(完整版)七年级幂的运算提高练习题

合集下载

专题复习提升训练卷(幂的运算)-苏科版七年级数学下册【含答案】

专题复习提升训练卷(幂的运算)-苏科版七年级数学下册【含答案】

—1—专题复习提升训练卷(幂的运算)-苏科版七年级数学下册一、选择题1、1纳米等于1米的10亿分之一,人的头发的直径约为6万纳米,用科学记数法表示一根头发的直径是 米.()A .B .C .D .7610-⨯6610-⨯5610-⨯4610-⨯2、下列运算正确的是 ()A .B .C .D . 632a a a ÷=224m m m +=325()a a a -= 3(2a 327)8a =3、下列计算正确的是( )A .(3×103)2=6×105B .36×32=384、在等式中,括号内的代数式应是( )()()512a a a ⋅-=A .B .C . D .6a ()6a - 6a -7()a -5、若,则m -n 等于( ).3122m m n n x y x y -++⋅99x y =A .0B .2C .4D .无法确定6、计算()2019×()2020的结果是( )125-522A .B .C .D .﹣2020125-512-1257、若m=,n=,则m 、n 的大小关系正确的是( )722483A .m >n B .m <n C .m=n D .大小关系无法确定8、如果,,,那么、、三数的大小为 0(2019)a =-1(0.1)b -=-25(3c -=-a b c ()A .B .C .D .a b c >>c a b >>a c b >>c b a>>9、若有意义,则取值范围是 01(3)2(24)x x ----x ()A .B .C .或D .且3x ≠2x ≠3x ≠2x ≠3x ≠2x ≠10、如果,那么用含m 的代数式表示n 为()31,29a a m n =+=+A .B .C .D .23n m=+2n m =2(1)2n m =-+22n m =+二、填空题—2—11、计算:_____()()4223-⋅=a a 12、当a ______时,(a -2)0=1.13、下列计算中,不正确的有( )①(ab 2)3=ab 6;②(3xy 2)3=9x 3y 6;③(﹣2x 3)2=﹣4x 6;④(﹣a 2m )3=a 6m .A .1个B .2个C .3个D .4个14、已知3m =15,3n =29,3m+n 的值为_____.15、若9×32m ×33m =322,则m 的值为_____.16、已知2x﹣6y+6=0,则2x ÷8y =_____.17、若,,则_____________.45m =23n=432m n -=18、计算:()2019×()﹣2020=_____.878719、用科学记数法表示-0.0000058,结果是_____________.20、若,则x 的值为 ()3211x x +-=三、解答题21、计算:(1) (2)()()524232)(a a a -÷⋅()()()34843222b a b a ⋅-+-(3) (4) ()123041323--⎪⎭⎫ ⎝⎛--+-()a b -()3a b -()5b a - (5). (6)211122(3)2()m m m m a a a a a +-+--+÷ 424422()()y y y y +÷--22、计算:—3—(1) ( ) ·() (2) ( -)÷(-)·(-)3a -42a -5p q 4p q 3p q 2(3)()÷()·()(≠0) (4) (-2)-(-)·(-2)2a bc 42ab c 3abc 2abc x 5x 3x 2(5)(-1)+2-()+(π-3.14) (6) (-0.125) ×(-1)×(-8) ×(-)20151-322-0122371335823、(1)已知4 × 16×64=4,求(-m )÷(m ·m )的值m m 212332(2)已知=4,=8,求代数式的值.m a n a 202023)33(--m n a(3)已知,求的值.3142x x -=x (4)已知,,求的值.23n a =35m a =69n m a -24、(1)若=2,=3,=4,试比较、、的大小a 55b 44c 33a b c (2)若.猜想与的大小关系;证明你的猜想.2510a b ==a b +ab 25、用简便方法计算:—4—(1) (2)333)31()32()9(⨯-⨯-3014225.0⨯-(3). (4).201520164(( 1.25)5⨯-1211318(3()(2)825⨯⨯-26、如果x n =y ,那么我们规定(x ,y )=n .例如:因为32=9,所以(3,9)=2.(1)[理解]根据上述规定,填空:(2,8)= ,(2,)= ;41(2)[说理]记(4,12)=a ,(4,5)=b ,(4,60)=c .试说明:a +b =c ;(3)[应用]若(m ,16)+(m ,5)=(m ,t ),求t 的值.27、材料:一般地,若且,那么叫做以为底的对数,记作,比如指数(0x a N a =>1)a ≠x a N log a x N =式可以转化为对数式,对数式可以转化为指数式.328=23log 8=62log 36=2636=根据以上材料,解决下列问题:(1)计算: , , ;2log 4=2log 16=2log 64=(2)观察(1)中的三个数,猜测: 且,,,并加以证log log a a M N +=(0a >1a ≠0M >0)N >明这个结论;(3)已知:,求和的值且.log 35a =log 9a log 27a (0a >1)a ≠—5—专题复习提升训练卷(幂的运算)-苏科版七年级数学下册一、选择题1、1纳米等于1米的10亿分之一,人的头发的直径约为6万纳米,用科学记数法表示一根头发的直径是 米.()A .B .C .D .7610-⨯6610-⨯5610-⨯4610-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法10n a -⨯不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【答案】解:由题意可得:6万,95160000106101000000000--⨯=⨯=⨯故选:.C 2、下列运算正确的是 ()A .B .C .D . 632a a a ÷=224m m m +=325()a a a -= 3(2a 327)8a =【分析】分别根据同底数幂的除法法则,合并同类项的法则,同底数幂的乘法法则以及积的乘方运算法则逐一判断即可.【答案】解:,故选项不合题意;633a a a ÷=A ,故选项不合题意;2222m m m +=B ,正确,故选项符合题意;325()a a a -= C ,故选项不合题意.3(2a 39)8a =D 故选:.C 3、下列计算正确的是( )A .(3×103)2=6×105B .36×32=38C .()4×34=﹣1D .36÷32=3331-【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.—6—【解答】解:A 、(3×103)2=9×106,故此选项错误;B 、36×32=38,正确;C 、()4×34=1,故此选项错误;31-D 、36÷32=34,故此选项错误;故选:B .4、在等式中,括号内的代数式应是( )()()512a a a ⋅-=A .B .C . D .6a ()6a - 6a -7()a -【答案】C【分析】先计算:再计算从而可得答案.()56,a a a -=- ()126,a a ÷-【详解】解:由 所以:括号内填的是: ()56,a a a -=- ()1266,a a a ∴÷-=-6.a -故选:.C 5、若,则m -n 等于( ).3122m m n n x y x y -++⋅99x y =A .0B .2C .4D .无法确定【答案】B 【分析】根据同底数幂的乘法法则运算,再结合等式性质,即可列出m 和n 的二元一次方程组,求解方程组即可得到答案.【解析】∵∴312299m m n n x y x y x y -++= +32199m n n m x y x y +++=∴ ∴ ,∴39219m n n m ++=⎧⎨++=⎩24n m =⎧⎨=⎩2m n -= 故选:B .6、计算()2019×()2020的结果是( )125-522A .B .C .D .﹣2020125-512-125—7—【分析】先根据积的乘方进行变形,再求出即可.【解答】解:原式=﹣()2019×()2020125512=﹣(×)2019×125512512=﹣1×=-,512512故选:B .7、若m=,n=,则m 、n 的大小关系正确的是( )722483A .m >nB .m <nC .m=nD .大小关系无法确定【答案】B【分析】把m=272化成=824,n=348化成924,根据8<9即可得出答案.【解析】解:∵m=,n=,∵8<9∴∴m<n ,2723244(2)28==2482244(3)39==242489<故选:B .8、如果,,,那么、、三数的大小为 0(2019)a =-1(0.1)b -=-25(3c -=-a b c ()A .B .C .D .a b c >>c a b >>a c b >>c b a>>【答案】解:,,, ,1a =11(1010b -=-=-239()525c =-=a c b ∴>>故选:.C 9、若有意义,则取值范围是 01(3)2(24)x x ----x ()B .B .C .或D .且3x ≠2x ≠3x ≠2x ≠3x ≠2x ≠【答案】解:若有意义,01(3)2(24)x x ----则且,解得:且.故选:.30x -≠240x -≠3x ≠2x ≠D—8—10、如果,那么用含m 的代数式表示n 为( )31,29a a m n =+=+A .B .C .D .23n m=+2n m =2(1)2n m =-+22n m =+【答案】C 【分析】由题意可知,,再将代入中,即可得出答案.31a m =-2(3)2a n =+31a m =-2(3)2a n =+【详解】∵,∴.∵,∴.31a m =+31a m =-92a n =+2(3)2a n =+将代入中,得:.31a m =-2(3)2a n =+2(1)2n m =-+故选:C .二、填空题11、计算:_____()()4223-⋅=a a 【答案】2a 【分析】根据幂的乘方法则:底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加进行计算即可.【解析】解:原式,故答案为:.862a a a -=⋅=2a 12、当a ______时,(a -2)0=1.