征根。

将方程中的y替换为e^(rt),我们可以得到特征方程为:2*r^2 - 5*r + 2 = 0通过求解这个二次方程,我们可以得到两个特征根r1 = 1/2和r2 = 2。

因此,方程的解可以写成如下形式:y = C1*e^(1/2*t) + C2*e^(2*t)其中C1和C2为常数。

让我们来看一下二阶常系数齐次特征方程的应用。

二阶常系数齐次特征方程广泛应用于物理学、工程学和经济学等领域。

例如,在振动系统中,二阶常系数齐次特征方程可以描述系统的自由振动。

在电路中,二阶常系数齐次特征方程可以描述电路元件的响应。

高等数学11-5.1二阶常系数齐次线性微分方程(18)

高等数学11-5.1二阶常系数齐次线性微分方程(18)

三、小结
高等数学
二阶常系数齐次微分方程求通解的一般步骤: (1)写出相应的特征方程; (2)求出特征根; (3)根据特征根的不同情况,得到相应的通解.
(见下表)
y py qy 0
高等数学
r 2 pr q 0
特征根的情况
实根r1 r2 实根r1 r2
复根r1,2 i
通解的表达式
因此 u( x) 0
2r1 p 0
可取满足上式的简单函数 u( x) x
高等数学
由此得到方程 (1)的另一个与 y1 线性无关的解
y2
xe
r
1
x
于是,方程(1)的通解为 :y C1er1x C2 xer1 x (C1 C2 x)er1 x
3 当 p2 4q 0时,
特征方程有一对共轭复根 :
便是( 1 )的通解, 其中C1 , C 2是任意常数。
如何找出齐次方程的两个线性无关的解呢?
高等数学
下面介绍求解的欧拉指数法 ---特征方程法
由于当r为常数时,指数函数y erx及其各阶导数,
都只相差一个常数因子r, 根据指数函数的这个特点, 我们用y erx来尝试, 看能否取到适当的常数 r, 使y erx 满足方程(1)。
第五节 二阶常系数线性 微分方程
一、二阶常系数齐次线性方程
二、二阶常系数非齐次线性方程
高等数学
一、二阶常系数齐次线性方程解法
设二阶线性常系数齐次方程为
y py qy 0 (1) 由上一节的讨论可以知道,求出齐次方程的通解的 关键是找出方程的两个线性无关的特解 y1 , y2
这样
y C1 y1 C2 y2
y1线性无关的解
y2 ,
为此,

二阶微分方程解

二阶微分方程解

二阶微分方程解二阶微分方程分为齐次和非齐次两种类型。

在这里,我们主要讨论二阶常系数齐次线性微分方程的解法。

二阶常系数齐次线性微分方程的一般形式为:ayy'' + by' + cy = 0其中,a、b、c为常数。

求解过程如下:1. 特征方程:首先求出微分方程的特征方程。

特征方程为:r^2 - pr - q = 0其中,p、q为常数。

2. 求解特征方程:求出特征方程的两个根r1和r2。

可以使用公式:r1,2 = (-p ±√(p^2 - 4q)) / 23. 根据根与系数的关系,得出二阶微分方程的通解:通解= yC1* e^(r1x) + yC2 * e^(r2x)其中,yC1和yC2为待定系数,可通过初始条件求解。

4. 求解特解:若需要求解特解,可以先设特解的形式为y = yE(x),然后将其代入原方程,求解待定系数。

举例:求解二阶常系数齐次线性微分方程:yy'' - 2y' + 3y = 01. 特征方程:r^2 - 2r + 3 = 02. 求解特征方程:r1= 1,r2 = 33. 通解:通解= yC1* e^x + yC2* e^-x4. 求解特解:设特解为y = yE(x) = e^(x^2)将其代入原方程,求解得到yE(x)为原方程的特解。

