烟气脱硝装置( SCR)技术

合集下载

选择性催化还原(SCR)法烟气脱硝技术

选择性催化还原(SCR)法烟气脱硝技术

选择性催化还原(SCR)法烟气脱硝技术摘要:选择性催化还原(SCR)烟气脱硝技术以其高效的特点在国外得到了普遍的应用。

本文概述了SCR法的基本原理、催化剂的分类及成型布置方式、SCR 系统在电站锅炉系统中的布置方式、系统的构成和主要装置设备以及工程应用中常见的问题和解决办法。

分别以飞灰、飞灰与Al2O3混合、堇青石蜂窝陶瓷的Al2O3涂层作为载体,担载CuO、Fe2O3等金属氧化物作为活性成分进行活性测试,在实验室理想气体条件下具有较高的效率。

关键词:选择性催化还原,催化剂,SCR系统,飞灰1. 引言NO和NO2是人类活动中排放到大气环境的大量常见的污染物,通称NOx。

酸雨主要由大气污染物如硫氧化物、氮氧化物及挥发性有机化合物所导致。

因为其对土壤和水生态系统所带来的变化是不可逆的,它的影响极其严重。

NOx对大气环境的污染除了其本身的危害之外,还由于它们参与光化学烟雾的生成而受到人们的特别关注。

固定源氮氧化物排放控制技术主要有两类:燃烧控制和燃烧后控制。

燃烧控制的手段主要包括低过量空气燃烧、烟气再循环、燃料再燃烧、分级燃烧和炉膛喷射等;燃烧后脱硝的措施包括湿法和干法[1]。

而在干法中,选择性催化还原(SCR)法烟气脱硝技术具有高效率的特点,目前最高的脱硝效率能达到95%以上,因此在世界范围内得到了十分广泛的应用。

SCR烟气脱硝系统最早由七十年代晚期在日本的工业锅炉机组和电站机组中得到应用。

到目前为止已经有170多套的SCR装置在日本的电站机组上运行,其总装机容量接近100,000MW。

在欧洲,SCR技术于1985年引入,并得到了广泛的发展。

电站机组的总装机容量超过60,000MW[2]。

在美国,最近五到十年以来,SCR系统得到十分广泛的应用。

为适应更高的排放标准,SCR已经被作为最好的可以利用的技术。

此外在丹麦、意大利、俄罗斯、澳大利亚、韩国、台湾等国家和地区都建立了一些SCR的脱硝装置。

我国福建某电厂也曾引进该装置和技术。

烟气脱硝装置(_SCR)技术

烟气脱硝装置(_SCR)技术

烟气脱硝装置( SCR)技术一、SCR装置运行原理如下:氨气作为脱硝剂被喷入高温烟气脱硝装置中,在催化剂的作用下将烟气中NOx 分解成为N2和H2O,其反应公式如下:4NO + 4NH3 +O2 →4N2 + 6H2ONO +NO2 + 2NH3 →2N2 + 3H2O一般通过使用适当的催化剂,上述反应可以在200 ℃~450 ℃的温度围有效进行, 在NH3 /NO = 1的情况下,可以达到80~90%的脱硝效率。

烟气中的NOx 浓度通常是低的,但是烟气的体积相对很大,因此用在SCR装置的催化剂一定是高性能。

因此用在这种条件下的催化剂一定满足燃煤锅炉高可靠性运行的要求。

二、烟气脱硝技术特点SCR脱硝技术以其脱除效率高,适应当前环保要求而得到电力行业高度重视和广泛的应用。

在环保要求严格的发达国家例如德国,日本,美国,加拿大,荷兰,奥地利,瑞典,丹麦等国SCR脱硝技术已经是应用最多、最成熟的技术之一。

根据发达国家的经验, SCR脱硝技术必然会成为我国火力电站燃煤锅炉主要的脱硝技术并得到越来越广泛的应用。

图1为SCR烟气脱硝系统典型工艺流程简图。

三、SCR脱硝系统一般组成图1为SCR烟气脱硝系统典型工艺流程简图, SCR系统一般由氨的储存系统、氨与空气混合系统、氨气喷入系统、反应器系统、省煤器旁路、SCR旁路、检测控制系统等组成。

