完整word版,人教版高中数学选修2-1《椭圆及其标准方程》教案
人教课标版高中数学选修2-1《椭圆及其标准方程(第1课时)》教学设计

2.2.1 椭圆及其标准方程(第一课时)一、教学目标 (一)学习目标 1.掌握椭圆的定义;2.掌握椭圆标准方程的推导和标准方程. (二)学习重点椭圆的定义及椭圆标准方程. (三)学习难点椭圆标准方程的建立和推导. 二、教学设计 (一)预习任务设计 1.预习任务 写一写:(1)定义:平面内与两个定点12,F F 距离的和 等于常数 c ,大于12||F F 的点的轨迹叫做椭圆,这两个定点叫做椭圆的 焦点 ,两定点间距离叫做 椭圆的焦距 .(2)椭圆的标准方程: 焦点在x 轴上: 2221(0)y a b a b+=>> .焦点在y 轴上: 2221(0)x a b a b+=>> .2.预习自测判断分别满足下列条件的动点M 的轨迹是否为椭圆(1)到点()12,0F -和点()22,0F 的距离之和为6的点的轨迹; (2)到点()12,0F -和点2(2,0)F 的距离之和为4的点的轨迹; (3)到点()12,0F -和点2(2,0)F 的距离之和为3的点的轨迹.【解题过程】当12||||2MF MF a +=,且122||a F F >的常数时M 点的轨迹为椭圆,故(2)(3)不是.【思路点拨】注意把握椭圆的定义. 【答案】(1)是;(2)不是;(3)不是.(4)已知动圆P 过定点(3,0)A -,并且与定圆22:(3)64B x y -+=内切,则动圆的圆心P 的轨迹是( )A.线段B.直线C.圆D.椭圆 【解题过程】设动圆P 与定圆B 内切于M ,由条件知:||||||||||8PA PB PM PB BM +=+==,故P 的轨迹是以,A B 为焦点的椭圆.【思路点拨】利用椭圆的定义解题. 【答案】D (二)课堂设计 1.新知讲解探究一 创设情景,认识椭圆 ●活动① 归纳提炼概念画一画:①将一条绳子的两端固定在同一个定点上,用笔尖勾起绳子的中点使绳子绷紧,围绕定点旋转,笔尖形成的轨迹是什么?②将绳子的两端分别固定在两个定点上,笔尖勾直绳子,移动笔尖,得到的是轨迹是什么? 动画演示作图过程.提出问题:①作图过程中,哪些量没有变?哪些量变了? ②为什么要求作图过程中笔尖要绷紧?③笔尖所对应的动点M 到定点的距离有什么长度之间的关系? 总结:笔尖对应的动点M 到直线两个端点的长度之和固定不变.【设计意图】学生可通过动手实践的过程去体会“满足什么样的条件下的点的集合为椭圆”,从而对椭圆定义中的条件有直观深刻的认识.提出问题:根据刚才动手实践的过程,能否总结椭圆的定义?(同学自由发言,再由学生进一步补充完善)我们把平面内到两个定点1F ,2F 的距离之和等于常数(大于21F F )的点的集合叫作椭圆.●活动② 辨析概念问题1:定义中的常数等于21F F ,则动点的轨迹是什么?问题2:定义中的常数小于21F F ,则动点的轨迹是什么?椭圆相关概念:两个定点1F ,2F 叫作椭圆的焦点.....,两个焦点1F ,2F 间的距离叫作椭圆的焦距...... 【设计意图】使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,并逐渐养成严谨的科学作风. 探究二 推导椭圆的标准方程 ●活动① 利用定义求方程动手演算:让学生动手,求推导焦点在x 轴上的椭圆的标准方程①建系:观察椭圆的几何特征,如何建系能使方程更简洁?(利用椭圆的对称性特征)以直线21F F 为x 轴,以线段21F F 的垂直平分线为y 轴,建立平面直角坐标系.②设点:设焦距为()20c c >,则()()12,0,0F c F c -.设(),M x y 为椭圆上任意一点,点M 与点12F F 、的距离之和为()222a a c >.③列式:动点M 满足的几何约束条件: 122MF MF a += 2a =④化简:()()a y c x y c x 22222=+-+++1F 2F∴()()22222y c x a y c x +--=++∴两边同时平方、整理得:()222y c x acx a +-=-将上式两边平方、整理得:2222222222422y a c a cx a x a x c cx a a ++-=+-()()22222222c a a y a x c a-=+-122222=-+c a y a x 分析22c a -的几何含义,令222b c a =-得到焦点在x 轴上的椭圆的标准方程为()012222>>=+b a b y a x焦点在y 轴上的椭圆的标准方程是什么?(由学生动手列式,()()a c y x c y x 22222=-++++,引导学生观察焦点在x轴上与焦点在y 轴上式子的差异,从而用类比的方法得到焦点在y 轴上椭圆的标准方程)如果椭圆的焦点在y 轴上,其焦点坐标为()c F -,01,()c F ,02,用同样的方法可以推出它的标准方程()012222>>=+b a bx a y ●活动② 归纳梳理、理解提升 椭圆的标准方程及方程特点焦点在x 轴上 焦点在y 轴上标准方程: 12222=+b y a x (0>>b a ) 12222=+b x a y (0>>b a )学生思考:(1)椭圆的标准方程中三个参数b c a ,,的关系怎样?(2)如何从椭圆的标准方程判断椭圆焦点的位置?总结方程特征:(1).0,0222>>>>+=c a b a c b a , (2)哪个变量下的分母大,焦点就在哪个轴上.【设计意图】通过归纳总结让学生对两种方程进行对比分析,强化对椭圆方程的理解.有助于教学目标的实现,培养学生的总结归纳能力,而且使学生体会和学习类比的思想方法.●活动③ 互动交流、初步实践判定下列椭圆的标准方程在哪个轴上,并写出焦点的坐标(1)1162522=+y x (在x 轴上,焦点为()0,3-,()0,3)(2)116914422=+y x (在y 轴上,焦点为()5,0-,()5,0)(3)112222=++m y m x (在y 轴上,焦点为()1,0-,()1,0)●活动④ 巩固基础、检查反馈例1.已知a =c =,则椭圆的标准方程为( )A.2211312x y +=B.2211325x y +=或2212513x y += C.22113x y += D.22113x y +=或22113y x += 【知识点】椭圆的标准方程. 【解题过程】由222a b c =+知21b =. 【思路点拨】通过焦点的位置判断方程. 【答案】D同类训练 已知椭圆的焦点为(1,0)-和(1,0),点(2,0)P 在椭圆上,则椭圆的方程为( )A.22143x y += B.2214x y += C.22143y x += D.2214y x += 【知识点】椭圆的标准方程. 【解题过程】由222a b c =+知23b =. 【思路点拨】通过焦点的位置判断方程. 【答案】A例2 椭圆22125x y +=上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A.5B.6C.7D.8 【知识点】椭圆的定义.【解题过程】由210a =知P 到另一个焦点的距离为8. 【思路点拨】通过定义122PF PF a +=计算. 