【答案】a ≠2【分析】根据零指数幂的定义进行求解即可.【详解】根据零指数幂的定义:任何非零数的零指数幂为1,得到,解得故答案为.20a -≠2a ≠2a ≠13、下列计算中,不正确的有( )①(ab 2)3=ab 6;②(3xy 2)3=9x 3y 6;③(﹣2x 3)2=﹣4x 6;④(﹣a 2m )3=a 6m .A .1个B .2个C .3个D .4个【答案】D 【分析】根据整数指数幂的运算法则进行计算并做出判断即可.【解析】解:①(ab 2)3=a 2b 6,故①错误;②(3xy 2)3=27x 3y 6,故②错误;—9—③(-2x 3)2=4x 6,故③错误;④(-a 2m )3=-a 6m ,故④错误.所以不正确的有4个.故选D.14、已知3m =15,3n =29,3m+n 的值为_____.【答案】435【分析】根据同底数幂乘法的逆运算进行求解即可.【详解】解:∵3m =15,3n =29,∴3m+n =3m ·3n =15×29=435,故答案为:435.15、若9×32m ×33m =322,则m 的值为_____.【答案】4【分析】先变形9=32,再利用同底数幂的乘法运算法则运算,然后指数相等列等式求解即可.【解析】∵9×32m ×33m =32×32m ×33m =32+2m+3m =322∴2+2m+3m=22,即5m=20,解得:m=4,故答案为:4.16、已知2x﹣6y+6=0,则2x ÷8y =_____.【答案】18【分析】根据已知条件,先求出x﹣3y =﹣3,然后根据幂的乘方的逆运算和同底数幂的除法即可求出结论.【详解】解:2x﹣6y+6=0,2(x﹣3y )=﹣6,x﹣3y =﹣3,∴2x ÷8y =2x ÷23y =2x﹣3y =2﹣3=.故答案为:.181817、若,,则_____________.45m =23n=432m n -=【答案】2527【分析】根据同底数幂的除法运算法则以及幂的乘方运算法则.4343222m n m n -=÷22323(2)(2)4(2)m n m n =÷=÷23(4)(2)m n =÷23255327=÷=—10—【解答】解:故答案为:.4343222m n m n -=÷223(2)(2)m n =÷234(2)m n =÷23255327=÷=252718、计算:()2019×()﹣2020=_____.8787【答案】78【分析】根据负整数指数幂的定义以及同底数幂的乘法法则计算即可.【解析】解:()2019×()﹣2020=.8787201920201887778--⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭故答案为:.7819、用科学记数法表示-0.0000058,结果是_____________.【答案】65.810--⨯【分析】绝对值小于1的数用科学记数法表示为a ×10n ,与较大数的科学记数法不同的是n 是负整数,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】用科学记数法表示﹣0.0000058,a 为-5.8,数字5前面共有6个0,所以用科学记数法表示为:﹣5.8×10﹣6.故答案为:﹣5.8×10﹣6.20、若,则x 的值为()3211x x +-=【答案】-2; 1【详解】情况1: 解得:x =-2; 21030x x -≠⎧⎨+=⎩情况2:,解得:x =1;211x -=情况3:,解得:x =0;x +3=3(奇数),故不符合条件211x -=-故答案为:-2; 1三、解答题—11—21、计算:(1) (2)()()524232)(a a a -÷⋅()()()34843222b a b a ⋅-+-(3) (4) ()123041323--⎪⎭⎫ ⎝⎛--+-()a b -()3a b -()5b a - (5). (6)211122(3)2()m m m m a a a a a +-+--+÷ 424422()()y y y y +÷--解:(1)原式;)(1086a a a -÷⋅=)(1014a a-÷=4a -=(2)原式;128128816b a ba ⋅+=12824b a =(3)原式;49811-+-=875=(4)原式 .()a b -=()3a b -()5b a -()9b a -=(5)原式2222292m m m a a a a +=-+÷22292m m m a a a =-+210ma = (6).42442248444444()()y y y y y y y y y y y y +÷--=+÷-=+-=22、计算:(1) ( ) ·() (2) ( -)÷(-)·(-)3a -42a -5p q 4p q 3p q 2(3)()÷()·()(≠0) (4) (-2)-(-)·(-2)2a bc 42ab c 3abc 2abc x 5x 3x 2(5)(-1)+2-()+(π-3.14) (6) (-0.125) ×(-1)×(-8) ×(-)20151-322-01223713358解:(1)原式= ·(-)=-12a 10a 22a - (2)原式=3()q ρ- (3)原式=÷·==448cb a 363c b a 222c b a 234264238+-+-+-c b a73a c (4)原式==-28235432x x x ∙+-5x(5)原式=-1+-+1=2194181—12—(6)原式=()×[-()]×[-8]×()811235713538 =(×8)×8×(×)×=8112355375324523、(1)已知4 × 16×64=4,求(-m )÷(m ·m )的值m m 212332(2)已知=4,=8,求代数式的值.m a n a 202023)33(--m n a (3)已知,求的值.3142x x -=x (4)已知,,求的值.23n a =35m a =69n m a -解:(1)∵4 × 16×64=4,m m 21∴==,2+10m=42,∴m=4,22∙m 42m 62∙m m 6422++422∴∴原式=-÷=-m=一46m 5m (2)原式=(-33)m na a 23÷2020=[()÷()-33]n a 3m a 22020=()=(-1)=1334823-÷20202020(3),3142x x -= ,23122x x -∴=则,231x x =-解得:;1x =(4),,23n a = 35m a =.6969n m n m a a a -∴=÷2333()()n m a a =÷3335=÷27125=24、(1)若=2,=3,=4,试比较、、的大小a 55b 44c 33a b c (2)若.猜想与的大小关系;证明你的猜想.2510a b==a b +ab 解:(1)∵,b=3==,44114)3(1181 又∵<<,∴<C<.113211641181a b (2);a b ab +=—13—,210a = ①,210ab b ∴=又,510b = ②,510ab a ∴=①②得到,⨯251010ab ab a b⨯=⨯即,(25)10ab a b +⨯=故.a b ab +=25、用简便方法计算:(1)(2)333)31()32()9(⨯-⨯-3014225.0⨯-(3). (4).201520164(( 1.25)5⨯-1211318(3()(2)825⨯⨯-解:(1)原式;823132()9[(33==⨯-⨯-=(2)原式.3014225.0⨯-=44)41(1514-=⨯-=(3)201520164(( 1.25)5⨯-20152015455()(()544=⨯-⨯-2015455[((544=⨯-⨯-;51()4=-⨯-54=(4)原式111125258()()(8)8825=⨯⨯⨯-1125825(825=-⨯⨯.25=-26、如果x n =y ,那么我们规定(x ,y )=n .例如:因为32=9,所以(3,9)=2.(1)[理解]根据上述规定,填空:(2,8)= ,(2,)= ;41—14—(2)[说理]记(4,12)=a ,(4,5)=b ,(4,60)=c .试说明:a +b =c ;(3)[应用]若(m ,16)+(m ,5)=(m ,t ),求t 的值.【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算;(3)根据定义解答即可.【解答】解:(1)23=8,(2,8)=3,=,(2,)=﹣2,22-4141故答案为:3;﹣2;(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;(3)设(m ,16)=p ,(m ,5)=q ,(m ,t )=r ,∴m p =16,m q =5,m r =t ,∵(m ,16)+(m ,5)=(m ,t ),∴p +q =r ,∴m p +q =m r ,∴m p •m r =m t ,即16×5=t ,∴t =80.27、材料:一般地,若且,那么叫做以为底的对数,记作,比如指数(0x a N a =>1)a ≠x a N log a x N =式可以转化为对数式,对数式可以转化为指数式.328=23log 8=62log 36=2636=根据以上材料,解决下列问题:(1)计算: , , ;2log 4=2log 16=2log 64=(2)观察(1)中的三个数,猜测: 且,,,并加以证log log a a M N +=(0a >1a ≠0M >0)N >明这个结论;—15—(3)已知:,求和的值且.log 35a =log 9a log 27a (0a >1)a ≠【分析】(1)根据,,写成对数式;224=4216=6232=(2)设,,根据对数的定义可表示为指数式为:,,据此计算即log a M x =log a N y =x a M =y a N =可;(3)由,得,再根据同底数幂的乘法法则计算即可.log 35a =53a =【答案】解:(1),,,224= 4216=6232=;;2log 42∴=2log 164=2log 646=故答案为:2;4;6;(2)设,,log a M x =log a N y =则,, ,x a M =y a N =x y x y M N a a a +∴== 根据对数的定义,,log a x y MN +=即; 故答案为:.log log log a a a M N MN +=log a MN (3)由,得,log 35a =53a =,5510933a a a =⨯== 5551527333a a a a =⨯⨯== 根据对数的定义,,.∴log 910a =log 2715a =。