需要注意的是,二阶微分方程的解法不仅限于齐次方程,还包括非齐次方程。

非齐次方程的解法通常需要先求解齐次方程的通解,然后通过待定系数法求解特解。

此外,还有其他类型的二阶微分方程,如艾里方程等,其解法更为复杂。

10.6二阶常系数齐次线性微分方程

10.6二阶常系数齐次线性微分方程
y" + py+qy = f (X)
微积分
二阶常系数齐次微分方程
―、特征方程法
二阶常系数齐次线性方程解法
特征方程法
y" + py' + qy = 0
设y = /x,将其代入上方程,
(r2 + pr + q )erx = 0

故有 r °+ pr + q = 0
主 ・.・e’x 特征0方, 程
特征根 % =~P2 -4q, 2
微积分
例2求微分方程y" -2y -8y=0
解特征方程为
r2 一 2r 一 8 = (r 一 4)(r + 2) = 0
解得 “=4g=_2
故所求通解为
一 y = c1 e4 x + c 2 e
2x
经济数学
微积分
例 , 3求方程y" + 2y + 5y = 0的通
解. 解 特征方程为r2 + 2r + 5 = 0 ,
3)有一对共轭复根(A< 0)
伊 特征根为 r = a + ip, r2 = a- ,
( 伊 ) y1 = e a+ )% y2 = e(a-ip x,
1
重新组合yi = 2顷1 + y 2) =e" * p,
_i
y2 =
(yi - y2) =e"sin p,
2i
(注:利用欧拉公式eliC = cosx + isinx.)
二阶常系数齐次线性微分 方
第6节二阶常系数齐次线性微分方程 第十章微分方程与差分方程
主讲 韩华

二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程
第五节
二阶常系数齐次线性 微分方程
一、定义 二、线性微分方程的解的结构 三、二阶常系数齐次线性方程的解法 四、n阶常系数齐次线性方程解法 阶常系数齐次线性方程解法 五、小结
一、定义
y′′ + py′ + qy = 0
二阶常系数齐次线性方程
y′′ + py′ + qy = f (x) 二阶常系数非齐次线性方程
1
′ ′ 代入原方程并化简, 将 y2 ,y2 ,y2′ 代入原方程并化简,
u′′ + ( 2r1 + p )u′ + ( r + pr1 + q )u = 0,
2 1
知 u′′ = 0,
得齐次方程的通解为
则 y2 = xe r x , 取 u( x) = x, rx rx 1 y = C1e + C2 xe 1
y′′ + py′ + qy = 0
特征根的情况
r 2 + pr + q = 0
通解的表达式
≠ r2 实根 r1 = r2 复根 r = α ± iβ 1, 2
实根 r
1
y = C1e + C 2 e y = (C1 + C 2 x )e r x y = eαx (C1 cos βx + C 2 sin βx )
1
=(C1 + C2 x)er1x;
有两个不相等的实根 (∆ > 0)
r1 = − p+ p 2 − 4q , 2 r2 = − p− p 2 − 4q , 2
两个线性无关的特解
y1 = e ,
r1 x
y2 = e ,
r2 x

二阶常系数线性微分方程的解法

二阶常系数线性微分方程的解法
1
二阶常系数齐次线性方程解的性质 回顾
一阶齐次线性方程 y P( x) y 0 (1)
1、方程(1)的任意两个解的和仍是(1)的解; 2、方程(1)的任意一个解的常数倍仍是(1)的解;
2
二阶常系数齐次线性方程解的性质 y ay by 0 (2)
1、方程(2)的任意两个解的和仍是(2)的解; 2、方程(2)的任意一个解的常数倍仍是(2)的解;
Q( x) Qm ( x) , 即 y Qm ( x) erx 情形2 若 r 是特征方程的单根, 即 r2 ar b 0 ,
而 2r a 0 , 则令 Q( x) xQm ( x) , 即
y xQm ( x)erx
14
Q (2r a)Q (r 2 ar b)Q Pm ( x) (*) 情形3 若 r 是特征方程的二重根, 即 r2 ar b 0 ,
2
2
此时原方程的通解为
y
(C1
C 2 x)e2x
1 2
x 2e2x