【答案】D同类训练 已知F 1、F 2是椭圆 192522=+y x 的两个焦点,过F 1的直线交椭圆于M 、N 两点,则三角形MF 2N 的周长为 . 【知识点】椭圆的定义.【解题过程】由221212101020MN MF NF MF MF NF NF ++=+++=+=.【思路点拨】通过定义122PF PF a +=计算. 【答案】20. 3.课堂总结 知识梳理(1)椭圆的定义:平面内到两个定点1F ,2F 的距离之和等于常数(大于21F F )的点的集合叫作椭圆.(2)椭圆的标准方程:焦点在x 轴上:12222=+by a x (0>>b a );焦点在y 轴上:12222=+bx a y (0>>b a ).重难点归纳(1)区分焦点:哪个变量下的分母大,焦点就在哪个轴上;(2)标准方程中,,a b c 的关系:.0,0222>>>>+=c a b a c b a , (三)课后作业 基础型 自主突破1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( )A.椭圆B.直线C.圆D.线段 【知识点】椭圆的几何性质.【解题过程】∵|MF 1|+|MF 2|=6,|F 1F 2|=6, ∴|MF 1|+|MF 2|=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2. 【思路点拨】几何性质判断图形. 【答案】D.2.椭圆x 2m +y 24=1的焦距是2,则m 的值是( ) A.5 B.3或8 C.3或5 D.20 【知识点】椭圆的标准方程.【解题过程】2c =2,c =1,故有m -4=1或4-m =1,∴m =5或m =3,故选C.【思路点拨】确定焦点位置再结合222a b c =+可得m 的值. 【答案】C3.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( )A.(±a -b ,0)B.(±b -a ,0)C.(0,±a -b )D.(0,±b -a ) 【知识点】椭圆的标准方程.【解题过程】ax 2+by 2+ab =0可化为x 2-b +y 2-a=1,∵a <b <0,∴-a >-b >0,∴焦点在y 轴上,c =-a +b =b -a , ∴焦点坐标为(0,±b -a ).【思路点拨】将方程整理为椭圆的标准形式. 【答案】D4.中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是( )A.x 281+y 245=1B.x 281+y 29=1C.x 281+y 272=1D.x 281+y 236=1 【知识点】椭圆的标准方程.【解题过程】由长轴长为18知a =9,∵两个焦点将长轴长三等分,∴2c =13(2a )=6,∴c =3,∴b 2=a 2-c 2=72,故选C. 【思路点拨】由几何性质即可. 【答案】C5.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________. 【知识点】椭圆的标准方程.【解题过程】由题意可得⎩⎨⎧ a +c =3,a -c =1.∴⎩⎨⎧a =2,c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y23=1.【思路点拨】由椭圆定义及几何关系可得,,a b c 的值. 【答案】x 24+y 23=16.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=________________.【知识点】椭圆的标准方程.【解题过程】由题意S △POF 2=34c 2=3,∴c =2,∴a 2=b 2+4. ∴点P 坐标为(1,3),把x =1,y =3代入椭圆方程x 2b 2+4+y 2b 2=1中得,1b 2+4+3b2=1,解得b 2=2 3. 【思路点拨】由椭圆几何性质即可. 【答案】2 3 能力型 师生共研1.已知方程x 2|m |-1+y 22-m =1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A.m <2B.1<m <2C.m <-1或1<m <2D.m <-1或1<m <32 【知识点】椭圆的标准方程.【解题过程】由题意得⎩⎨⎧|m |-1>0,2-m >0,2-m >|m |-1.即⎩⎪⎨⎪⎧m >1或m <-1,m <2,m <32.∴1<m <32或m <-1,故选D.【思路点拨】根据焦点的位置可确定椭圆方程形式为22221(0)y x a b a a +=>>.【答案】D2.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 【知识点】椭圆的标准方程.【解题过程】∵|AB |=8,△ABC 的周长为18,∴|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D. 【思路点拨】由椭圆定义即可. 【答案】D 探究型 多维突破1.求满足下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点M (3,2);(2)a c =135,且椭圆上一点到两焦点的距离的和为26. 【知识点】椭圆的标准方程.【解题过程】(1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,28a =+=, 所以a =4,所以b 2=a 2-c 2=16-4=12. 又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1. (2)由题意知,2a =26,即a =13,又135a c =,所以c =5, 所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1. 【思路点拨】由椭圆性质求解即可. 【答案】见解析2.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.【知识点】椭圆的标准方程及几何性质. 【解题过程】设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20,又c =100-64=6,∴在△F 1PF 2中, 由余弦定理得m 2+n 2-2mn cos π3=122,∴m 2+n 2-mn =144,∴(m +n )2-3mn =144, ∴mn =2563,∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2=12×2563×32=6433. 【思路点拨】由定义可知焦点三角形12PF F 的面积:2tan2S b θ=,其中12F PF θ∠=.【答案】见解析自助餐1.已知中心在原点的椭圆C 的右焦点为F (15,0),直线y =x 与椭圆的一个交点的横坐标为2,则椭圆方程为( )A.x 216+y 2=1B.x 2+y 216=1C.x 220+y 25=1D.x 25+y 220=1【知识点】椭圆的标准方程及几何性质.【解题过程】由椭圆过点(2,2),排除A 、B 、D ,选C.