北师大版七年级上幂的运算提高练习(含答案)

北师大版七年级上幂的运算提高练习(含答案)

幂的运算提高练习一.填空题(共6小题)1.计算:=.2.若9m=4,27n=2,则32m﹣3n=.3.若100x=4,100y=25,则102x+2y﹣1=.4.若(2x﹣1)x+3=1,则x的值为.5.若x2+2x﹣3=0,则x3+x2﹣5x+2012=.6.已知5x=30,6y=30,则等于.二.解答题(共34小题)7.已知a、b、c为三角形的三边,P=|a+b﹣c|﹣|b﹣a﹣c|+|a﹣b+c|.(1)化简P;(2)计算P•(a﹣b+c).8.已知3x+1•2x﹣3x•2x+1=63x+4,求x.9.若x=2m+2,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=3,求此时y的值.10.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2008的值.11.已知n是正整数,若x3n=3,求(2x3n)3+(﹣3x2n)3的值.12.问题:你能比较两个数20062007和20072006的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,比较n n+1与(n+1)n的大小(n为正整数),从分析n=1,2,3…的情形入手,通过归纳,发现规律,猜想出结论.(1)比较各组数的大小①1221(2);②2332(3);③3443(4);④4554(2)由(1)猜想出n n+1与(n+1)n的大小关系是;(3)由(2)可知:2006200720072006.13.已知a=255,b=344,c=433,比较a、b、c的大小关系.14.已知2m=3,32n=5,则23m+10n的值.15.计算:﹣82015×(﹣0.125)2016+(0.25)3×26.16.已知n为正整数,且x2n=7,求(3x3n)2﹣13(x2)2n的值.17.若2a=2,4b=6,8c=12,试求a,b,c的数量关系.18.小明是一位刻苦学习,勤于思考的同学,一天,他在解方程时突然产生了这样的想法,x2=﹣1,这个方程在实数范围内无解,如果存在一个数i2=﹣1,那么方程x2=﹣1可以变成x2=i2,则x=±i,从而x=±i是方程x2=﹣1的两个解,小明还发现i具有以下性质:i1=i,i2=﹣1,i3=i2•i=﹣i;i4=(i2)2=(﹣1)2=1,i5=i4•i=i,i6=(i2)3=(﹣1)3=﹣1,i7=i6•i=﹣i,i8=(i4)2=1,…请你观察上述等式,根据你发现的规律填空:i4n+1=,i4n+2=,i4n+3=,i4n+4=(n为自然数).19.计算:(1)x•(x2)3•(x3)2(2)(﹣a)3•a2﹣(﹣a)2•(﹣a3)20.已知20x=1000,50y=1000,求的值.21.求x,使x满足.22.计算:(1)(m4)2+m5•m3+(﹣m)4•m4(2)x6÷x3•x2+x3•(﹣x)2.23.求值:(1)已知3×9m÷27m=316,求m的值.(2)若2x+5y﹣3=0,求4x•32y的值.(3)若n为正整数,且x2n=4,求(3x3n)2﹣4(x2)2n的值.24.阅读材料:(1)1的任何次幂都为1;(2)﹣1的奇数次幂为﹣1;(3)﹣1的偶数次幂为1;(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2016的值为1.25.若(x2+px+8)(x2﹣3x﹣q)的展开式中不含有x2和x3项,求p、q的值.26.若(x2+nx+3)(x2﹣3x+m)的乘积中不含x2项和x3项,求m,n的值.27.已知等式(x+a)(x+b)=x2+mx+28,其中a、b、m均为正整数,你认为m可取哪些值?它与a、b的取值有关吗?请你写出所有满足题意的m的值.28.观察以下等式:(x+1)(x2﹣x+1)=x3+1(x+3)(x2﹣3x+9)=x3+27(x+6)(x2﹣6x+36)=x3+216…(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2﹣xy+y2)﹣(x+2y)(x2﹣2xy+4y2)29.已知一个多项式与单项式﹣7x5y4的积是21x5y7﹣28x7y4+14x6y4,求这个多项式.参考答案一.填空题(共6小题)1.﹣;2.2;3.10;4.1或﹣3;5.2009;6.1;二.解答题(共34小题)7.;8.;9.;10.;11.;12.<;<;>;>;当n=1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;>;13.;14.;15.;16.;17.;18.i;﹣1;﹣i;1;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.a2﹣ab+b2;29.;。

(完整版)幂的运算练习题及答案(可编辑修改word版)

(完整版)幂的运算练习题及答案(可编辑修改word版)

.《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0 个B、1 个C、2 个D、3 个二、填空题A、﹣299B、﹣2C、299D、26、计算:x2•x3= ;(﹣a2)3+(﹣a3)2=2、当m 是正整数时,下列等式成立的有().(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4 个B、3 个C、2 个D、1 个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y37、若2m=5,2n=6,则2m+2n=.三、解答题8、已知 3x(x n+5)=3x n+1+45,求 x 的值。

9、若 1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的3 21 2 4 4C、4x y•(﹣2x y)= ﹣2x yD、(x﹣y)值.3=x3﹣y34、a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1 与b2n+1D、a2n﹣1 与﹣b2n﹣15、下列等式中正确的个数是()10、已知 2x+5y=3,求 4x•32y的值.11、已知 25m•2•10n=57•24,求 m、n..a 12、已知 a x =5,a x+y =25,求 a x +a y 的值.13、若 x m+2n =16,x n =2,求 x m+n 的值.14、比较下列一组数的大小.8131,2741,96115、如果 a 2+a=0(a ≠0),求 a 2005+a 2004+12 的值.16、已知 9n+1﹣32n =72,求 n 的值.18、若(a n b m b )3=a 9b 15,求 2m+n 的值. 19、计算:a n ﹣5(a n+1b 3m ﹣2)2+(a n ﹣1b m ﹣2)3(﹣b 3m+2) 20、若 x=3a n ,y=﹣1 2n ﹣1,当 a=2,n=3 时,求 a n x ﹣ay 的值. 2 21、已知:2x =4y+1,27y =3x ﹣1,求 x ﹣y 的值. 22、计算:(a ﹣b )m+3•(b ﹣a )2•(a ﹣b )m •(b ﹣a )5 23、若(a m+1b n+2)(a 2n ﹣1b 2n )=a 5b 3,则求 m+n 的值.24、用简便方法计算:1(1)(24)2×421(4)[(2)2]3×(23)3(2)(﹣0.25)12×412(3)0.52×25×0.125答案与评分标准一、选择题(共 5 小题,每小题 4 分,满分 20 分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。

-299 B。

-2 C。

299 D。

22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。

4个 B。

3个 C。

2个 D。

1个3.下列运算正确的是()A。

2x+3y=5xy B。

(-3x^2y)^3=-9x^6y^3C。

D。

(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。

an与XXX^(2n)与b^(2n)C。

a^(2n+1)与b^(2n+1) D。

a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。

0个 B。

1个 C。

2个 D。

3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。

9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。

北师大版七年级数学下册幂的运算能力提升专项练习题(附答案详解)

北师大版七年级数学下册幂的运算能力提升专项练习题(附答案详解)

北师大版七年级数学下册幂的运算能力提升专项练习题(附答案详解)1.下列运算正确的是A .235a b ab +=B .22()ab a b -=C .248a a a ⋅=D .33622⋅=a a a 2.下列运算正确的是( )A .m 2+2m 3=3m 5B .m 2•m 3=m 6C .(﹣m )3=﹣m 3D .(mn )3=mn 33.下列计算正确的是( )A .a+a=a 2B .a•a=a 2C .(a 3)2=a 5D .a 2•a 3=a 64.下列运算正确的是( )A .B .C .D .5.下列运算中,正确的是( )A .÷x=B .C .3x -2x=1D . 6.下列运算正确的是( )A .a 2+a 2=a 4B .(a+b )2=a 2+b 2C .a 6÷a 2=a 3D .(﹣2a 3)2=4a 67.计算26x .3x 的结果是( )A .6xB .65xC .66xD .69x8.计算33)(a -的结果是( )A .27-aB .6-aC .9aD .9-a9.下列计算中正确的是 A .22·a a a = B .22?2a a a = C .2242)2a a =( D .842a a a ÷= 10.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是( )A .2.3×105辆B .3.2×105辆C .2.3×106辆D .3.2×106辆 11.计算:20132014125.0)8(⨯- = 。

