相似三角形判定教案(1)
三角形相似的判定教学设计(优秀4篇)

三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。
(2)学生掌握相似三角形判定定理1,并了解它的证明。
(3)使学生初步掌握相似三角形的判定定理1的应用。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。
三、教学重难点:重点:掌握相似三角形判定定理1及其应用。
难点:定理1的证明方法。
四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。
(2)、师生共同总结:两角对应相等的两个三角形相似。
2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。
(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。
《三角形相似的判定定理》教案1

4 探索三角形相似的条件
第1课时三角形相似的判定定理(1)
【知识与技能】
1.经历三角形相似的判定定理 1 的探索及证明过程.
2.能应用定理1判定两个三角形相似,解决相关问题.
【过程与方法】
让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分
析问题、解决问题的能力.
【情感态度】
通过学生积极参与,激发学生学习数学的兴趣,体验数学的探索与创
造快乐.
【教学重点】
三角形相似的判定定理1及应用.
【教学难点】
三角形相似的判定定理1的证明.
一、情境导入,初步认识
现有一块三角形玻璃ABC, 不小心打碎了,只剩下∠A和∠B比较完整.如果用这两个角去配制一张完全一样的玻璃,能成功吗?
【教学说明】选择以旧孕新为切入点,创设问题情境,引入新课. 二、思考探究,获取新知
问题情景出现后,让学生充分发表自己的想法.
1、动手实验:
现在,已量出∠A=60°,∠B=45°,请同学们当一当工人师傅,在纸片上作∠A=60°,∠B=45°的△ABC,剪下与同桌所做的三角形比较,研究这两个三角形的关系.你有哪些发现?在小组内交流.
【教学说明】学生动手操作,教师巡回指导,启发点拨.
学生经过画一画、剪一剪、量一量、算一算、拼一拼,在小组合作基。
相似三角形的判定(1)学案

相似三角形的判定(一)一、学习目标:知识:通过对事物的图形的观察、思考与分析,认识理解相似的图形。
能力:经历动手操作的活动过程,增强学生的观察、动手能力。
二、教材分析:重点:相似图形的概念与成比例线段的概念 难点:成比例线段概念 三、教学过程:(一)复习巩固1、相似三角形有什么性质?2、如何判断两个三角形相似?(二)合作探究:平行线分线段成比例定理:1.如上图,直线345l l l ∥∥,直线12,l l 分别交345,,l l l 于 点A 、B 、C 、D 、E 、F 。
(1)分别测量线段AB 、BC 、DE 、EF 的长度;计算AB BC ,DEEF 的值,你有什么发现? (3)任意平移5l ,再测量BC 、EF 的长度,计算AB BC ,DEEF的值,上述规律还成立吗?(4)根据AB BC =DE EF 可以变形为=AC BC ,=ACAB, = 。
(依据)(5)由上述探究,你能发现什么规律?2.平行线分线段成比例定理: 。
几何语言表示为: 。
3.推论:(1)任意移动2l ,再测量DE 、EF的长度,并计算DE EF 的值,它与AB BC相等吗? (2)将l 2移动成右图的两种情况,上面的结论还成立吗?为什么?(三)教学例题1、例题:如右图在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E ,△ADE 有什么关系? (1)分析:要证△ADE 与△ABC 相似,就是证明为: ;边的关系为: 。
(2)证明过程:2、 归纳结论: 于三角形一边的直线和其它两边相交,所构成的三角形与原三角形 。
这个结论可以作为三角形相似的判定。
用几何语言表示: 。
3、推论:如果平行线与其他两边延长线相交,即DE ∥BC 结论还成立吗?为什么?(四)、课堂展示:1、如图,E 为平行四边形ABCD 的边BC 延长线上一点,连接AE ,交边CD 于点F 。