【思路点拨】由椭圆定义即可.【答案】C2.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95B.3C.977D.94【知识点】椭圆的标准方程.【解题过程】a 2=16,b 2=9⇒c 2=7⇒c =7.∵△PF 1F 2为直角三角形.且b =3>7=c .∴F 1或F 2为直角三角形的直角顶点,∴点P 的横坐标为±7,设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.【思路点拨】由椭圆定义即可.【答案】D3.已知椭圆的两个焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.射线D.直线【知识点】椭圆的几何性质.【解题过程】∵|PQ |=|PF 2|且|PF 1|+|PF 2|=2a ,∴|PQ |+|PF 1|=2a ,又∵F 1、P 、Q 三点共线,∴|PF 1|+|PQ |=|F 1Q |,∴|F 1Q |=2a .即Q 在以F 1为圆心,以2a 为半径的圆上.【思路点拨】根据椭圆定义判断.【答案】A4.在平面直角坐标系xOy 中,已知△ABC 的顶点A (0,-2)和C (0,2),顶点B 在椭圆y 212+x 28=1上,则sin A +sin C sin B 的值是( )A. 3B.2C.2 3D.4【知识点】椭圆的定义及几何性质.【解题过程】由椭圆定义得|BA |+|BC |=43,又∵sin A +sin C sin B =|BC |+|BA ||AC |=434=3,故选A.【思路点拨】根据椭圆定义判断..【答案】A5.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 是椭圆上的一点,若|F 1F 2|是|PF 1|和|PF 2|的等差中项,则该椭圆的方程是________.【知识点】椭圆的标准方程.【解题过程】由题设知1c =. 结合椭圆的定义得:12122||||2||4a PF PF F F =+==,故2,3a b ==,所以椭圆方程为:22143x y +=. 【思路点拨】利用椭圆的定义求,a c ,再利用222a b c =+求b .【答案】22143x y += 6.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.【知识点】椭圆的几何性质.【解题过程】设椭圆右焦点为F′,由椭圆的对称性知,|P1F|=|P7F′|,|P2F|=|P6F′|,|P3F|=|P5F′|,∴原式=(|P7F|+|P7F′|)+(|P6F|+|P6F′|)+(|P5F|+|P5F′|)+12(|P4F|+|P4F′|)=7a=35.【思路点拨】由椭圆定义,转换即可. 【答案】35。
人教版高中选修2-1《椭圆及其标准方程》教学设计

人教版高中选修2-1《椭圆及其标准方程》教学设计《人教版高中选修2-1《椭圆及其标准方程》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标知识与技能:(1)初步掌握椭圆的定义及其标准方程。
(2)能对两个根号的代数式化简。
过程与方法:(1)能动手从圆中做出椭圆和用绳子画出椭圆,能将它转化成数学语言。
(2)能在分组讨论及引导下化简两个根号的代数式。
(3)类比圆的学习过程学习椭圆。
情感与价值观:体会数形结合的思想,方程思想,类比的思想在本节课中的应用。
感悟椭圆及椭圆方程的对称美。
教学重点:掌握椭圆的定义及其标准方程,理解坐标法的基本思想。
教学难点:椭圆标准方程的推导与化简。
教学过程:(一)椭圆概念的形成画一画,椭圆初步印象师:前面我们学习了圆,现在我们在圆中进行一个作图游戏,如图,圆的圆心为,在圆内取异于一定点,在圆上取一点,连接,做出线段的垂直平分线交于,然后在圆上依次取,依次得。
最后用一条光滑的曲线连接,。
为了方便大家画图,我给每个小组设计了一个画板。
请各小组合作完成作图。
(PPT演示一个作图例子)师:大家得到了什么图形呢?学生:椭圆师:为了图形更加的准确,我们用计算机验证一下。
(PPT几何画板演示)师:的确是一个椭圆,生活中还有哪些物品是椭圆形的呢?学生:师:我也准备了几个,请大家看看。
(PPT演示图片)师:椭圆就是我们这节课要研究的对象。
(PPT演示标题)。
通过本节课的学习,将达到以下目标。
(PPT演示三维目标)师:我们对椭圆已经有了一个初步印象,请分析刚才做出椭圆的过程中,哪些内容是确定的,哪些内容是变化的呢?(PPT演示作图例子) 学生:师:在平面内确定两个定点,动点到两个定点的距离之和为定值。
所以我们可以取一条定长的细绳,把它的两端都固定在图板上,套上铅笔,拉紧绳子,移动笔尖,就可以画出椭圆。
请各小组试一试。
议一议,椭圆定义的条件师:大家注意到,板上有3根绳子,大家选的那一根?学生:师:如果用另外两根,能画出什么图形呢?学生:一根画出线段,另外一根画不出任何图形。
(完整word版)椭圆及其方程教学设计2人教课标版(优秀教案)

椭圆及其标准方程教学设计一、教学目标:.知识与技能目标:()掌握椭圆定义和标准方程.()能用椭圆的定义解决一些简单的问题..过程与方法目标:()通过椭圆定义的归纳和标准方程的推导,培养学生发现规律、认识规律并利用规律解决实际问题的能力.()在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等数学思想和方法.情感态度与价值观目标:()通过椭圆定义的归纳过程获得培养学生探索数学的兴趣.()通过标准方程的推导培养学生求简意识并能懂得欣赏数学的“简洁美”.()通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.二、教学重点、难点:.重点:椭圆定义的归纳及其标准方程的推导。
.难点:椭圆标准方程的推导。
三、教材与教法分析(一)、教材、学习者特征分析:本节课是圆锥曲线的第一课时。
它是在学生学习了直线和圆的方程的基础上,进一步学习用坐标法研究曲线。
椭圆的学习为后面研究双曲线、抛物线提供了基本模式和理论基础。
因此这节课有承前启后的作用,是本章和本节的重点内容;椭圆的标准方程推导过程中,化简两个根式的方程的方法特殊,难度较大,学生初次遇到。
(二)、文本教材与信息技术整合点分析:椭圆定义是通过运动的角度引出,多媒体的动画效果更能直观体现。
该内容的教学应该把抽象的文字说明转化为具体形象的演示。
(三)、教学方法和教学策略分析:探究式、启发式教学方法,引导学生主动参与、积极体验、自主探究,形成师生互动的教学氛围。
以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习。
充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。
让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。
四、教学环境和教学资源准备(包括教学课件设计):课件运行环境:;软件类别:,几何画板;教具:直尺、细绳、钉子、笔、小木黑板五、教学过程【新课引入】2010年10月1日,中国的航天史又被翻开了新的一页,我国自主研制的嫦娥二号探月卫星升上太空,在太空中探索宇宙的奥秘。