液氨从液氨槽车由卸料压缩机送人液氨储槽,再经过蒸发槽蒸发为氨气后通过氨缓冲槽和输送管道进人锅炉区,通过与空气均匀混合后由分布导阀进入SCR反应器部反应, SCR反应器设置于空气预热器前,氨气在SCR 反应器的上方,通过一种特殊的喷雾装置和烟气均匀分布混合,混合后烟气通过反应器催化剂层进行还原反应。

SCR系统设计技术参数主要有反应器入口NOx 浓度、反应温度、反应器空间速度或还原剂的停留时间、NH3 /NOx 摩尔比、NH3 的逃逸量、SCR系统的脱硝效率等。

1、氨储存、混合系统每个SCR反应器的氨储存系统由一个氨储存罐,一个氨气/空气混合器,两台用于氨稀释的空气压缩机(一台备用)和阀门,氨蒸发器等组成。

scr脱硝设计手册

scr脱硝设计手册

scr脱硝设计手册SCR(Selective Catalytic Reduction)脱硝是一种常用的脱硝技术,通过选择性催化剂将烟气中的氮氧化物(NOx)转化为氮气和水,从而达到减少大气污染物排放的目的。

下面是一本关于SCR脱硝设计的手册,详细介绍了SCR脱硝的原理、系统组成、设计要点等内容。

第一章:引言本章介绍了SCR脱硝技术的背景和意义,阐述了SCR脱硝在大气污染治理中的重要性和应用前景。

第二章:SCR脱硝原理本章详细介绍了SCR脱硝的原理。

首先解释了SCR脱硝反应机理,包括氨气选择性催化还原(NH3-SCR)和尿素选择性催化还原(UREA-SCR)两种常用方式。

然后介绍了SCR反应过程中催化剂的作用,并解释了SCR脱硝的适用范围和限制条件。

第三章:SCR脱硝系统组成本章详细介绍了SCR脱硝系统的组成。

首先介绍了SCR脱硝系统的基本结构,包括催化剂层、氨水喷射系统、反应器和尾气处理装置等。

然后介绍了SCR脱硝系统的运行原理和关键设备,包括催化剂选择、氨水喷射器设计、反应器尺寸和尾气处理装置的设计等。

第四章:SCR脱硝设计要点本章详细介绍了SCR脱硝设计的要点。

首先介绍了SCR脱硝系统的设计指南,包括催化剂的选择、氨水喷射器的布置和反应器的尺寸等。

然后介绍了SCR脱硝系统的运行参数,包括反应器温度、催化剂活性、氨水喷射量和空气过量系数等。

最后介绍了SCR脱硝系统的运行优化和性能评估方法,包括催化剂的老化和再生、氨泄露的控制和脱硝效率的评估等。

第五章:SCR脱硝装置的应用与发展本章详细介绍了SCR脱硝装置在不同行业中的应用和发展。

首先介绍了SCR脱硝装置在燃煤电厂、钢铁厂和石化厂等工业领域的应用情况。