12.计算(π﹣3)0=_________.13.若()2320•xa a a =,则x 的值为_________14.计算(1)()2354a a a ⋅+=______; (2)()()32322⎡⎤-⋅-=⎣⎦______. 15.若105m =103n =,则n m 3210-的值是 .16.(-x 3)4+(-2x 6)2=______.17.计算:955x x x ÷⋅=________,()553x x x÷÷=________. 18.计算:24233(2)a a a ⋅+- =_________。

(完整word版)苏教版七年级数学幂的运算练习卷

(完整word版)苏教版七年级数学幂的运算练习卷

6 a -^a =a / 八 3 3^3 (—ab )= - a bC . (a * 2) 3=a 5苏教版 七年级 数学 幂的运算 练习卷一 .选择题(共13小题) 1 .碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为 的碳纳米管,1纳米=0.000000001米,则 A . 0.5X10^9 米 B . 5X 0-8米 C . 5X 0-9 米 D . 5X 0-10 米 0.5纳米用科学记数法表示为(2. -2.040 X 05表示的原数为( ) A . - 204000 B . - 0.000204 C . - 204.000 D . - 20400 3. (2007?十堰)下列运算正确的是( A6小 3 18 f / 3、2 2 5 A . a ?a =a B . (a ) a =a 一 6 3 2 f 33^3 C . a -^a =a D . a +a =2a 4. (2007?眉山)下列计算错误的是( z 、33A . (- 2x ) = - 2xC . (- x )9r- x )3 6=x)3B . - a ?a= - a3、2 , 6D . (- 2a )=4a0.5纳米6. (2004?三明)下列运算正确的是(A 2小 3 6 A . x ?x =x C . (x - 1) 0=1) ( 2) 3 6 (—x ) =x5 4 D . 6x 5-2x=3x 4 7. A . x>--B . XM —二2[2C . x <--D . x M2\2在①(-1) 0=1 ;②(-1) 3=-1 :③3a =,;④3a(-x ) 5— (- x ) 3= - x 2 中,A .①②B .②③C .①②③D .①②③④苦 (3、 右 a =( )-2 b= (- 1) -1,c=(--.)则 a , b ,c 的大小关系是()A . a > b > cB . a > c > bC . c > a > bD . c > b > a则 )8. 9. 正确的式子有(若( 2x+1 ) 0=110•通讯卫星的高度是 并同时反射给地面需要 A . 3.6X10「1秒 C . 2.4X10「2 秒3.6 X107米,电磁波在空中的传播速度是)B . 1.2 X 0^1 秒 D . 2.4 X 0「1 秒3X108米/秒,从地面发射的电磁波被通讯卫星接受5. 正确的是(1212B .D11.下列计算,结果正确的个数()(1) U) —1 =—3:—3; (2) 2 = —8;(3)(-上)—2——';(4) ( n—3.14) 0=134gA . 1个B. 2个C. 3个D. 4个12. 下列算式,计算正确的有-3 0①10 =0.0001 ;② (0.0001)=1;③ 3aA . 1个B. 2个C. 3个D. 4个13. 计算:^ 的结果是()5 4A .主B. §5 4C.(为仙D. (5他54二.填空题(共8小题)1 - 314. (2005?常州)(占)°= ---------------------------- ;©= ---------------------a+215. 已知(a- 3)a2=1,则整数a= ________________ .16 .如果(x - 1)x+4=1成立,那么满足它的所有整数x的值是24. ________________________________________________________________________ (2010?西宁)计算:(斗)7 —(2 14—兀)°+0.0X4°=________________________________________________________________________________ •25•计算:(1)(- 2.5x3) 2(- 4x3) = _ __ ;(2)(- 104) ( 5XI05) ( 3X102) = ______________ ;26 •计算下列各题:(用简便方法计算)2n 2n-1 2 2 3 2(1)- 10 XI00x( - 10) = ________________________________________ ; (2) [ (- a) (- b) ?a b c] = ;(3)(x3) 2^x2^x+x3-( - x) 2? (- x2) = _______________ ; (4)〔-9)0(-2)(丄)5= ____________3 327.把下式化成(a- b) p的形式:15 ( a- b) 3[ - 6 ( a- b) p+5] (b- a) 2^45 (b - a) 5= ____________ .28 .如果x m=5, x n=25,则x5m-2n的值为________________________ •,. n m k 戸「2n+m-2k 砧/古*29. 已知:a =2, a =3, a =4,贝U a 的值为.30 .比较2100与375的大小2100 ________________ 375.答案与评分标准一•选择题(共13小题)1 •碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,贝U 0.5纳米用科学记数法表示为( )A • 0.5X10「9米B • 5 XI0「8米C. 5X10「9米 D • 5X10^10米考点:科学记数法一表示较小的数。

第八章《幂的运算》培优训练卷(含答案)

第八章《幂的运算》培优训练卷(含答案)