选修2-1:椭圆及其标准方程(一)教案案

一、教案背景1、面向学生:高中学科:高二数学2、课时:1课时3、学生课前准备:(1)预习课本,思考:椭圆的定义及标准方程及其推导方法.(2)思考:椭圆定义中应该注意那些.(3)思考:标准方程是如何推导的.二、教学课题:《椭圆及其标准方程》第一课时1、理解椭圆的定义,明确焦点、焦距的概念,掌握椭圆的标准方程的推导及椭圆的标准方程;2、进一步学习类比、数形结合的数学思想方法,理解坐标法及其应用.3、重点:椭圆的定义、椭圆的标准方程、坐标化的基本思想难点:椭圆标准方程的推导与化简,坐标法的应用关键:含有两个根式的等式化简三、教材分析1、本节教材整体来看是两大块内容:意识椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把用坐标法对椭圆的研究放在了重点位置上.学好椭圆对于学生学好圆锥曲线是非常重要的.2、这节课的重点是椭圆的定义、椭圆的标准方程、坐标化的基本思想;难点是椭圆标准方程的推导与化简,坐标法的应用;标准方程推导的关键是含有两个根式的等式化简.四、教学方法1、用模型结合多媒体课件演示椭圆,再给出椭圆的定义,最后加以强调,加强概念的形成过程教学.2、对椭圆的标准方程的推导,可采用观察、分析、归纳、抽象、概括、自主探究、合作交流的教学方法,调动学生参与课堂教学的主动性和积极性.3、本节课坚持推行“学案引导——自主学习——合作探究——精讲点拨——巩固练习”的课堂教学模式,按照“创设情境——学生活动——意义建构——数学理论——数学应用——回顾反思——巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人.五、教学过程课前预习,搜寻问题1、椭圆的定义及注意事项:2、椭圆的标准方程的推导:3、椭圆的标准方程有那几种形式:课内探究,答疑解惑一、创设情景、引入概念首先用多媒体演示“神州七号”飞船绕地球旋转运行的画面,并描绘出运行轨迹图.★问一:“神州七号”飞船绕地球旋转的轨迹是什么图形?二、尝试探究、形成概念学生实验:按课本上介绍的方法,学生用一块纸板,两个图钉,一根无弹性的细绳尝试画椭圆.实验探究:保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?椭圆的定义:找定义的关键处:①平面曲线;②任意一点到两个定点的距离的和等于常数;③常数大于| F1F2|.三、标准方程的推导归纳求曲线方程的一般步骤:建系→设点→列出方程→化简方程.建系一般应遵循简单、优化的原则.★问二:怎样建立坐标系,才能使求出的椭圆方程最为简单?推导过程:思考:观察右图,能从中找出表示,a c12222=+byax.(0a b>>)此即为椭圆的标准方程.它所表示的椭圆的焦点在x轴上,焦点是)0,()0,(21cFcF-,中心在坐标原点的椭圆方程.M2F1F★问三:如果椭圆的焦点F 1,F 2在y 轴上,线段F 1F 2的垂直平分线为x 轴,a ,b ,c 意义同上,椭圆的方程形式又如何?注意理解以下几点:① 在椭圆的两种标准方程中,都有0>>b a 的要求;② 在椭圆的两种标准方程中,由于22a b >,所以可以根据分母的大小来判定焦点在哪一个坐标轴上;③ 椭圆的三个参数,,a b c 之间的关系是222a b c =+,其中0,0,a b a c b c >>>>和 大小不确定.四、尝试应用1、下列方程哪些表示的是椭圆,如果是,判断它的焦点在哪个坐标轴上?2、 写出适合下列条件的椭圆的标准方程:两个焦点的坐标分别是()04,-、()04,,椭圆上一点到两焦点距离的和等于10;变式一:将上题焦点改为(0,-4)、(0,4), 结果如何?变式二:将上题改为两个焦点的距离为8,椭圆上一点P 到两焦点的距离和等于10,结果如何?五、典例分析:例:写出适合下列条件的椭圆的标准方程两个焦点的坐标分别是()20-,、()20,,并且经过点P ⎪⎭⎫⎝⎛-2523,. 11)4(2222=++m y m x 123)3(22-=--y x 0225259)2(22=--y x 11625)1(22=+y x六、课堂练习1.写出适合下列条件的椭圆的标准方程:(1)a =4,b =3,焦点在x 轴; (2)a =5,c =2,焦点在y 轴上.2.椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为 .课后反思,巩固练习1、课后反思与体验<1>、本节课我学到了哪些知识,是用什么方法学会的?<2>、我还有什么知识没有掌握,是什么原因导致的?<3>、我从老师和同学那儿学到了哪些好的学习方法?<4>、通过上述的回顾评价一下自己本节课的表现。
选修2-1《椭圆及其标准方程》(第一课时)教案

椭圆及其标准方程(第一课时)教案一.教材及学情分析:本节课是《普通高中课程标准实验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修2-1第二章第二节《椭圆及其标准方程》第一课时.用一个平面去截一个对顶的圆锥,当平面与圆锥的轴夹角不同时,可以得到不同的截口曲线,它们分别是圆、椭圆、抛物线、双曲线,我们将这些曲线统称为圆锥曲线.圆锥曲线的发现与研究始于古希腊.当时人们从纯粹几何学的观点研究了这种与圆密切相关的曲线,它们的几何性质是圆的几何性质的自然推广.17世纪初期,笛卡尔发明了坐标系,人们开始在坐标系的基础上,用代数方法研究圆锥曲线.在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想.解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系.在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形.在选修2中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题.由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值.根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持.二.教学目标:1.知识与技能目标:①理解椭圆的定义②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2.过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力②学会用坐标化的方法求动点轨迹方程③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3.情感态度价值观目标:①充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识②重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣③通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风④通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美⑤利用椭圆知识解决实际问题,使学生感受到数学的广泛应用性和知识的力量,增强学习数学的兴趣和信心三.