然后介绍了SCR脱硝装置的发展趋势,包括催化剂材料的改进、系统集成和智能化控制等方向。

第六章:案例分析本章通过实际案例分析,介绍了SCR脱硝装置的设计和运行。

通过对不同行业和企业的案例分析,总结了SCR脱硝设计的成功经验和教训,为读者提供了实际操作指南。

SCR烟气脱硝技术工艺流程

SCR烟气脱硝技术工艺流程

SCR烟气脱硝技术工艺流程SCR(Selective Catalytic Reduction)烟气脱硝技术是目前应用较广泛的一种烟气脱硝技术。

其工艺流程主要包括氨水制备、烟气净化系统、SCR反应器和脱硝催化剂等部分。

下面将对其工艺流程进行详细介绍。

首先是氨水制备,氨水是SCR脱硝过程中的还原剂,用于与烟气中的氮氧化物(NOx)发生反应。

一般采用尿素水溶液制备氨水,尿素加水后通过加热反应生成氨水。

具体制备过程中需要考虑尿素的加进量、反应温度、反应时间等因素。

接下来是烟气净化系统。

该系统主要包括除尘、脱硫等装置,通过这些装置可以使烟气净化,去除其中的颗粒物和二氧化硫等污染物。

这是为了保护SCR反应器和催化剂不受污染,提高SCR脱硝效率。

然后是SCR反应器。

SCR反应器是实现烟气脱硝的关键部分,其内装有脱硝催化剂。

烟气在经过预处理后,进入SCR反应器与氨水发生反应。

脱硝催化剂为SCR反应提供了催化作用,使氨水与烟气中的NOx发生还原反应,生成氮气和水。

脱硝催化剂主要采用铜氧化物和钛等金属的复合物。

此外,SCR反应器还需考虑烟气流速、催化剂的分布方式等因素,以确保脱硝反应的高效进行。

最后是脱硝催化剂的再生与更新。

随着SCR反应的进行,脱硝催化剂表面会逐渐积累一些不良的物质,这些物质会影响催化剂的活性,降低脱硝效率。

因此,周期性地对脱硝催化剂进行再生与更新是必要的。

一般通过高温气流进行催化剂的再生,将之前的积累物质烧蚀掉,使催化剂恢复活性。

总结以上,SCR烟气脱硝技术的工艺流程包括氨水制备、烟气净化系统、SCR反应器和脱硝催化剂等部分。

通过这些步骤可以高效地将烟气中的氮氧化物进行还原脱除,达到减少大气污染物排放的目的。

使用SCR技术进行烟气脱硝具有脱硝效率高、操作维护方便等优点,是当前工业烟气脱硝的一种主要技术手段。

烟气脱硝装置(SCR法)安装施工工法

烟气脱硝装置(SCR法)安装施工工法

烟气脱硝装置(SCR法)安装施工工法烟气脱硝装置(SCR法)安装施工工法一、前言烟气脱硝装置是用于降低燃煤电厂、工业锅炉等燃烧设备排放的氮氧化物(NOx)浓度的重要设备。