在不添加辅助线的情况下,请写出图中所有的相似三角形。
《相似三角形的判定(第1课时)》教案

相似三角形的判定第1课时相似三角形的判定〔1〕【知识与技能】会说判定两个三角形相似的方法:两个角分别相等的两个三角形相似.会用这种方法判断两个三角形是否相似.【过程与方法】培养学生动手操作能力.【情感态度】在动手推演中感受几何的趣味性.【教学重点】相似三角形的判定定理1以及推导过程,并会用判定定理1来证明和计算.【教学难点】相似三角形的判定定理1的运用.一、情境导入,初步认识1.两个矩形一定会相似吗?为什么?2.如何判断两个三角形是否相似?根据定义:对应角相等,对应边成比例.△ABC与△A′B′C′会相似吗?为什么?是否存在判定两个三角形相似的简便方法?本节就是探索识别两个三角形相似的方法.二、思考探究,获取新知同学们观察你与你的同伴用的三角尺,及老师用的三角板,如有一个角是30°的直角三角尺,它们的大小不一样.这些三角形是相似的,我们就从平常所用的三角尺入手探索.〔1〕45°角的三角尺是等腰直角三角形,它们是相似的.〔2〕30°的三角尺,那么另一个锐角为60°,有一个直角,因此它们的三个角都相等,同学们量一量它们的对应边,是否成比例呢?这样,从直观上看,一个三角形的三个角分别与另一个三角形三个角对应相等,它们好似就会“相似〞.是这样吗?请同学们动手试一试:1.画两个三角形,使它们的三个角分别相等.画△ABC与△DEF,使∠A=∠D,∠B=∠E,∠C=∠F,在实际画图过程中,同学们画几个角相等?为什么?实际画图中,只画∠A=∠D,∠B=∠E,那么第三个角∠C与∠F一定会相等,这是根据三角形内角和为180°所确定的.2.用刻度尺量一量各边长,它们的对应边是否会成比例?与同伴交流,是否有相同结果.3.发现什么现象:发现如果一个三角形的三个角与另一个三角形的三个角对应相等,那么这两个三角形相似.4.两个矩形的四个角也都分别相等,它们为什么不会相似呢?这是由于三角形具有它特殊的性质.三角形有稳定性,而四边形有不稳定性.于是我们得到判定两个三角形相似的一个较为简便的方法:如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说,两角对应相等,两三角形相似.同学们思考,能否再简便一些,仅有一对角对应相等的两个三角形,是否一定会相似呢?例1 如图,在两个直角三角形△ABC和△A′B′C′中,∠C=∠C′=90°,∠A=∠A′,判断这两个三角形是否相似.解:相似,因为∠C=∠C′,∠A=∠A′,根据相似三角形的判定定理1可知△A′B′C′∽△ABC.例2 在△ABC与△A′B′C′中,∠A=∠A′=50°,∠B=70°,∠B′=60°,这两个三角形相似吗?解:由三角形的内角和定理知∠C′=180°-∠A′-∠B′=180°-50°-60°=70°,∴∠C′=∠B,又∵∠A=∠A′,∴△ABC∽△A′C′B′.【教学说明】教师注意引导学生分析∠B不一定与∠B′对应.例3 如图,△ABC中,DE∥BC,EF∥AB,试说明△ADE∽△EFC.证明:∵DE∥BC,∴∠AED=∠∵EF∥AB,∴∠CEF=∠A.∴△ADE∽△EFC三、运用新知,深化理解1.△ABC中,∠ACB=90°,CD⊥AB于D,找出图中所有的相似三角形.2.△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC 会相似,你怎样画这条直线?说明理由.和你的同伴交流作法是否一样.【答案】1.△ACD∽△CBD∽△ABC①过D点作DE∥BC,DE交AC于点E②以AD为一边在△ABC内部作∠ADE=∠C,另一边DE交AC于点E.【教学说明】第2题注意分类讨论.四、师生互动,课堂小结这节课你学到哪些判定三角形相似的方法?还有什么疑惑?说说看.1.布置作业:从教材相应练习和“习题”中选取.“课时作业〞局部.本课时从学生所熟悉的特殊三角板入手,通过学生动手操作探究相似三角形的判定定理1,从中感受学习几何的乐趣,从而激发学生学习兴趣,培养学生的几何推理能力.。
九年级数学 相似三角形的判定(教案、导学案)