第八章《幂的运算》培优训练卷班级___________ 姓名___________ 学号____________ 分数____________一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2021·重庆八中九年级阶段练习)计算52a a ⋅的结果是( ) A .52aB .62aC .53aD .63a2.(2022·全国·七年级)下列选项中,是同底数幂的是( ) A .()2a -与2aB .2a -与()3a -C .5x -与5xD .()3-a b 与()3b a -3.(2022·重庆涪陵·八年级期末)下列计算正确的是( ) A .2323a a a +=B .623a a a ÷=C .33(2)6a a =D .()1432a a =4.(2021·重庆市万盛经济技术开发区溱州中学八年级阶段练习)若a m =4,a n =2,则a m+3n的值是( )A .8B .12C .24D .325.(2022·福建省福州第十六中学八年级期末)近年来,新冠肺炎给人类带来了巨大灾难,经科学家研究,冠状病毒多数为球形或近似球形,其直径约为0.00000011米,其中数据0.00000011用科学记数法表示正确的是( ) A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯6.(2021·北京·清华附中八年级期中)已知781a =,927b =,139c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .a c b >>C .a b c <<D .b c a >>二、填空题(本大题共10小题,每小题2分,共20分) 7.(2022·四川南充·八年级期末)计算22-的结果是______.8.(2022·天津市第七中学八年级期末)计算:36x x ⋅=________________.9.(2021·黑龙江·哈尔滨德强学校八年级阶段练习)计算:202120212552⎛⎫⎛⎫-⨯= ⎪⎪⎝⎭⎝⎭_______.10.(2021·辽宁兴城·八年级期中)已知a m =4,a n =6,则a m +n =______. 11.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________.12.(2021·浙江嘉兴·七年级期末)若9a ∙27b ÷81c =9,则2c ﹣a ﹣32b 的值为____.13.(2022·全国·七年级)若n 是正整数,且210n a =,则3222()8()n n a a --=__________.14.(2021·湖南永兴·八年级阶段练习)11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的排列是____(用<号连接)15.(2021·山东·济南育英中学七年级期中)我们定义:三角形=a b •a c ,五角星=z •(x m •y n ),若=4,则的值=_____.16.(2022·吉林吉林·八年级期末)如图,王老师把家里的WIFI 密码设置成了数学问题.吴同学来王老师家做客,看到WIFI 图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________.账号:Mr .Wang 's house王134wang1314x yz ⎢⎥⊕=⎣⎦ 浩15220hao31520xy x z ⎢⎥⊕⋅=⎣⎦ 阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦密码三、解答题(本大题共11小题,17,18每小题7分,19,20,21,22,23,24,25每小题8分,26,27每小题9分,共88分.解答应写出文字说明、证明过程或演算步骤) 17.(2021·吉林临江·八年级期末)计算:2222342()()a b a b a ----⋅÷18.(2021·广东高州·七年级期末)计算: (1)﹣12021+(13)﹣2+(π﹣3.14)0;(2)(6a 3b 2﹣4a 2b )÷2ab .19.(2021·全国·八年级课时练习)已知3m a =,5n a =,求: (1)m n a -的值; (2)32m n a -的值.20.(2022·全国·七年级)声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍? (2)喷气式飞机声音的强度是汽车声音的强度的多少倍?21.(2021·河南·八年级阶段练习)规定*33a b a b =⨯,求: (1)求1*2;(2)若2*(1)81x +=,求x 的值.22.(2021·福建永春·八年级期中)规定两个非零数a ,b 之间的一种新运算,如果a m =b ,那么a ∧b =m .例如:因为52=25,所以5∧25=2;因为50=1,所以5∧1=0. (1)根据上述规定填空:2∧32= ;﹣3∧81= . (2)在运算时,按以上规定请说明等式8∧9+8∧10=8∧90成立.23.(2021·山西·太原市外国语学校七年级阶段练习)若a *b =c ,则a c =b .例如:若2*8=3,则23=8(1)根据上述规定,若5*1125=x ,则x = . (2)记5*2=a ,5*6=b ,5*18=c ,求a ,b ,c 之间的数量关系.24.(2020·江苏江都·七年级期中)如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.25.(2019·福建·莆田第十五中学七年级阶段练习)我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a =N (a >0,a ≠1,N >0),则b 叫做以a 为底N 的对数,记作log Na =b ,例如:因为35=125,所以1255log =3;因为211=121,所以12111log =2(1)填空:66log = ,16log = ; (2)如果(2)2log m -=3,求m 的值.26.(2021·河北邢台·八年级阶段练习)按要求解答下列各小题. (1)已知10m =6,10n =2,求10m ﹣n 的值; (2)如果a +3b =4,求3a ×27b 的值; (3)已知8×2m ÷16m =215,求m 的值.27.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=① 则22021202222222S =++⋅⋅⋅++② ②-①得,2022221S S S -==-. 请仿照小明的方法解决以下问题: (1)220222++⋅⋅⋅+=______; (2)求2501111222+++⋅⋅⋅++=______;(3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2021·重庆八中九年级阶段练习)计算52a a ⋅的结果是( ) A .52a B .62a C .53a D .63a【答案】B 【分析】根据同底数幂的乘法运算法则求解即可. 【详解】 解:562=2a a a ⋅. 故选:B . 【点睛】此题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法运算法则.同底数幂相乘,底数不变,指数相加.2.(2022·全国·七年级)下列选项中,是同底数幂的是( ) A .()2a -与2a B .2a -与()3a -C .5x -与5xD .()3-a b 与()3b a -【答案】C 【分析】根据各项的底数分析判断即可 【详解】A . ()2a -的底数是a -,2a 的底数是a ,故该选项不符合题意;B . 2a -的底数是a ,()3a -的底数是a -,故该选项不符合题意; C . 5x -与5x 的底数都是x ,故该选项符合题意;D . ()3-a b 的底数是()a b -,()3b a -的底数是()b a -,故该选项不符合题意;故选C 【点睛】本题考查了同底数幂的形式,理解幂的定义是解题的关键.把n 个相同的因数a 相乘的积记作n a ,其中a 叫做底数,n 叫做指数.3.(2022·重庆涪陵·八年级期末)下列计算正确的是( ) A .2323a a a +=B .623a a a ÷=C .33(2)6a a =D .()1432a a =【分析】根据合并同类项,同底数幂的除法,积的乘方,幂的乘方依次计算判断即可得. 【详解】解:A 、22a a +,不是同类项,不能化简,选项错误; B 、624a a a ÷=,选项错误; C 、()3328a a =,选项错误; D 、()4312a a =,选项正确; 故选:D . 【点睛】本题主要考查合并同类项,同底数幂的除法,积的乘方,幂的乘方,熟练掌握各运算法则是解题的关键.4.(2021·重庆市万盛经济技术开发区溱州中学八年级阶段练习)若a m =4,a n =2,则a m +3n的值是( )A .8B .12C .24D .32【答案】D 【分析】根据同底数幂的乘法的逆运算,以及幂的乘方的逆运算进行求解即可. 【详解】解:∵4m a =,2n a =,∴()()33334232m n m n m n a a a a a +=⋅=⋅=⨯=,故选D . 【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,解题的关键在于能够熟练掌握相关计算法则.5.(2022·福建省福州第十六中学八年级期末)近年来,新冠肺炎给人类带来了巨大灾难,经科学家研究,冠状病毒多数为球形或近似球形,其直径约为0.00000011米,其中数据0.00000011用科学记数法表示正确的是( ) A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00000011=71.110-⨯, 故选B . 【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.(2021·北京·清华附中八年级期中)已知781a =,927b =,139c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .a b c << D .b c a >>【答案】A 【分析】根据幂的乘方的逆运算可直接进行排除选项. 【详解】解:∵781a =,927b =,139c =,∴()742833a ==,()932733b ==,()1322633c ==,∴a b c >>; 故选A . 【点睛】本题主要考查幂的乘方的逆用,熟练掌握幂的乘方的逆用是解题的关键. 二、填空题(本大题共10小题,每小题2分,共20分) 7.(2022·四川南充·八年级期末)计算22-的结果是______. 【答案】14【分析】根据负整数指数幂的运算法则计算即可.解:2211224-==, 故答案为:14.【点睛】本题考查了负整数指数幂,熟知运算法则是解题的关键.8.(2022·天津市第七中学八年级期末)计算:36x x ⋅=________________. 【答案】9x 【分析】根据同底数幂的乘法法则,底数不变,指数相加计算即可. 【详解】 ∵36x x ⋅=9x , 故答案为:9x . 【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.9.(2021·黑龙江·哈尔滨德强学校八年级阶段练习)计算:202120212552⎛⎫⎛⎫-⨯= ⎪⎪⎝⎭⎝⎭_______.【答案】1- 【分析】由积的乘方的逆运算进行计算,即可得到答案. 【详解】 解:20212021202120212525()(1)15252⎛⎫⎛⎫-⨯=-⨯=-=- ⎪⎪⎝⎭⎝⎭;故答案为:1-. 【点睛】本题考查了积的乘方的逆运算,解题的关键是掌握运算法则,正确的进行计算. 10.(2021·辽宁兴城·八年级期中)已知a m =4,a n =6,则a m +n =______. 【答案】24 【分析】利用同底数幂的乘法的逆运算即可求解.解:4,6m n a a ==, 又4624m n m n a a a +=⋅=⨯=, 故答案是:24. 【点睛】本题考查了同底数幂的乘法的逆运算,解题的关键是掌握相应的运算法则. 11.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 【答案】3x ≠ 【分析】任何不为零的数的零次幂都等于零,根据定义解答. 【详解】解:∵0(3)1x -=, ∴3x ≠, 故答案为:3x ≠. 【点睛】此题考查了零指数幂定义,熟记定义是解题的关键.12.(2021·浙江嘉兴·七年级期末)若9a ∙27b ÷81c =9,则2c ﹣a ﹣32b 的值为____.【答案】-1 【分析】根据幂的乘方公式以及同底数幂的乘法公式的逆运用,即可求解. 【详解】解:∵9a ∙27b ÷81c =9,∴(32)a ∙(33)b ÷(34)c =9,即:32a ∙33b ÷34c =32,∴2a +3b -4c =2,即: a +32b -2c =1,∴2c ﹣a ﹣32b =-1,故答案是:-1. 【点睛】本题主要考查幂的乘方公式以及同底数幂的乘法公式,熟练掌握幂的乘方公式以及同底数幂的乘法公式的逆运用是解题的关键.13.(2022·全国·七年级)若n 是正整数,且210n a =,则3222()8()n n a a --=__________. 【答案】200 【分析】把所求式子化为含a 2n 的形式,再代入即可求值; 【详解】解:32222322()8()()8()1000800200n n n n a a a a --=-=-= 故答案为:200 【点睛】本题考查代数式求值,解题的关键是熟练掌握积的乘方、幂的乘方公式逆用.14.