SCR法(Selective Catalytic Reduction,选择性催化还原)是其中常用的一种工艺,本文将详细介绍SCR法烟气脱硝装置的安装施工工法。

二、工法特点1. 高效:SCR法能够在较低温度下有效降低烟气中的NOx浓度,具有高效脱硝的特点。

2. 选择性:SCR 法通过催化剂选择性地将NOx还原为氮气和水,不产生二次污染物。

3. 稳定性好:SCR法采用先进的催化剂和床层结构,具有较好的稳定性和抗酸腐蚀性。

三、适应范围SCR法适用于各种规模的燃煤电厂、工业锅炉等燃烧设备,能够适应不同的烟气流量和NOx浓度。

四、工艺原理SCR法的工艺原理是通过在烟气中注入选择性催化剂,使NOx与氨反应生成氮气和水。

具体分为催化剂制备、氨水喷射装置、反应装置、废气处理装置等环节。

施工工法与实际工程之间的联系体现在选择催化剂、设计喷射装置、调整反应装置等方面。

五、施工工艺1. 催化剂制备:按照设计要求,制备优质的催化剂,包括载体材料的制备、活性成分的渗透浸渍等步骤。

2. 氨水喷射装置:根据烟气流量和NOx浓度,设计和安装相应的氨水喷射设备。

3. 反应装置:根据工艺要求,设计和安装具有良好催化效果的反应装置,包括催化剂层的排列、通道的设置等。

4. 废气处理装置:根据环保要求,设计和安装合适的废气处理装置,包括除尘、脱硫等。

六、劳动组织在施工过程中,需要组织具备相关经验和技能的劳动力进行催化剂制备、设备安装和调试等工作。

七、机具设备施工中所需的机具设备包括催化剂制备设备、吊装设备、喷射设备、焊接设备等。

八、质量控制在施工过程中,要严格控制质量,包括催化剂质量检测、设备安装质量监控、反应装置的气密性检查等,以确保施工质量达到设计要求。

九、安全措施在施工中,要注意安全事项,包括安全培训、使用个人防护装备、设备安全操作等,特别关注施工工法的安全要求,预防事故的发生。

烟气脱硝(SCR)技术和相关计算

烟气脱硝(SCR)技术和相关计算

6.氨消耗量的粗略计算
假设锅炉排放NOx浓度为400mg/m3,将锅炉NOx 排放浓度视为NO浓度和NO2浓度之和计算的氨 消耗量。
4NO + 4NH3 + O2→ 4N2+ 6H2O (1) 2NO2 + 4NH3 + O2→ 3N2 + 6H2O (2)
C NO+C NO2 = 400
(1)
4.2 SCR技术原理
作选为择还性原催剂化,还在原金法属(催SC化R技剂术作)用是下以,氨将(NONxH的3) 还原成无害的N2和H2O。 NH3有选择的与烟气中 NOx反应,而自身不被烟气中的残余的O2氧化, 因此称这种方法为“选择性”。 有氧条件下反应式如下:
4NO + 4NH3 + O2→ 4N2+ 6H2O 2NO2 + 4NH3 + O2→ 3N2 + 6H2O
4. 烟气脱硝SCR工艺
目前世界上使用最广泛的方法是选择性催化还原法(SCR) 和选择性 非催化还原(SNCR) 。 • SCR技术:选择性催化还原法(SCR为Selected Catalytic Reduction英文缩写) • SNCR技术:选择性非催化还原法(SNCR英文缩写为Selected Non-Catalytic Reduction英文缩写) • SNCR/SCR混合法技术:选择性非催化还原法和选择性催化还原 法的混合技术
烟气脱硝(SCR)技术及相关计算
内容目录
1. 火电厂烟气脱硝基本概念 2. 氮氧化物生成机理 3. 减少氮氧化物排放的方法 4. 烟气脱硝SCR工艺 5. 运行注意事项 6. 氨消耗量的粗略计算
1. 火电厂烟气脱硝基本概念
烟气脱硝是NOx生成后的控制措施,即对燃烧后产生 的含NOx的烟气进行脱氮处理的技术方法。

scr脱硝技术指标

scr脱硝技术指标

scr脱硝技术指标
SCR脱硝技术的指标可以分为以下几个方面:
1. 脱硝效率:脱硝效率是衡量SCR脱硝技术性能的重要指标。

它表示SCR系统能够将烟气中的NOx转化为N2的能力。


常要求脱硝效率达到90%以上。

2. 氨逃逸率:SCR脱硝过程中使用氨作为还原剂,有一部分
氨可能会逃逸到大气中,对环境造成污染。

氨逃逸率是指氨在脱硝过程中逃逸到大气中的百分比,通常要求氨逃逸率低于5%。

3. SO2转化率:SCR脱硝过程中,还原剂氨和SO2也会发生
反应,生成硫酸盐。

SO2转化率是指脱硝过程中SO2转化为
硫酸盐的比例。

要求SO2转化率高,以避免二次污染。

4. 脱硝剂消耗量:SCR脱硝过程中使用的还原剂氨消耗量是
衡量经济性的指标。

要求脱硝剂消耗量低,以降低运行成本。

5. 脱硝系统压降:SCR脱硝系统需要安装催化剂,催化剂会
对烟气流动产生一定的阻力,形成压降。

脱硝系统压降是指SCR系统内部流通烟气的压力降低值。

要求系统压降低,以
减少能耗。

以上指标的要求可以根据具体的SCR脱硝应用和相关标准进
行调整。

脱硝技术的介绍(SCR)