重、难点重点:椭圆的定义、椭圆的标准方程、坐标化的基本思想难点:椭圆标准方程的推导与化简,坐标法的应用关键:含有两个根式的等式化简四.教法分析新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程.本节课采用让学生动手实践、自主探究、合作交流及教师启——巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人.五.教学过程创设情境——提出问题,学生活动——体验数学,意义建构——感知数学,数学理论——建立数学,数学应用——巩固新知,回顾反思——归纳提炼,课后作业——巩固提高(一)创设情境——提出问题以折纸游戏创设问题情境请学生将课前统一发放的圆形纸片拿出来,并按如下步骤进行操作:1.将圆心记作点,然后在圆内任取一定点2.在圆周上任取10个点,分别记作,将它们与圆心相连,得半径3.折叠圆形纸片,使点与点重合,将折痕与半径的交点记作;然后再次折叠圆形纸片,使点与点重合,将折痕与半径的交点记作;……;依此类推,最后折叠圆形纸片,使点与点重合,将折痕与半径的交点记作4.用平滑曲线顺次连接点,你有何发现?设计意图:使学生产生学习兴趣和探索欲望(二)学生活动——体验数学1.学生通过动手实践、观察,猜想轨迹为椭圆2.展示学生成果3.用几何画板展示动点生成轨迹的全过程,印证猜想4.展示椭圆实际应用的幻灯片5.导出新课:看来,大家对椭圆并不陌生,但细想想,我们对椭圆也说不上有多熟悉,除了“她”的名字和容貌,我们对“她”的品性几乎还一无所知.数学是一门严谨的科学,我们不能满足于直观感受、浅尝辄止,我们希望对椭圆有更深刻的认识,比如:椭圆上所有的点所具有的共同的几何特征是什么?——椭圆的定义;能否用代数方法精确地刻画出这种共同的几何特征?——椭圆的标准方程.这就是我们这节课的重点内容.设计意图:从折纸游戏中导出新课,明确研究课题(三)意义建构——感知数学椭圆定义的初步生成学生每4人一组,合作探究,在刚才的折纸游戏中,折痕与对应半径的交点的共同属性,教师巡视指导.如学生有困难,可按如下提示铺设认知阶梯:如何用数学语言表达点与定点重合——点与定点关于折痕轴对称对称轴有什么特点——折痕即对称轴是线段的垂直平分线线段垂直平分线上的点有什么几何性质——到线段两个端点距离相等,即动点与定点之间有什么关系——请学生代表本小组交流探究结论——与两个定点的距离之和等于常数的点的轨迹叫做椭圆(四)数学理论——建立数学1.椭圆定义的完善提出问题:要想用上面那句话作为椭圆的定义,要保证它足够严密、经得起推敲.那么,这个常数可以是任意正实数吗?有什么限制条件吗?如何体现点在定圆的内部?引导学生回答:点在定圆的内部即点到圆心的距离小于圆的半径,也就是,从而意识到在“定义”中需要加上“常数>”的限制.应用平面几何中的“三角形任意两边之和大于第三边”、“两点之间线段最短”为理论依据,得出结论:当常数=时,与两个定点的距离之和等于常数的点的轨迹是线段;当常数<时,与两个定点的距离之和等于常数的点的轨迹不存在.请学生给出经过修改的椭圆定义,教师用幻灯片给出完善的椭圆定义,并介绍焦点、焦距的定义.设计意图:使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,并逐渐养成严谨的科学作风2.椭圆的标准方程(1)回顾用坐标法求动点轨迹方程的一般步骤:建系设点、写出动点满足的几何约束条件、坐标化、化简、证明等价性(2)建立焦点在轴上的椭圆的标准方程①建系设点:观察椭圆的几何特征,如何建系能使方程更简洁?——利用椭圆的对称性特征以直线为轴,以线段的垂直平分线为轴,建立平面直角坐标系.设焦距为,则.设为椭圆上任意一点,点与点的距离之和为.②动点满足的几何约束条件:③坐标化:④化简:化简椭圆方程是本节课的难点,突破难点的方法是引导学生思考如何去根号预案一:移项后两次平方法链接到几何画板,分析的几何含义,令得到焦点在轴上的椭圆的标准方程为设计意图:进一步熟悉用坐标法求动点轨迹方程的方法掌握化简含根号等式的方法,提高运算能力,养成不怕困难的钻研精神感受数学的简洁美、对称美(3)建立焦点在轴上的椭圆的标准方程要建立焦点在轴上的椭圆的标准方程,又不想重复上述繁琐的化简过程,如何去做?此时要借助于化归思想,抓住图(1)与图(2)的联系即可化未知为已知,将已知的焦点在轴上的椭圆的标准方程转化为焦点在轴上的椭圆的标准方程.只需将图(1)沿直线翻折或将图(1)绕着原点按逆时针方向旋转即可转化成图(2),需将轴、轴的名称换为轴、轴或轴、轴.(1) (2) 焦点在轴上的椭圆的标准方程为设计意图:体会数学中的化归思想,化未知为已知,避免重复劳动(4)辨析焦点分别在轴、轴上的椭圆的标准方程的异同点区别:要判断焦点在哪个轴上,只需比较与项分母的大小即可.若项分母大,则焦点在轴上;若项分母大,则焦点在轴上.反之亦然.联系:它们都是二元二次方程,共同形式为两种情况中都有(五)数学应用——巩固新知例1:判断分别满足下列条件的动点M 的轨迹是否为椭圆(1)到点和点的距离之和为6的点的轨迹;(是)(2)到点和点的距离之和为4的点的轨迹;(不是)(3)到点和点的距离之和为6的点的轨迹;(是)(4)到点和点的距离之和为4的点的轨迹;(是)设计意图:巩固椭圆定义例2:已知椭圆的两个焦点的坐标分别是,椭圆上一点M 到的距离之和为4,求该椭圆的标准方程.设计意图:学会用待定系数法求椭圆标准方程变式一:已知椭圆的两个焦点的坐标分别是,椭圆上一点M 到的距离之和为4,求该椭圆的标准方程.设计意图:提醒学生在解题时先要根据焦点位置判断使用哪种形式的椭圆标准方程 变式二:已知椭圆的两个焦点分别是,椭圆经过点,求该椭圆的标准方程. ()22221222335321142132222143a MF MF a cb ac x y ⎛⎫=+=+++=+=∴==∴=-= ⎪⎝⎭∴+=解:椭圆的标准方程为设计意图:使学生体会椭圆定义在解题中的重要作用(六)回顾反思——归纳提炼1.知识点:椭圆的定义及其标准方程2.数学方法:用坐标化的方法求动点轨迹方程3.数学思想:数形结合思想、化归思想(七)课后作业,巩固提高1.必做题:课本49页习题2.2 A组2,5(1)(2),6,92.思考题:(1)在化简椭圆方程的过程中有成立,该式有什么几何含义?你能从函数观点看待等式右端的代数式吗?你能用函数单调性解释椭圆上的点与焦点间距离的变化情况吗?(2)将稍作变化即可得到,两个代数式的商为常数,它又有什么几何含义?设计意图:为引入椭圆第二定义及焦半径公式作适当铺垫,体现数学知识之间的联系,培养学生养成深入思考的习惯.《椭圆及其标准方程》教学设计说明我在进行《椭圆及其标准方程》教学设计过程中力图在如下三方面作文章,以期能有所突破和创新.一.椭圆定义的生成(方案一)用圆柱状水杯盛半杯水,将水杯放在水平桌面上,截面为圆形.当端起水杯喝水时,水杯倾斜,再观察水平面,此时截面为椭圆形.