(2021·湖南永兴·八年级阶段练习)11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的排列是____(用<号连接)【答案】()1201(2)36-⎛⎫-<<- ⎪⎝⎭【分析】根据负整数指数幂,零次幂,有理数的乘方分别计算,再比较大小即可. 【详解】()()1021=62=1,396-⎛⎫--= ⎪⎝⎭,,169<< ∴()1201(2)36-⎛⎫-<<- ⎪⎝⎭故答案为:()1201(2)36-⎛⎫-<<- ⎪⎝⎭.【点睛】本题考查了负整数指数幂,零次幂,有理数的乘方,掌握负整数指数幂,零次幂,有理数的乘方是解题的关键.15.(2021·山东·济南育英中学七年级期中)我们定义:三角形=a b •a c ,五角星=z •(x m •y n ),若=4,则的值=_____.【答案】32【分析】根据题意可得出算式2334x y ⋅=,根据同底数幂的乘法得出234x y +=,求出2422316(3)x y y x ++==,根据题意得出所求的代数式是2(981)x y ⋅,再根据幂的乘方和积的乘方进行计算,最后求出答案即可.【详解】解:根据题意得:2334x y ⋅=,所以234x y +=,即2423416x y +==,所以2(981)x y ⋅242[(3)(3)]x y =⨯⋅242(33)x y =⨯⋅222(33)x y =⨯⋅224=⨯32=,故答案为:32.【点睛】本题考查了有理数的混合运算和整式的混合运算,解题的关键是能灵活运用整式的运算法则进行计算.16.(2022·吉林吉林·八年级期末)如图,王老师把家里的WIFI 密码设置成了数学问题.吴同学来王老师家做客,看到WIFI 图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________. 账号:Mr .Wang 's house王134wang1314x yz ⎢⎥⊕=⎣⎦浩15220hao31520xy x z ⎢⎥⊕⋅=⎣⎦阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦密码【答案】yang 8888【分析】根据题中wifi 密码规律确定出所求即可.【详解】解:阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦阳88888888x y z yang ⊕= 故答案为:yang 8888.【点睛】此题考查了同底数幂相乘和幂的乘方,熟练掌握运算法则是解本题的关键.三、解答题(本大题共11小题,17,18每小题7分,19,20,21,22,23,24,25每小题8分,26,27每小题9分,共88分.解答应写出文字说明、证明过程或演算步骤)17.(2021·吉林临江·八年级期末)计算:2222342()()a b a b a ----⋅÷【答案】8b【分析】幂的混合运算,先做乘方,然后做乘除.【详解】解:2222342()()a b a b a ----⋅÷22668a b a b a ---=⋅÷888a b a --=÷8b =.【点睛】本题考查了整式的混合运算,负整数指数幂,同底数幂的乘法,幂的乘方与积的乘方,解题关键是熟练掌握幂的有关运算法则.18.(2021·广东高州·七年级期末)计算:(1)﹣12021+(13)﹣2+(π﹣3.14)0; (2)(6a 3b 2﹣4a 2b )÷2ab .【答案】(1)9;(2)232a b a -【分析】(1)根据有理数的乘方,负整指数幂,零次幂进行计算即可;(2)直接根据多项式除以单项式的法则计算即可.【详解】(1)(1)﹣12021+(13)﹣2+(π﹣3.14)0 191=-++9=;(2)(6a 3b 2﹣4a 2b )÷2ab3226242a b ab a b ab =÷-÷232a b a =-【点睛】本题考查了有理数的乘方,负整指数幂,零次幂,多项式除以单项式,掌握以上运算法则是解题的关键.19.(2021·全国·八年级课时练习)已知3m a =,5n a =,求:(1)m n a -的值; (2)32m n a -的值.【答案】(1)35;(2)2725. 【分析】(1)根据同底数幂的除法法则的逆运算解题;(2)根据同底数幂的除法法则的逆运算、幂的乘方法则的逆运算解题.【详解】解:(1)∵3m a =,5n a =, ∴3355m n m n a a a -=÷÷==; (2)∵3m a =,5n a =, ∴32323232()527(352)m n m n m n a a a a a -====÷÷÷. 【点睛】本题考查幂的运算,涉及同底数幂的除法的逆运算、幂的乘方的逆运算等知识,是重要考点,掌握相关知识是解题关键.20.(2022·全国·七年级)声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍?(2)喷气式飞机声音的强度是汽车声音的强度的多少倍?【答案】(1) 105;(2) 105.【分析】(1)由题意直接根据同底数幂的除法运算法则进行计算即可得出答案;(2)根据题意利用同底数幂的除法运算法则进行计算即可得出答案.【详解】解:(1)因为1010÷105=1010-5=105,所以汽车声音的强度是人声音的强度的105倍;(2)因为人的声音是50分贝,其声音的强度是105,汽车的声音是100分贝,其声音的强度为1010,所以喷气式飞机的声音是150分贝,其声音的强度为1015,所以1015÷1010=1015-10=105,所以喷气式飞机声音的强度是汽车声音的强度的105倍.【点睛】本题主要考查的是同底数幂的除法的应用,熟练掌握同底数幂的除法法则是解题的关键. 21.(2021·河南·八年级阶段练习)规定*33a b a b =⨯,求:(1)求1*2;(2)若2*(1)81x +=,求x 的值.【答案】(1)27;(2)1x =【分析】(1)根据规定即可完成;(2)根据规定及幂的运算,可得关于x 的方程,解方程即可.【详解】(1)33a b a b *=⨯,1212333927∴*=⨯=⨯=;(2)2(1)81x *+=,214333x +∴⨯=,3433x +∴=则34x +=,解得:1x =.本题是新定义运算问题,考查了同底数幂的运算,解方程等知识,理解新定义运算是解题的关键.22.(2021·福建永春·八年级期中)规定两个非零数a,b之间的一种新运算,如果a m=b,那么a∧b=m.例如:因为52=25,所以5∧25=2;因为50=1,所以5∧1=0.(1)根据上述规定填空:2∧32=;﹣3∧81=.(2)在运算时,按以上规定请说明等式8∧9+8∧10=8∧90成立.【答案】(1)5,4;(2)说明见解析.【分析】(1)结合新定义运算及有理数的乘方运算法则分析计算;(2)结合新定义运算及同底数幂的乘法运算法则进行分析说明.【详解】解:(1)∵25=32,∴2∧32=5,∵(−3)4=81,∴−3∧81=4,故答案为:5;4;(2)设8∧9=a,8∧10=b,8∧90=c,∴8a=9,8b=10,8c=90∴8a×8b=8a+b=9×10=90=8c,∴a+b=c,即8∧9+8∧10=8∧90.【点睛】本题考查新定义运算,掌握有理数乘方运算法则,同底数幂的乘方运算法则是解题关键.23.(2021·山西·太原市外国语学校七年级阶段练习)若a*b=c,则a c=b.例如:若2*8=3,则23=8(1)根据上述规定,若5*1125=x,则x=.(2)记5*2=a,5*6=b,5*18=c,求a,b,c之间的数量关系.【答案】(1)﹣3;(2)2b=a+c.(1)根据定义和负整数指数幂公式即可解答;(2)根据定义得5a =2,5b =6,5c =18,发现62=2×18,从而得到a ,b ,c 之间的关系.【详解】解:(1)根据题意得:3311551255x -===, ∴x =﹣3.故答案为:﹣3;(2)根据题意得:5a =2,5b =6,5c =18,∴52b =(5b )2=62=36,5a ×5c =2×18=36,∴52b =5a ×5c =5a +c ,∴2b =a +c .【点睛】本题考查了负整数指数幂,同底数幂的乘法,幂的乘方,会逆用幂的运算法则是解题的关键.24.(2020·江苏江都·七年级期中)如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.【答案】(1)3,0,﹣2;(2)a +b =c ,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a ,b ,c 的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0, ∵2﹣2=14,∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a +b =c .理由:∵(3,5)=a ,(3,6)=b ,(3,30)=c ,∴3a =5,3b =6,3c =30,∴3a ×3b =5×6=3c =30,∴3a ×3b =3c ,∴a +b =c .【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.25.(2019·福建·莆田第十五中学七年级阶段练习)我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a =N (a >0,a ≠1,N >0),则b 叫做以a 为底N 的对数,记作log N a =b ,例如:因为35=125,所以1255log =3;因为211=121,所以12111log =2 (1)填空:66log = ,16log = ;(2)如果(2)2log m -=3,求m 的值.【答案】(1)1,0;(2)m =10.【分析】(1)把对数运算转化为幂运算求解即可;(2)把对数运算转化为幂的运算求解即可.【详解】解:(1)∵1066,61==,∴66log =1,16log =0,故答案为:1,0;(2)∵(2)2log m -=3,∴32=m ﹣2,解得:m =10.【点睛】本题考查了新运算问题,解答时,熟练将对数运算转化为对应的幂的运算是解题的关键. 26.(2021·河北邢台·八年级阶段练习)按要求解答下列各小题.(1)已知10m =6,10n =2,求10m ﹣n 的值;(2)如果a +3b =4,求3a ×27b 的值;(3)已知8×2m ÷16m =215,求m 的值.【答案】(1)3;(2)81;(3)4m =-【分析】(1)根据同底数幂的除法逆用可直接进行求解;(2)根据同底数幂的乘法的逆用可直接进行求解;(3)根据同底数幂的乘除法可直接进行求解.【详解】解:(1)∵10m =6,10n =2,∴101010623m n m n -=÷=÷=;(2)∵a +3b =4,∴334327333381a b a b a b +⨯=⋅===;(3)∵8×2m ÷16m =215,∴31534422222m m m m +-==⨯÷∴3315m -=,解得:4m =-.【点睛】本题主要考查同底数幂的乘除运算,熟练掌握同底数幂的乘除运算是解题的关键. 27.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)【答案】(1)221−2;(2)2-5012;(3)101223-;(4)()121n a a a +--+11n na a +- 【分析】(1)根据阅读材料可得:设s =220222++⋅⋅⋅+①,则2s =22+23+…+220+221②,②−①即可得结果;(2)设s =2501111222+++⋅⋅⋅+①,12s =2505111112222++⋅⋅⋅++②,②−①即可得结果; (3)设s =()()()2100222-+-+⋅⋅⋅+-①,-2s =()()()23101222-+-+⋅⋅⋅+-②,②−①即可得结果;(4)设s =2323n a a a na +++⋅⋅⋅+①,as =234123n a a a na ++++⋅⋅⋅+②,②−①得as -s =-a -2341n n a a a a na +--⋅⋅⋅-++,同理:求得-2314n a a a a ++--⋅⋅⋅-,进而即可求解.【详解】解:根据阅读材料可知:(1)设s =220222++⋅⋅⋅+①,2s =22+23+…+220+221②,②−①得,2s −s =s =221−2;故答案为:221−2;(2)设s =2501111222+++⋅⋅⋅+①, 12s =2505111112222++⋅⋅⋅++②, ②−①得,12s −s =-12s =5112-1, ∴s =2-5012, 故答案为:2-5012; (3)设s =()()()2100222-+-+⋅⋅⋅+-①-2s =()()()23101222-+-+⋅⋅⋅+-②②−①得,-2s −s =-3s =()1012-+2 ∴s =101223-; (4)设s =2323n a a a na +++⋅⋅⋅+①,as =234123n a a a na ++++⋅⋅⋅+②,②-①得:as -s =-a -2341n n a a a a na +--⋅⋅⋅-++,设m =-a -234n a a a a --⋅⋅⋅-+③,am =-2314n a a a a ++--⋅⋅⋅-④,④-③得:am -m =a -1n a +,∴m =11n a a a +--, ∴as -s =11n a a a +--+1n na +, ∴s =()121n a a a +--+11n na a +-. 【点睛】本题考查了规律型−实数的运算,解决本题的关键是理解阅读材料进行计算。