27.2相似三角形27.2.1 相似三角形的判定第1课时相似三角形的判定(1)【知识与技能】1.了解相似三角形的概念及其表示方法;2.掌握平行线分线段成比例定理及平行于三角形一边的直线的性质定理;3.掌握相似三角形判定的预备定理.【过程与方法】经历从探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.【情感态度】体验从一般到特殊及由特殊到一般的认知规律,发展辩证思维能力. 【教学重点】平行线分线段成比例定理及判定三角形相似的预备定理.【教学难点】探索平行线分线段成比例定理的过程.一、情境导入,初步认识问题1相似多边形的性质是否也适用于相似三角形呢?问题2如果△ABC与△A1B1C1相似,能类似于两个三角形全等,给出一种相似表示方法吗?△ABC 与△A 1B 1C 1的相似比为k ,那么△A 1B 1C 1与△ABC 的相似比也是k 吗?问题3 如何判定两个三角形相似呢?【教学说明】通过上述三个问题的设置,既帮助学生认识了相似三角形的一些基本知识,又为引出平行线分线段成比例定理作些铺塾,教师可釆用自问自答形式讲述这部分内容. 二、思考探究,获取新知问题1 如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2相交的平行线l 3,l 4,l 5分别度量AB ,BC ,DE ,EF 长度,则EFDEBC AB 与相等吗?呢?与DF DE AC AB 呢?与DFEFCA BC【教学说明】教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.【教学说明】这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:.等全下全下,全上全上,上下上下,下上下上==== 问题 2 如图,当l 1//l 2//l 3时,在(1)中是否仍有呢?,,AF EFAC BCAF AE AC AB EF AE BC AB ===在(2)中是否仍有呢?,,DFBFACBCDF DB AC AB BF DB BC AB ===【教学说明】针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨论,相互交流,形成认识,最后教师再与全 班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.问题3 如图,在△ABC 中,DE// BC ,DE 分别交AB 、AC 于D 、E ,则△ABC 与△ADE 能相似吗?为什么?问题4如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC能相似吗?为什么?【教学说明】将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理).三、运用新知,深化理解1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来.2.如图D 为△ABC 中BC 边的中点,E 为AD 中点,连接并延长BE 交 AC 于F.过E 作EG//AC 交BC 于G. (1) 求AC EG 的值;(2)求CF EG 的值;(3)求FCAF的值.3.如图,已知在△ABC 中,DE//BC ,AD=EC ,BD=1cm ,AE=4cm ,BC=5cm , 求 DE 的长.【教学说明】 让学生自主完成,也可合作完成,在练习中加深理解.教师巡视指导,及时点拨.在完成上述题目后,教师引导学生完成创 优作业中本课时的“名师导学”部分.【答案】1.解:△ADE ~△ABC ,△CEF ~△CAB, △ADE ~△EFC. 2.解:(1)∵EG//AC ,∴△DGE ~△DCA ,∴21==DA DE AC EG . (2)∵EG//AC ,E 是AD 的中点,∴G 是CD 的中点,即CG=DG.又D 是BC 的中点,∴BD=CD ,∴BG=3CG ,BC=4CG ,∴34BG BC = . ∵EG//FC, ∴△BEG ~△BFC,∴43==BC BG FC FG . (3)过D 点作DH//CF ,交BF 于H.易得DH=AF ,∴21==FC DH FC AF . 3.解:∵DE//BC ,∴ECAEDB AD =,又AD=CE ,∴AD 2=4,∴AD=2,∴AB=3.由DE//BC 可知△ADE ~△ABC ,∴)(cm 310352=⨯==BC DE AB AD . 四、师生互动,课堂小结 1.这节课你学到了哪些知识? 