看来,椭圆是与圆有着密切关系的一种曲线.圆是到定点距离等于定长的点的轨迹,根据圆的定义,用一根细绳就可画出一个圆.将细绳的一贯固定在黑板上,在另一端系上一支粉笔,将细绳绷紧并绕固定端点旋转一周即可.将圆心从一点“分裂”成两点,将细绳的两端固定在这两点,用粉笔挑起细绳并绷紧,移动粉笔,即可画出一个椭圆.再根据椭圆画法,从中归纳椭圆定义——与两个定点的距离之和为定长(绳长)的点的轨迹为椭圆(绳长大于两定点间距离).(方案二)实际授课时所采用的折纸游戏法两种方案比较各有优势.方案一基本上是教材中所介绍的方法,只是在画椭圆之前做了些铺垫工作,从日常喝水这样一个熟悉的情景中引出话题,突出椭圆与圆的联系,过渡自然、节约时间,但缺点是从椭圆画法中概括椭圆定义过于显性,没有给学生留下足够的探究空间.方案二实际上是由课本49页习题2.2A组第7题改编而成,原题为:圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点.线段AP的垂直平分线和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是什么?为什么?该方案趣味性较强,能充分调动学生的学习兴趣和探究欲望,椭圆定义相对较隐性,为学生探究留下一定余地,但学生活动用时较长,需要教师合理控制折纸活动和探究交流时间,以防完不成教学计划.新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程.教师应努力改变教学观念,切实改进学生的学习方式,使学生真正成为学习的主人.因此,最终采用了方案二,不为教学进度所累,放弃繁难习题演练,采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法,按照“创设情境——学生活动——意义建构——数学理论——数学应用——回顾反思——巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,充分尊重学生作为学习主体的情感、认知水平和发展需求,使数学概念自主建构生成势必比被动接受教师灌输式讲授会取得更好效果.二.椭圆方程的推导在选修2中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题.由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用.在教师教学用书中明确指出,不仅要求学生能化简得到椭圆的标准方程,还要求学生掌握化简含根号等式的方法.因此,在教学设计中,我在这一部分作了较为充分的准备,除教材中介绍的移项后两次平方这种方法,又准备了两个预案:引入共轭无理数对和等差数列.在实际教学中,学生思维活跃,三种方案都得以实施,学生感受到了数学知识间的普遍联系,更感受到了创新思维带来的成就感和满足感,教师确实做到了既讲结果,更重过程和方法.在讲解焦点在轴上的椭圆的标准方程时,教材只是一带而过,“容易知道,此时(焦点在轴上)椭圆的标准方程是”,没有过程.其实这是培养学生运用化归思想解决问题的一个很好的机会,引导学生抓住事物间联系,化未知为已知,用已知解决未知,可以通过翻折和旋转的方式实现图形变换,从而利用焦点在轴上椭圆的标准方程得到焦点在轴上椭圆的标准方程,避免繁琐、重复的推导过程.三.思考题引导学生对椭圆方程推导过程中产生的作进一步思考,为后续引入椭圆的第二定义及焦半径公式作适当铺垫.现行教材对椭圆的焦半径公式、椭圆第二定义及圆锥曲线统一定义等知识呈弱化趋势,仅通过一个具体的例子使学生感受椭圆的另外一种定义方式,学生会感觉很突兀,为什么到定点的距离与到定直线的距离之比是一个常数(常数在0、1之间)的点的轨迹就是椭圆呢?椭圆第一定义与第二定义之间有何联系?认真研究思考题,学生就可从中找到这些问题的答案,从而深刻体会到知识的形成过程中蕴含着丰富内容,从而自觉改变只重结果和习题演练而轻视过程的功利主义学习方法,自觉将目光转移到对知识本身的探求过程中来,学会发现问题和解决问题的方法,终身学习能力也会在这一过程中逐渐提高.。
高中数学选修2-1《椭圆及其标准方程》教案

课题:椭圆及其标准方程教材:普通高中课程标准试验教科书——《数学》选修2-1 一、教材分析:《椭圆及其标准方程》是高中数学新教材选修2—1第二章第二节的第一课时。
从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础;所以说,无论从教材内容,还是从教学方法上都是起着承上启下的作用,它是学好本章内容的关键。
因此搞好这一节的教学,具有非常重要的意义。
二、教学目标分析:(一)知识与技能目标: 准确理解椭圆的定义,掌握椭圆的标准方程及其推导.(二)过程与方法目标: 通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力.(三)情感态度与价值观目标:(1)通过椭圆定义的获得培养学生探索数学的兴趣.(2)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、教学重点、难点:(一).重点:椭圆定义及其标准方程(二).难点:椭圆标准方程的推导四、教学方法与教学手段采用启发和探究式教学相结合的教学模式,即在教师的引导下,创设情境,学生利用课前准备的工具亲自动手画出椭圆,并讨论椭圆上的点满足的条件,以此来充分调动学生学习的主动性和积极性,发展学生数形结合,等价转换等思想,培养学生综合运用知识解决问题的能力。
教学手段:计算机课件辅助教学。
五、教学过程:(一)认识椭圆,探求规律:1.对椭圆的感性认识.通过演示课前老师准备的有关椭圆的图片,让学生从感性上认识椭圆.2.通过演示动画,展示椭圆的形成过程,使学生认识到椭圆是点按一定“规律”运动的轨迹.(二)动手实验,亲身体会用上面所总结的规律,指导学生互相合作(主要在于动手),体验画椭圆的过程(课前准备细绳),并以此了解椭圆上的点的特征.请两名同学上黑板画(三)归纳定义,完善定义我们通过动画演示,实践操作,对椭圆有了一定的认识,下面由同学们归纳椭圆的定义.椭圆定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F =2c )的点的轨迹叫做椭圆。
椭圆及其标准方程》教学设计