脱硝技术的介绍(SCR)
32
Typical SCR System
四 .催化剂
脱硝的主要反应 4NO + 4NH3 + O2 → 4N2 + 6H2O
2NO2 + 4NH3 + O2 → 3N2 + 6H2O 6NO2 + 8NH3 → 7N2 + 12H2O
33
Typical SCR System
催化剂型式
波纹板式
蜂窝式
烟气/氨的混合系统
主要设备:稀释风机
静态混合器、
氨喷射格栅〔AIG
空气/氨混合器
21
Typical SCR System
NH3 喷射栅格A IG
静态混合器
Photo courtesy of Siemens’ Flow Model Tests brochure, 1998.
氨的喷射栅格和静态混合器
4
General
环境中NOX 来源
5
General
火电厂污染物排放标准<GB132232003>
20XX以后的新项目〔第三时段 必须预留烟气脱除氮氧化物装置空间
锅炉NOx最高容许排放浓度〔燃煤:
煤质 NOx最高容许排放浓度 〔mg/NM3>
6
General
NOX 形成机理
A. 热力型 NOX 主要反应 N2+O→NO+N N+O2→NO+O N+OH→NO+H 相关因素 高温环境 燃料与空气的充分混合 无烟煤燃烧中,热力型NOx可到一半以上
44
五. SCR装置的影响
空预器
45
对空预器的影响
烟气中部分SO2转化成SO3 由于SO3的增加,由此酸腐蚀和酸沉积堵灰程度增加 NH3+SO3+H2O NH4HSO4/<NH4>2SO4 NH4HSO4 沉积温度150~200℃,粘度较大,加剧对空气
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烟气脱硝装置( SCR)技术一、SCR装置运行原理如下:氨气作为脱硝剂被喷入高温烟气脱硝装置中,在催化剂的作用下将烟气中NOx 分解成为N2和H2O,其反应公式如下:4NO + 4NH3 +O2 →4N2 + 6H2ONO +NO2 + 2NH3 →2N2 + 3H2O一般通过使用适当的催化剂,上述反应可以在200 ℃~450 ℃的温度范围内有效进行, 在NH3 /NO = 1的情况下,可以达到80~90%的脱硝效率。

烟气中的NOx 浓度通常是低的,但是烟气的体积相对很大,因此用在SCR装置的催化剂一定是高性能。

因此用在这种条件下的催化剂一定满足燃煤锅炉高可靠性运行的要求。

二、烟气脱硝技术特点SCR脱硝技术以其脱除效率高,适应当前环保要求而得到电力行业高度重视和广泛的应用。

在环保要求严格的发达国家例如德国,日本,美国,加拿大,荷兰,奥地利,瑞典,丹麦等国SCR脱硝技术已经是应用最多、最成熟的技术之一。

根据发达国家的经验, SCR脱硝技术必然会成为我国火力电站燃煤锅炉主要的脱硝技术并得到越来越广泛的应用。

图1为SCR烟气脱硝系统典型工艺流程简图。

三、SCR脱硝系统一般组成图1为SCR烟气脱硝系统典型工艺流程简图, SCR系统一般由氨的储存系统、氨与空气混合系统、氨气喷入系统、反应器系统、省煤器旁路、SCR旁路、检测控制系统等组成。

液氨从液氨槽车由卸料压缩机送人液氨储槽,再经过蒸发槽蒸发为氨气后通过氨缓冲槽和输送管道进人锅炉区,通过与空气均匀混合后由分布导阀进入SCR反应器内部反应, SCR反应器设置于空气预热器前,氨气在SCR 反应器的上方,通过一种特殊的喷雾装置和烟气均匀分布混合,混合后烟气通过反应器内催化剂层进行还原反应。

SCR系统设计技术参数主要有反应器入口NOx 浓度、反应温度、反应器内空间速度或还原剂的停留时间、NH3 /NOx 摩尔比、NH3 的逃逸量、SCR系统的脱硝效率等。

1、氨储存、混合系统每个SCR反应器的氨储存系统由一个氨储存罐,一个氨气/空气混合器,两台用于氨稀释的空气压缩机(一台备用)和阀门,氨蒸发器等组成。

氨储存罐可以容纳15天使用的无水氨,可充至85%的储罐体积,装有液面仪和温度显示仪。

液氨汽化采用电加热的方式,同时保证氨气/空气混合器内的压力为350 kPa。

NH3 和烟气混合的均匀性和分散性是维持低NH3 逃逸水平的关键。

为了保证烟气和氨气在烟道分散好、混合均匀,可以通过下面方式保证混合:在反应器前安装静态混合器;增加NH3 喷入的能量;增加喷点的数量和区域;改进喷射的分散性和方向;在NH3 喷入后的烟道中设置导流板;同时还应根据冷态流动模型试验结果和数学流动模型计算结果对喷氨系统的结构进行优化。