(完整版)幂的运算练习题

(完整版)幂的运算练习题

8.计算:(x -y )2·(x -y )3-(x -y )4·(y -x )幂的运算练习题(每日一页)基础能力训练】 、同底数幂相乘1.下列语句正确的是( )A .同底数的幂相加,底数不变,指数相乘;B .同底数的幂相乘,底数合并,指数相加;C .同底数的幂相乘,指数不变,底数相加;D .同底数的幂相乘,底数不变,指数相加 2. a 4·a m ·a n =( )A .a4mB . a4(m+n )C . a m+n+4D .am+n+47.计算: a 5·(- a )2·(-a )33.(- x )·(-x )8·(- x )3=( ) A .(- x )11 B .(- x )24 C .x 12 4.下列运算正确的是( ) A .a 2· a 3=a 6 B . a 3+a 3=2a 6 C .a 3a 2=a 65.a ·a 3x 可以写成( ) A .( a 3)x+1 B .(a x )3+1 C .a 3x+16.计算: 100×100m -1×100m+1D.D .-x 12a8-a 4=a D .(a x )2x+1、幂的乘方9.填空:(1)(a8)7= ____ ;(2)(105)m= ___ ;(3)(a m)3= ___ ;(4)(b2m)5= _______ ;(5)(a4)2·(a3)3= ____ .10.下列结论正确的是()A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C.a 的m 次幂的n 次方等于 a 的m+n 次幂;D.a的m次幂的n次方等于a的mn次幂11.下列等式成立的是()A.(102)3=105B.(a2)2=a4C.(a m)2=a m+2D.(x n)2=x2n 12.下列计算正确的是()A.(a2)3·(a3)2=a6·a6=2a6 B.(-a3)4·a7=a7·a2=a9 2 3 3 2 6 6 12C.(-a )·(-a )=(-a )·(-a )=aD.-(-a3)3·(-a2)2=-(-a9)·a4=a1313.计算:若642×83=2x,求x 的值.、积的乘方14.判断正误:(1)积的乘方,等于把其中一个因式乘方,把幂相乘()(2)(xy)n=x· y n()(3)(3xy)n=3(xy )n()(4)(ab)nm=a m b n()(5)(-abc)n=(-1)n a n b n c n()15.(ab3)4=()A.ab12B.a4b7C.a5b7D.a4b1222.已知 2×8n ×16n =222,求 n 的值.16.(- a 2b 3c )3=( )A .a 6b 9c 3B .-a 5b 6c 3C .-a 6b 9c 3D .- a 2b 3c 317.(- a m+1b 2n )3=( ) A .a 3m+3b 6nB .- a 3m +b 6nC .-a 3m+3b 6nD .-a 3m+1b 8m318.如果( a n b m b )3=a 9b 15,那么 m ,n 的值等于( ) A .m=9,n=- 4 B . m=3,n=4n=6【综合创新训练】 一、综合测试 19.计算:11 m+1 12-m n -1 (- x · y )·(- x y )33、创新应用20.下列计算结果为 m 14 的是( )A .m 2·m 7B .m 7+m 7C .m ·m 6·m 721.若 5m+n =56·5n -m ,求 m 的值.3)(-a m b n c )2·(a m -1b n+1c n )24)[( 12)2] 4·(-23)C . m=4,n=3D .m=9,2)10× 102× 1 000×10n -3D .m ·m 8·m 623.已知x3n=2,求x6n+x4n·x5n的值.24.若2a=3,4b=6,8c=12,试求a,b,c 的数量关系.25.比较6111,3222,2333的大小.26.比较3555,4444,5333的大小.三、巧思妙想1 2 227.(1)( 2 )2× 42412)[(12)2] 3×(23)23)(-0.125)12×(- 1 2)7×(-8)13×3-35)4)-82003×(0.125)2002+(0.25)17×417计宜¢-2) i∞+ (-2)鈴所得的结果是( )A> -2" , -2C、产DK 22、当M是正整数时,下列等式咸立的有( )(1) a2fτ= (a ra) 2; <2) a2m= (a2) m; (3) a2m= ( -a m) 2; ( 4> a lm= (-a2> m.4 4个3个C、2个D* 1个3、下列运尊正确的是( >A S 2x+3γ=5xy B、(■ 3x2y)'二-9χδy3C、4χ3y2∙ ( -py2) χ-2x4y4DS(X-V) 5√-/4、a与b互为相反数,且都不等于0, n为正整数,则下列各组中一定互为相反数的是(A、J与b” B^a2n⅛b2nC、严⅞b2n*tD、孑2⅛-b2n^15、下列等戒中正确的个数是( )O5+a5=a ic∣②(- B ) δ∙ ( - a) 3∙a=a1°J Φ-a4∙ C -3 ) 5≡a2°J Φ5+25≡2δ.AZ个3、1个5 2个D・3个6 、计真;χ2∙χi≡ _____________ ; ( - a") 3+ ( - a2) 2=__________________ ・7 .若2π⅛,2'6,则2决叫_______________ •8、BftI 3κ (χπ+5 ) ≡3χ,Hl+45,求X 的值•9χ ≡ T3+2"求代数式(X ft Y) (χn*1v2) CX n V> - <x2yπ'1) (√)的值•10、已知2x+5y3 √*32v的值・11、已知25πn∙2∙10⅛7∙24≡ 求m、n∙12、EJD a x=5> a x4v=25> 求齐2的值.13、若严叫询χf⅛b求严「的值•14、e⅜ ID a=3» 10p=5> ICi7,试把105写咸底数是IO的幕的形式15、比较下列一组数的大小.8产,2产,95-16、如果a2+a=0 C a?O)J求a2005÷a2c°4+l2 的値.17 > B⅛ 9Γ*∙-32Γ=72^求n 的值.18、若< aπb m k>) 3=a5b15∙求2* 的值・19、计勒厂'<a r V2) 2+ (a n∙V z) 3 ( -b3m*2>迹若心T严, 当a=2 y n=3时,求一ay的值.21 > SJffls 2κ=4v*1> 27y≡3x'1 * 求X-Y 的值.22、i⅛M ≡ Ce e b)"」・(b β a ) J 〈匕―b) Cb-匕)23、若 C a rn*I b IH2) Ca2r∙1b2fl) =a⅛3则求m+n 的值•24用简便方法计算:Cl)(2丄)2χ424(2)( 一0.25〉12×41Z答案:【基础能力训练】1.D 2.D 3.C 4.C 5. C 6. 1002m+1 7.- a 10 8.原式 =(x -y )5-(x -y )4·[-(x -y )]=2(x -y )5 9.(1)a 56 (2) 105m(3)a 3m (4)b 10m (5)a 1710. D 11.B 12.D13.左边 =(82)2×83=84×83=87=(23)7=22115. D 16.C 17.C 18.20.C 解析: A 应为 m 9,B 应为 2m 7,D 应为 m 15.21.由 5m+n =56·5n -m =56+m -n 得 m+n=6+n -m ,即 2m=6,所以 m=3.22.式子 2×8n × 16n 可化简为: 2×23n ×24n =21+7n , 而右边为 222 比较后发现 1+7n=22,n=3.23.x 6n +x 4n ·x 5n =x 6n +x 9n =(x 3n )2+(x 3n )3把x 3n =2 代入可得答案为 12.而右边 =2x ,所以 x=21. 14.(1)× (2)× (3)× ( 4)×5)∨综合创新运用】1119.原式 =(- )×( )·33 y 1+n -1= 1 x 3y n9 原式 =10×102×103×10n -3=101+2+3+n -3=103+n 原式=(-1)2(a m )2·(b n )2·c 2·(a m -1) b 2n ·c 2·a 2m-2b 2n+2c 2n =a 4m -2b 4n+2c 2n+2xm+1·x 2-m·y ·y n -11 m+1+2-m=x 9(2)(3) 2m=a2·(b n+1)2(c n )2 4)原式=(21)2×4·(-1)3·23×3=-(21)829 29=-228=-224.由4=6得22b=6,8c=12即23c=12,所以2a·22b=2× 6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.25.3222=(32)111=9111,2333=(23)111=8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>533327.(1)原式=(9)2×42=814(2)原式=(1)6×29=(1×2)6×23=23=8223)原式= -1)12×(-5)7×(-8)13×(-3)98 3 5=-(1)12×813×(5 )7×(3)98 3 5=-(1 ×8)12×8×(5×3)7×(3)2=-8×9728 3 5 5 25 254)原式= 82003×(1 )20 02+(-1)17×4178 4=-(8× 1)2002×8+(-1×4)17=-8+(-1)=-9 84探究学习】设拉面师傅拉n 次就可以变成一碗面条,则2n=256,由于256=28,∴ n=8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章 幂的运算 提高练习题
一、 系统梳理知识:
幂的运算:1、同底数幂的乘法 ; 2、幂的乘方 ; 3、积的乘方