Q( x) Ax2 , Q Pm ( x) , 2 A 1
21
y 4 yAe x ,
代入原方程,得
A
(
1 2)2
,
即特解为
y
(
1 2)2
e
x
,
此时原方程的通解为
于是 y x( 1 x 1)e2x ,
2
2
原方程通解为
y
C1e x
C 2e2 x
x(1 2
x
1) e2 x
.
18
例6 求微分方程 y 6 y 9 y x e3x 的通解.
解 特征方程 2 6 9 0 , 特征根 1,2 3 ,
对应齐次方程通解 Y (C1 C2 x)e3x . 因为 r 3 是二重特征根,

10.5二阶常系数线性微分方程

10.5二阶常系数线性微分方程

因此原方程的通解为
目录
上页
下页
返回
结束
y 12 y 36 y 0,
解: 特征方程 r 2 12r 36 0, 特征根: r1 r2 6 因此原方程的通解为
目录
上页
下页
返回
结束
y py qy 0
有一对共轭复根
e cos x i sin x
e B[( λ pλ q) x 2( p 2 λ) x 2] A e
λx 2 2
λx
A B 2 A 2 λx * y x e 2
目录 上页 下页 返回 结束yຫໍສະໝຸດ py qy Aex
A x e 2 p q , 不是特征方程的根 A * x y xe 是特征方程的单根 , 2 p A 2 x xe 是特征方程的重根 2
ln y C1e x C 2 e x .
目录
上页
下页
返回
结束
3. 求作一个二阶常系数齐次线性微分方程,使 1 , e x , 2e x , e x 3 都是它的解 .
(提示:
1, e x 为两个 线性无关的解)
y y 0
目录
上页
下页
返回
结束
二、二阶常系数非齐次线性方程解法
ix
( 0)
特征根为
r1 i , r2 i , ( i ) x ( i ) x y1 e , y2 e ,
y1 e
( α iβ ) x ( α iβ ) x
e e
αx αx
iβx
e (cos βx i sin βx)
αx

二阶微分方程解法

二阶微分方程解法

二阶微分方程解法
1.二阶常系数齐次线性微分方程解法
一般形式:y”+py’+qy=0,特征方程r2+pr+q=0。

特征方程
r2+pr+q=0的两根为r1,r2微分方程y”+py’+qy=0的通解。

两个不相等的实根r1,r2,y=C1er1x+C2er2x。

两个相等的实根r1=r2,y=(C1+C2x)er1x。

一对共轭复根r1=α+iβ,r2=α-iβ,
y=eαx(C1cosβx+C2sinβx)。

2.二阶常系数非齐次线性微分方程解法
一般形式:y”+py’+qy=f(x)。

先求y”+py’+qy=0的通解
y0(x),再求y”+py’+qy=f(x)的一个特解y*(x)。


y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解。


y”+py’+qy=f(x)特解的方法:
①f(x)=Pm(x)eλx型。

令y*=xkQm(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Qm(x)的m+1个系数。

②f(x)=eλx[Pl(x)cosωx+Pn(x)sinωx]型。

令y*=xkeλx [Qm(x)cosωx+Rm(x)sinωx][m=max﹛l,n﹜,k按λ+iω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Qm(x)和Rm(x)的m+1个系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C2 [ y2 P(x) y2 Q(x) y2 ] 0 证毕
8
说明:
y C1y1(x) C2 y2 (x) 不一定是所给二阶方程的通解.
例如,
是某二阶齐次方程的解, 则
也是齐次方程的解
但是
并不是通解
为解决通解的判别问题, 下面引入函数的线性相关与 线性无关概念.
9
定义: 设 y1(x), y2 (x),, yn (x) 是定义在区间 I 上的
5
例 2 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程) 故所求通解为
6
§5.3.2 二阶线性微分方程
如果一个二阶微分方程中出现的未知函数及未 知函数的一阶、二阶导数都是一次的,这个方程称 为二阶线性微分方程. 它的一般形式为
线性相关
存在不全为 0 的
使
线性无关 线性无关
y1(x) k2 y2 (x) k1
( 无妨设
k1 0 )
y1 ( x) y2 ( x)
常数
(证明略)
思考:
中有一个恒为 0, 则
必线性 相关
11
定理 2.
是二阶线性齐次方程的两个线
性无关特解, 则 y C1y1(x) C2 y2 (x)
y p(x) y q(x) y f (x), f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
现在我们讨论二阶线性微分方程具有的一些性 质. 事实上,这些性质对 n 阶微分方程也成立.
7
定理1. 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
数) 是该方程的通解.
例如, 方程
有特解

y2 y1

tan
x
常数, 故方程的通解为
12
定理 3. 设 y * (x) 是二阶非齐次方程

的一个特解, Y (x) 是相应齐次方程的通解, 则
y Y (x) y *(x)