椭圆及其标准方程》教学设计一、教学目标:1、知识与技能目标(1)掌握椭圆的定义及焦点、焦距的概念,能正确推导椭圆的标准方程.(2)掌握求椭圆标准方程的定义法和待定系数法.2、过程与方法目标(1)经历椭圆的形成过程,培养学生运动变化的观点,训练学生的动手的能力、合作学习能力和运用所学知识解决实际问题的能力.(2)通过联系曲线方程的求法,推导椭圆的标准方程,培养学生运用类比、分类讨论、数形结合思想解决问题的能力.3、情感态度与价值观目标(1)通过小组合作,培养学生的协作、友爱精神,体验成功的快乐.(2)激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.二、重点、难点:重点:掌握椭圆的定义及标准方程,理解坐标法的基本思想;难点:椭圆标准方程的推导与化简.三、教学方法:探究式教学法,即教师通过问题诱导f启发讨论f探索结果,引导学生直观观察f归纳抽象f总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.四、教具准备:多媒体课件和自制教具:绘图板、图钉、细绳.五、教学设计情景引入学习探究(一)材料2:地球围绕着太阳旋转;材料3:“嫦娥三号”升空录像.引入课题:椭圆及其标准方程.动手实验:(1)取一定长的细绳,把它的两个端点固定在黑板的同一点处,套上铅笔,拉紧绳子,旋转一周,会得到什么图形?(2)把绳子的两个端点拉开一段距离,再套上铅笔旋转,又会得到什么图形?(3)继续拉远两个端点的距离,直到把绳子拉直,又会得到什么图形?(4)动画演示椭圆的形成过程.师:引导学生观察:椭圆在实际生活中是很常见师:引导学生观察动画,地球运行轨道是椭圆;问“嫦娥三号”的运行轨道是什么?生:常娥三号着陆先是按椭圆轨道运行,再直线着陆.师:板书课题.请学生拿出课前准备的硬纸板、细线、铅笔实验(1)教师演示,学生观察思考.实验(2)、(3),各小组学生利用手中工具在图板上进行实验,一起合作画椭圆.利用学生熟知的地理规律:地球围绕太阳转引入,让学生感到亲切自然;通过“嫦娥三号”的升空录像,让学生感受现实,激发学生的兴趣,培养爱国思想.通过做实验,让学生动手实践,体验椭圆的形成过程,加深对椭圆定义的理解将学生分为四人一组,通过分组讨论、研究,增强学生的合作意识.学习探究(二)【学情预设】学生可能会建系如下几种情况:方案一:把匚、F2建在X轴上,以FF的中点为原点;12方案二:把匚、F2建在X轴上,以匚为原点;方案三:把匚、F2建在x轴上,以F原点;2方案四:把匚、F2建在X轴上,以.F2与x轴的左交点为原点;方案五:把匚、F2建在x轴上,以FF与x轴的右交点为原点;12经过比较确定方案一.下面我们来建立椭圆的方程建系:以F,F所在的直线为x轴,以12线段F]F2的垂直平分线为y轴建立直角坐标系xOy.设点:设点M(x,y)是椭圆上的任意一点,点M到F,F的距离和为2a,焦距12为2c(c〉0),则.(—c,0),F2(C,0)列式:由定义:|M「1+叫=2a,即(2)如何设点?(3)怎样列式?⑷如何化简?建立椭圆的方程是本节课的难点,为降低难度,让学生回顾求曲线方程的步骤,以已有的知识来探求新的知识,温故知新,教师再加以正确的引导,新知会自然形成.生:回顾求曲线方程的步骤:⑴建系,⑵设点,⑶列式,⑷化简.师:引导学生按求曲线方程的步骤建立椭圆的方程.生:思考,回答:(1)怎样建立适当的坐标系生:分析化简的方法,在J(x+c)2+y2+J(x-c)2+y2=2a练习本上完成化简.化简:整理,得(a2一c2)x2+a2y2=a2(a2一c2)•.•a〉0,c〉0,2a〉2c a2(a2—c2)>0.方程的两边都除以a2(a2—c2),得教学环节教学过程师生互动设计思想学习探究(二)OF=OF=c12则|MO|=、.;a2-c2,令b=\;'a2-c2,则b2=a2-c2,那么方程变为:=1(a>b>0).多媒体展示动画:将椭圆的焦点放在y轴上结论:当焦点在y轴是时,椭圆的方程为:y2x2—+一=1(a>b>0).a2b2多媒体展示图表:让学生对照图形、方程理解记忆.师:请同学们在图中找出长度等于a,c的线段,则师:引导学生推出椭圆的标准方程.师:指出其焦点在x轴上,坐标为F](―c,0),F2(C,0)生:观察图像,识记方程.活动过程:点拨-----板演-----点评师:若焦点放在y轴上,方程又怎样?生:小组讨论椭圆的方程,相互交流、补充,得出结论.生:分析方程、图形,识记椭圆的标准方程.师:引导学生如何根据方程判断焦点的位置?实践体验1、你能判断下列椭圆的焦点位置生:根据所学椭圆的标吗?并写出焦点坐标.⑵25x2+16y2=400.准方程,思考后回答.师生共同矫正.生:总结如何判断焦点的位置?椭圆的标准方程的导出,放手给学生有很大的难度,这里采取有意义的接受学习的方式,教师对照图形,加以引导,让学生明白方程中字母的几何意义,对方程的理解有很大的作用.展示动画,通过类比的方法,让学生对照焦点在x轴的情形,写出焦点在y轴上时,椭圆的标准方程.通过图表便于对比,加深学生对两个方程及几何意义的认识.尝试练习,加深对方程及几何意义的理解.六、板书设计:七、布置作业:。
高中数学人教版A选修2-1教学设计:椭圆及其标准方程方程.参赛教案

《椭圆及其标准方程方程》教案
尼尔基一中数学教师:齐继鹏
【三维目标】
知识与技能:理解椭圆定义,能建立适当的坐标系推出椭圆标准方程,会根据所条件求出椭圆标准方程。
过程与方法:通过自主学习、合作探究,培养运用类比归纳的方法总结出椭圆定义,并导出椭圆的标准方程,体会数形结合的思想,培养了自主学习习惯,合作意识,创新能力。
情感态度与价值观:让学生感受数学问题探索的乐趣,体会数学的理性、严谨和实用,
体现数学的文化价值,和实际应用价值。
【教学重点】理解椭圆定义,能建立适当的坐标系推出椭圆标准方程,会根据所条件求出椭圆标准方程,注重培养数形结合的思想。
【教学难点】如何建立适当的坐标系推出椭圆标准方程
【教学方法】
引导发现法、探究法、归纳法、多媒体课件辅助教学。
【教学过程】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学选修2-1《椭圆及其标准方程》教案
一、课型
新授课
二、教学内容
1、椭圆的定义;
2、椭圆的两类标准方程;
3、根据椭圆的定义及标准方程的知识解决一些简单的问题。
三、教学目标
1、知识与技能:理解并掌握椭圆的定义;明确焦点、焦距的概念;掌握椭圆标
准方程的两种形式及其推导过程;掌握a、b、c三个量的几何意义及它们之间的关系。
能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;
2、过程与方法:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;
通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力。
让学生感知数学知识与实际生活的普遍联系;
3、情感态度与价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学
习数学的积极性,培养学生的学习兴趣和创新意识。
培养学生的探索能力和进取精神,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度。
通过椭圆的形成过程培养学生的数学美感,同时培养团队协作的能力。
四、教学重点、难点
重点:椭圆的定义及椭圆的标准方程;
难点:椭圆标准方程的推导过程。
五、教学方法
教师引导为主、学生自主探究为辅。
六、教学媒体
幻灯片、黑板。
七、教学过程
(一)创设情境,导入新课
用多媒体演示神舟飞船绕地球旋转的模型,它运行的轨迹又是什么图形呢?可以看出,它的运行轨迹是椭圆。
此时老师指出:在实际生活中,椭圆随处可见,很多学科也涉及到椭圆的应用,所以学习椭圆的相关知识是十分必要的。
这就是我们这节课所要学习的内容——椭圆及其标准方程。
(二)问题探究
老师提问:我们从直观上认识了椭圆,那么椭圆它是如何形成的呢?椭圆满足什么样的条件呢?它的定义又是如何?