4、同底数幂的除法:(1)零指数幂 ;
(2)负整数指数幂。

请你用字母表示以上运算法则。

你认为本章的学习中应该注意哪些问题?
二、例题精选:
例1. 已知453)5(31
+=++n n
x x x ,求x 的值.
例2. 若1+2+3+…+n =a ,求代数式
))(())()(123221
n n n n n xy y x y x y x y x --- (的值.
例3. 已知2x +5y -3=0,求432x y
⋅的值.
例4. 已知74
2521052m n ⋅⋅=⋅,求m 、n .
例5. 已知y x y
x x
a a a a +==+求,25,5的值.
例6. 若n m n n
m x x x ++==求,2,162的值.
例7. 比较下列一组数的大小.(1)61
41
31
92781,, (2)99
99909911,99
X Y == .
例8. 如果22009
20080(0),12a a a a a +=≠++求的值.
例9.已知723921
=-+n n ,求n 的值.
练习:
1.计算99
10022)
()(-+-所得的结果是( ) A.-2 B.2 C.-992 D.992 2.当n 是正整数时,下列等式成立的有( )
(1)22)(m m
a a
= (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-=
A.4个 B.3个 C.2个 D.1个 3.下列等式中正确的个数是( )
①5510a a a += ②7
3
10
()()a a a -⋅-= ③4
5
20
()a a a -⋅-= ④556222+=
A .0个
B .1个
C .2个
D .3个 4.下列运算正确的是( )
A .xy y x 532=+
B .3
6
3
2
9)3(y x y x -=- C .442
2
3
2)2
1(4y x xy y x -=-
⋅ D .333)(y x y x -=- 5.a 与b 互为相反数且都不为0,n 为正整数,则下列各组中的两个数互为相反数的一组是( ) A .n a 与n
b B .2n
a 与2n
b C .21
n a
-与21
n b
- D .21
n a
-与21
n b
--
6.计算:2
33
2)()(a a -+-= . 7.若52
=m
,62=n ,则n m 22+= .
8.如果等式2
(21)
1a a +-=,则a 的值为 。

9.若的值求n
m m
n
b a b b a +=2,)(15
93

10.计算:5
132212332()()()n n m n m m a a b a b b -+---++-
11.若3n
x a =,21
12
n y a -=-,当a=2,n=3时,求n a x ay -的值.
12.若124x y +=,1
273y x -=,求x y -的值.
13.计算:3
25()()()()m m a b b a a b b a +-⋅-⋅-⋅-
14.若
3521221
))(b a b a b a n n n m =-++(,则求m +n 的值.
15.用简便方法计算:(1)22
1(2)44
⨯ (2)1212
(0.25)4-⨯
(3)2
5
0.520.125⨯⨯ (4)32531()(2)2⎡⎤⨯⎢⎥⎣⎦ (5)()
()
2009
2008
2009
2 1.513⎛⎫
⨯⨯- ⎪
⎝⎭
16.已知x 满足22x+3-22x+1=48,求x 的值。

17.已知b a 2893==,求⎪⎭⎫ ⎝
⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-b a b b a b a 2512515122
2的值。

18.阅读下列一段话,并解决后面的问题.观察下面一列数:l ,2,4,8,…我们发现,这列数从第二项起,每一项与它前一项的比值都是2.我们把这样的一列数叫做等比数列,这个共同的比值叫做等比数列的公比. (1)等比数列5,一15,45,…的第4项是_______;
(2)如果一列数a 1,a 2,a 3,…是等比数列,且公比是q ,那么根据上述规定有
2
1
a q a =
32a q a =,43
a
q a =,…所以a 2=a 1q,a 3=a 2q=a 1q ·q=a 1q 2,a 4=a 3q=a 1q 2·q=a 1q 3, … 则a n =______;(用a 1与q 的代数式表示)
(3)一个等比数列的第2项是10,第3项是20,求它的第1项和第10项.
19.你能比较两个数20102011和20112010的大小吗?为了解决这个问题,先把问题一般化,即比较n n+1和(n+1)n
的大小(n ≥1且n 为整数):然后从分析n=1,n=2,n=3……这些简单的情形入手,从中发现规律,经过归纳、总结,最后猜想出结论.
(1)通过计算,比较下列各组数的大小(在横线处填上“>”、“=”或“<”): ①12_________21;②23_________32;③34________43;④45_________54; ⑤56_________65;⑥67_________76;⑦78________87…… (2)由第(1)小题的结果归纳、猜想n n+1与(n+1)n 的大小关系.
(3)根据第(2)小题得到的一般结论,可以得到20102011_________20112010(填“>”、“=”或“<”).
20.(1)观察下列各式: ①104÷103=104-
3=101; ②104÷102=104-2=102; ③104÷101=104-1=103; ④104÷100=104-0=104; 由此可以猜想:
⑤104÷10-
1=__________=__________; ⑥104÷10-2=__________=__________; (2)由上述式子可知,使等式a m ÷a n =a m
-n
成立的m 、n 除了可以是正整数外,还可以是_____________.
(3)利用(2)中所得的结论计算:①22÷2-
8;②x n ÷x -
n .
21.观察、分析、猜想并对猜想的正确性予以说明.
1×2×3×4+l =52 , 2×3×4×5+1=112 , 3×4×5×6+1=192 4×5×6×7+1=292 n(n+1)(n+2)(n+3)+1=__________(n 为整数).
22.先阅读下面材料,再解答问题.
一般地,n 个相同的因数a 相乘:n a a 个
…a 记为a n ,如23=8,此时,3叫做以2为底8的对数,记为log 28(即
log 28=3);一般地,若a n =b(a >0且a ≠l ,b >0),则n 叫做以a 为底b 的对数,记为log a b(即log a b=n),如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).
(1)计算以下各对数的值:log 24=_________,log 216=________,log 264=_________.
(2)观察(1)中三个数4、16、64之间满足怎样的关系式?log 24、log 216、log 264之间又满足怎样的关系式? (3)由(2)的结果,你能归纳出一个一般性的结论吗?
log a M+log a N=_________(a >0且a ≠1,M >0,N >0).
根据幂的运算法则:a m ·a n =a m+n 以及对数的含义说明上述结论.
参考答案
例1.3 例2.a
a
y x 例3.8
例4.m=2,n=3 例5.10 例6.8
例7.(1)6141
3192781>> (2)X=Y
例8.12 例9.1 练习题: 1. D 2. B 3. C 4. C 5. C 6. 0 7. 180 8. -2或1 9. 128 10. 0 11. 224 12. 3
13. 10
2)+--
m b a (
14.
3
14 15. (1)81 (2)1 (3)1 (4)9
2 (5)23
- 16. 32
x =
17. -64
18. (1)一135 (2)a l ·q n-1 (3)第一项是5,第十项是2560; 19. (1)①< ②< ③> ④> ⑤> ⑥> ⑦>
(2)当n=1、2时,n n+1<(n+1)n ;当n ≥3时,n n+1>(n+1)n (3)>。

相关文档
最新文档