2、喷氨系统喷氨系统根据锅炉负荷、反应器入口NOx 浓度、反应器出口NOx 浓度测量的反馈信号,控制氨的喷入量。

3、反应器系统SCR反应器采用固定床形式,催化剂为模块放置。

反应器内的催化剂层数取决于所需的催化剂反应表面积。

典型的布置方式是布置二至三层催化剂层。

在最上一层催化剂层的上面,是一层无催化剂的整流层,其作用是保证烟气进入催化剂层时分布均匀。

通常,在第三层催化剂下面还有一层备用空间,以便在催化剂活性降低时加入第四层催化剂层。

在反应器催化剂层间设置吹灰装置,定时吹灰,吹扫时间30~120分钟,每周1~2次。

如有必要,还应进行反应器内部的定期清理。

反应器下设有灰斗,与电厂排灰系统相连,定时排灰。

4、省煤器和反应器旁路系统在省煤器前和反应器之间设置旁路,称之为省煤器旁路。

当锅炉负荷降低,烟气流量减少,进入反应器的烟气温度低于要求值时,旁路开通,向反应器导入高温烟气,提高反应器内的温度。

此外,在反应器入口和出口间装有一个大的旁路,称之为反应器旁路。

反应器旁路的作用是:锅炉负荷降低时使用。

例如开机和停机时使用,低负荷时使用和季节性使用。

以防止低温造成催化剂中毒及催化剂污染。

所有SCR 系统旁路的插板门均要保证零泄露。

5、催化剂催化剂是电厂SCR工艺的核心,它约占其投资的l/3。

为了使电站安全、经济运行,对SCR工艺使用的催化剂应达到下列要求:———低温度时在较宽温度范围具有较高的活性———高选择性( SO2 向SO3 转换率和其他方面作用低即副反应少) ———对二氧化硫( SO2 ) 、卤族酸(HCl, HF)和碱金属(Na2O、K2O)和重金属(如As)具有化学稳定性———克服强烈温度波动的稳定性———对于烟道压力损失小———寿命长、成本低理想的催化剂应具有以下优点: 1. 高活性; 2.抗中毒能力强; 3. 好的机械强度和耐磨损性; 4. 有合适的工作温度区间。

①SCR法催化剂基本概念催化剂种类形状:最初开发的催化剂是粒状的。

现在为了防止催化剂层被粉末堵塞,减少压力的损失,而采用蜂窝状或平板状催化剂。

这种催化剂可根据排气中粉末浓度选定格子的间距。

图2是蜂窝状催化剂的外观照片。

组成:一般,催化剂是由①基材(构成催化剂的骨架) 、②载体(使活性金属成分能够较好的分散合保持的材料)以及③活性金属(起催化作用的成分)构成。

但现在使用的蜂窝状催化剂不是用基材的,它是把载体材料本身作为基材制成蜂窝状。

表1为催化剂的结构及其功能。

②催化剂性能对催化剂性能影响较大的因素有反应温度、催化剂量、氨的注入量,如图3所示。

由于在250~450 ℃(最好是350~400 ℃) ,催化剂有最佳活性,通常脱硝反应设定在这个温度范围内。

当反应温度不在这个温度范围内时,催化剂的性能将降低,尤其是在高温区域使用时,由于过热促使催化剂的表面被烧结,使催化剂寿命降低。

但是,最近随着脱硝装置适用范围的扩大,同时也要求催化剂的使用温度范围扩大,如适用于反应温度200℃的垃圾焚化炉(袋滤器出口处设置的脱硝装置)的低温催化剂,或者是适用于反应温度超过550 ℃的单循环气轮机(在气轮机出口处设置的脱氮装置)的高温脱硝催化剂。