1、椭圆的形成
下面请各小组拿出老师之前让大家准备的工具:一段固定长的细绳、两颗钉子、一块长3分米,宽3分米的硬纸板。
然后将钉子系在细绳的两头,将钉子固定在图板上,使得两个钉子之间的距离小于细绳的长度(请同学们考虑一下,为什么两顶子之间的距离要小于细绳的长度?),我们用笔尖将细绳拉紧,让笔尖在图板上慢慢移动,请同学们观察笔尖运动的轨迹是什么图形呢?
如果我们将两个钉子之间的距离变大,使得两个钉子之间的距离恰好等于细绳的长度,同样用笔尖将细绳拉紧,让笔尖在图板上慢慢移动。
我们发现笔尖只能在两个钉子之间来回运动,这时笔尖运动的轨迹是两个钉子之间的线段。
将两个钉子之间的距离再增大,此时就可以发现,细绳的长度比两个钉子之间的距离小,笔尖没有轨迹。
再用课件给学生进行演示:
通过演示可以发现,绳长大于图钉间的距离是画出椭圆的关键。
请同学们根据作图的过程和老师刚才的演示,思考:在作图过程中,有哪些物体的位置没变化?有哪些量没有变化?如何来归纳椭圆的定义呢?
2、椭圆的定义
平面内到两定点F
1、F
2
的距离之和等于常数(大于|F
1
F
2
|)的点的轨迹叫做
椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
通常常数
记作2a ,焦距记作2c ,则有2a >2c 。
注意:这里的常数必须大于|F 1F 2|。
如果常数=|F 1F 2|,则是线段F 1F 2;若常数<|F 1F 2|,则轨迹不存在;若要轨迹是椭圆,必须得加上限制条件:“此常数大于|F 1F 2|”。
3、椭圆标准方程的推导
首先复习求曲线方程的一般步骤:①建系设点;②寻找动点满足的几何条件;③把几何条件坐标化;④化简得方程。
(1)建系设点:设椭圆的焦距为2c (c >0),M 与F 1、F 2的距离之和为2a ,以两定点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴,建立直角坐标系,M(x ,y)为椭圆上任意一点,则有F 1(-c ,0),F 2(c ,0)。
(2)动点M 满足的几何条件:
由椭圆的定义不难得出动点M 满足的条件为:
a MF MF 221=+
(3)动点M 满足的代数方程:
∵221)(y c x MF ++=
∴a y c x y c x 2)()(2222=+-+++ (4)化简方程:
(a 2-c 2)x 2+a 2y 2=a 2(a 2-c 2)
由椭圆的定义可知,2a>2c,即a>c,所以a 2-c 2>0。
令a 2-c 2=b 2,其中b>0,代入上式,得b 2x 2+a 2y 2=a 2b 2,
两边同除以a 2
b 2
,得122
22=+b
y a x (a>b>0),此即为椭圆的标准方程。
它所表示的椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程。
其中222b c a +=。
如果使点F 1、F 2在y 轴上,点F 1、F 2的坐标分别为F 1(0,-c )、F 2 (0,c),a 、
b 的意义同上,那么所得方程变为122
22=+b
x a y (a>b>0)
4、标准方程的观察、对比
当焦点落在x 轴上时,焦点坐标为F 1(-c,0),F 2(c,0); 当焦点落在y 轴上时,焦点坐标为F 1(0,-c),F 2(0,c)。
请同学们思考:焦点的位置和方程之间有什么关系呢? 那下面这个方程它的焦点位置又该如何来判断呢?
①当m>n 时,焦点在x 轴上,此时m=a 2,n=b 2; ②当m<n 时,焦点在y 轴上,此时m=b 2,n=a 2。
判断椭圆焦点位置的方法:观察含x 的项和含y 的项,哪个项的分母较大,焦点就在相应的那个轴上 。
(三)例题讲解
例1、(1)已知椭圆的焦点坐标是F 1(-4,0),F 2(4,0),椭圆上任一点P 到F 1、F 2的距离之和为 10,求椭圆的标准方程;
(2)两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点(-3/2,5/2),求椭圆的标准方程。
解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为12222=+b
y a x (a>b>0)
∵2a=10,2c=8,
∴a=5,c=4. ∴b 2=a 2-c 2=52-42=9.
所以所求椭圆的标准方程为
19252
2=+y x .
(2)因为椭圆的焦点在y 轴上,所以设它的标准方程为122
22=+b
x a y (a>b>0)
由椭圆的定义知,
2222)22
5
()23()225()23(2-+-+++-=a
12
2=+n
y m x ()
n m n m ≠>>且,00
102
11023+=
102= ∴a=10 又c=2
∴b 2=a 2-c 2=10-4=6
所以所求椭圆的标准方程为16
102
2=+x y 例2、已知B,C 是两定点,6=BC ,三角形ABC 的周长为16,求顶点A 的轨迹方程。
分析:由△ABC 的周长等于16,6=BC 可知,点A 到B 、C 两点的距离的和是常数,即10616=-=+AC AB ,因此,点A 的轨迹是以B,C 为焦点的椭圆,据此可建立如下的草图(图8-1)
解:如图8-1,建立坐标系,使x 轴经过点B 、C,
原点O 与BC 的中点重合。
由已知16=++BC AC AB ,6=BC , 有10=+AC AB ,即点A 的轨迹是椭圆,且
2c=6,2a=16-6=10, ∴c=3,a=5,b 2=a 2-c 2=52-32=16. 图8-1 但当点A 在直线BC 上,即y=0时,A 、B 、C 三点不能构成三角形,所
以点A 的轨迹方程是
)0(1162522≠=+y y x
注意:求出曲线的方程后,要注意检查一下方程的曲线上的点是否都符合题意,如果有不符合题意的点,应在所得方程后注明限制条件。
(四)巩固练习
1、平面内两定点的距离是8,一动点M 到这两定点的距离之和是10,建立适当的坐标系,写出动点M 的轨迹方程。
2、写出适合下列条件的椭圆的标准方程: (1)a=4,b=1,焦点在x 轴上;
(2)a 2=16,c 2=15,焦点在y 轴上; (3)a+b=10,c=52。
(五)课时小结
本节课学习了椭圆的定义及椭圆的标准方程,在实际解题过程中应注意: (1)一个重要关系式:a 2=b 2+c 2 且a>b>0;
(2)椭圆的焦点位置由含x ,y 的分式的分母大小来确定; (3)当2a=2c 时,轨迹为线段,当2a<2c 时,轨迹不存在。
(六)课后作业
教材P106—107,习题8.1:3、4、5、6
思考题:若
116242
2=++-k
y k x 表示椭圆,则k 的取值范围是? 八、板书设计
九、教学反思。