是非齐次方程的通解 .
证: 将 y Y (x) y *(x) 代入方程①左端, 得
(Y y *) P(x) (Y y *) Q(x) (Y y *)
f (x) 0 f (x)
(Y P(x)Y Q(x)Y )
13
故 y Y (x) y * (x) 是非齐次方程的解, 又Y 中含有
两个独立任意常数, 因而 ② 也是通解 .
第三节 二阶微分方程
§5.3.1 特殊二阶微分方程 §5.3.2 二阶线性微分方程 §5.3.3 二阶常系数线性微分方程
1
§5.3.1 特殊二阶微分方程
1. y '' f (x) 型
积分2次就可以得到通解.通解中包含两个任意常数, 可由初始条件确定这两个任意常数.
2. y '' f (x, y ')型
n 个函数, 若存在不全为 0 的常数
使得
则称这 n个函数在 I 上线性相关, 否则称为线性无关.
例如,
在( , )上都有

故它们在任何区间 I 上都线性相关;
又如,
若在某区间 I 上
则根据二次多项式至多只有两个零点 , 可见
必需全为 0 ,
在任何区间 I 上都 线性无关.
10
两个函数在区间 I 上线性相关与线性无关的充要条件:
利用 y x 0 1 , 得 C2 1, 因此所求特解为 y x3 3x 1
4
3. y f ( y, y)型
令 y p ( y), 则 y d p d p dy dx dy dx
故方程化为
设其通解为 p ( y,C1), 即得
分离变量后积分, 得原方程的通解
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证: 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]
Q(x)[C1y1 C2 y2 ] C1[ y1 P(x) y1 Q(x) y1]
这种类型方程右端不显含未知函数 y,可先把 y '
看作未知函数.
2
设 y p (x) ,
原方程化为一阶方程
设其通解为 p (x,C1)
则得
y (x,C1)
再一次积分, 得原方程的通解
y (x,C1) dx C2
例 1. 求方程 y '' y ' ex的通解.
满足初值条件
y x0 3, y ' x0 2的特解.
16
§ 5.3.3 二阶常系数线性微分方程
在生产实践可科学实验中,有时需要研究力学 系统或电路系统的问题. 在一定条件下,这类问题的 解决归结于二阶微分方程的研究. 在这类微分方程中 ,经常遇到的是线性微分方程. 如力学系统的机械振 动和电路系统中的电磁振荡等问题,都是最常见的问 题.
3
补例. 求解 (1 x2 )y 2xy y x0 1, y x0 3

代入方程得
(1 x2 ) p 2x p 分离变量
积分得 ln p ln (1 x2 ) ln C1 ,
利用 y x 0 3 , 得 C1 3,于是有 y 3(1 x2 ) 两端再积分得 y x3 3 x C2
15
定理 5.
分别是方程
y P(x) y Q(x) y fk (x) (k 1, 2,, n )
的特解,
是方程
n
y P(x) y Q(x) y fk (x)
k 1
的特解. (非齐次方程解的叠加原理)
例1
求方程
y x y 1 y 0,(x 1) x 1 x 1
证毕
例如, 方程 对应齐次方程
有特解 有通解
Y C1 cos x C2 sin x
因此该方程的通解为
14
定理 4. 的解, 则
如果
是方程
y P(x) y Q(x) y f1(x) if2(x)
与 y2 (x) 分别是方程
的解.
y P(x) y Q(x) y f1(x) y P(x) y Q(x)y f2(x)
相关文档
最新文档