催化剂反应温度的依赖特性是由催化剂的各种活性成分(V2O5、WO3 等)的含有浓度以及比例所决定的。

通过适当地选择活性金属的组成,可以制造适合于各种用途且具有最佳特性的催化剂。

图4为活性金属种类和催化剂活性。

③催化剂量:是根据脱硝装置的设计能力和操作要求来决定的,增加催化剂量可以提高脱硝性能。

在实际中,催化剂的初期充填量是设计要求的最适量和使用期间的损失量之和。

一般用SV 值[ SV值=处理气体量(m3 (Vn ) /h ) /催化剂量(m3 ) ]来表示催化剂的充填量指标。

脱硝反应时,排放气体中的NOx 和注入的NH3 几乎是以1: 1的物质的量之比进行反应,因此在相同的催化剂充填量下,通过增加NH3 的注入量,也会使NH3的泄漏量增加,所以在决定氨浓度和催化剂量时必须考虑对脱硝装置后部机器的影响。

NH3 量的注入指标用注入的NH3 和处理气体中的NOx 的物质的量(容量)之比(NH3 /NOx )表示,一般根据所要求的脱硝装置性能来设定NH3 /NOx。

排放气体中含有的其他成分,如水(H2O) 、氧气(O2 )等,对脱硝性能仅有很小的影响,而SOX、NOx、N2 则没有影响。

但是,因NH3 的注入量是根据NH3 和NOx 的物质的量之比决定的,所以NOx 浓度对NH3 泄漏浓度有影响④催化剂性能随时间的变化在工业装置实际运行时,随使用时间的增加,催化剂性能的下降是不可避免的,其性能下降的程度随工业装置运行条件(燃料性质、处理气体温度等)而有所不同。

通常是以一定反应条件下的反应速度常数(它随着催化剂种类和反应温度而变化)来评价催化剂。

催化剂的性能随着使用时间的增加而下降,当其性质不能满足设计要求时,就需要更换催化剂。

催化剂从开始使用到换用时为止的时间被称为催化剂的寿命。

但是催化剂的寿命与机械零件的寿命不同,催化剂寿命的长短也有很大差异。

工业脱硝中,催化剂寿命随工业装置的种类而有所不同,一般燃煤锅炉为5~6 a,燃油锅炉为7~8 a,燃气锅炉为8~10 a。

对于燃煤机组,哈锅推荐脱硝装置选用蜂窝状催化剂,原因如下:1)在世界燃煤机组的脱硝装置上,蜂窝状催化剂应用最广泛。

2)同波纹板式、板式催化剂相比,蜂窝状催化剂具有如下优点,如表2所示。

6、SCR测量控制系统①反应温度控制在一定温度范围内,随反应温度提高,NOx 脱除率急剧增加,脱硝率达到最大值时,温度继续升高会使NH3 氧化而使脱硝率下降; 反应温度过低,烟气脱硝反应不充分,易产生NH3 的逃逸。

因此要对SCR 系统入口烟气温度进行监测并通过调节省煤器旁路开度控制SCR 系统入口烟气温度②氨量控制在NH3 /NOx 摩尔比小于1 时,随NH3 /NOx摩尔比增加,脱硝效率提高明显; NH3 投入量超过需要量, NH3 会造成二次污染, 一般控制NH3 /NOx 摩尔比在1. 0左右。

NH3 的流量控制阀调节控制NH3 的流量,控制系统根据反应器入口NOx的浓度、烟气流量、反应器出口所要求NOx 的排放浓度和氨的逃逸浓度计算出氨的供给流量。

为保证人身和设备安全,发生下列情况,氨气阀门自动关闭:低的烟气流量;高的氨气/空气比;催化剂入口烟气温度过高;催化剂入口烟气温度过低;没有来自锅炉的运行允许信号;启动急停开关。

③氨稀释空气流量控制氨稀释用空气流量在SCR 系统运行时被设定好,不再调整。

两台空气压缩机,一台备用。

当第1台空气压缩机输出气体压力低于设定值或发生故障时,第2台空气压缩机自动启动氨气蒸发器。

氨气蒸发器与储罐为一体化结构,加热器放置在无水氨的液体中,通过氨储罐内的压力控制加热器。

当储罐内的压力低于设定压力时,加热器通电加热液氨;加热器过热则断电保护。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档