2.你还有哪些疑惑?【教学说明】师生以交谈方式回顾本节知识,重点应关注哪些内容,还有什么地方不太明白,及时解疑.完成创优作业中本课时的“课时作业”部分.本课时教学思路应从探究、猜想、验证归纳出发,遵循学生的理解认知能力,由浅入深、逐步推进,激发学生自主探究的学习热情,培养学生的自主学习能力.27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 相似三角形的判定(1)一、新课导入 1.课题导入问题1:我们学过哪些判定两个三角形全等的方法?问题2:类比上面这些方法,猜一猜判定两个三角形相似的方法有哪些? 由此导入课题(板书课题). 2.学习目标(1)能用符号表示两个三角形相似,能确定它们的相似比、对应边和对应角.(2)能叙述平行线分线段成比例定理及其推论,并能结合图形写出正确的比例式.(3)能用平行线分线段成比例定理的推论证明三角形相似的判定引理. 3.学习重、难点重点:平行线分线段成比例定理及其推论. 难点:正确理解定理中的“对应线段”. 二、分层学习1.自学指导(1)自学内容:教材P29~P30思考上面的内容. (2)自学时间:8分钟.(3)自学方法:学生分小组采用度量的方法和已学知识探究平行线分线段成比例定理,并完成自学参考提纲.(4)自学参考提纲:①三个角相等,三条边成比例的两个三角形相似.在△ABC 和△A′B′C′中, 如果∠A=∠A′, ∠B=∠B′, ∠C=C′,AB BC CAk A B B C C A ==='''''', 那么△ABC 和△A′B′C′相似,记作△ABC ∽△A′B′C′,△ABC与△A′B′C′的相似比为k,△A′B′C′与△ABC的相似比为1 k .全等三角形也是相似三角形, 它们的相似比为1.②相似三角形的对应角相等,对应边成比例.③完成教材P29探究:a.如图1,量一量,算一算,ABBC与DEEF相等吗?BCAB与EFDE呢?ABAC与DEDF呢?BCAC与EFDF呢?b.由上一步可得:∵l3∥l4∥l5,∴ABBC=DEEF,BCAB=EFDE,ABAC=DEDF,BC AC =EFDF.c.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.d.指出图1中的所有对应线段(如AB与DE):BC与EF,AC与DF.④把平行线分线段成比例定理应用到三角形中,会出现图2和图3两个基本图形:在这两个图形中,把DE看成平行于△ABC的边BC的直线,截其他两边(如图1)或其他两边的延长线(如图2),于是可得推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即:∵DE∥BC,∴ADDB=AEEC,ADAB=AEAC,BDAB=CEAC.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:能否正确理解“对应线段”,尤其是在推论的两个图形中.②差异指导:根据学情,指导学生结合图形理解“对应线段”.(2)生助生:小组交流、研讨.4.强化(1)分清平行线分线段成比例定理的条件与结论,弄清哪些是“对应线段”.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等(强调“对应”).1.自学指导(1)自学内容:教材P30思考~P31.(2)自学时间:6分钟.(3)自学方法:学生分小组对不同类型的相似三角形进行证明,并完成自学参考提纲.(4)自学参考提纲:①已知DE∥BC,运用定义证明△ADE∽△ABC(如图1,作EF∥AB).证三个角相等:∠A公共,由DE∥BC可得∠ADE=∠B,∠AED=∠C.证三条边成比例:由DE∥BC可得ADAB=AEAC,由EF∥AB可得BFBC=AEAC.由DE∥BC,EF∥AB可得四边形BFED是平行四边形,所以BF=DE.故DE BCADAB=AEAC=BFBC.所以△ADE∽△ABC.②如图2, DE∥BC分别交BA、CA的延长线于点D、E,那么△ADE与△ABC 相似吗?能否给予证明?相似.∵DE ∥BC,∴∠E=∠C,∠D=∠B.过E 作EF ∥BD 交CB 的延长线于点F. ∵DE ∥BC ,EF ∥BD ,∴,AE AD BF AEAC AB BC AC==. 又∵四边形BDEF 是平行四边形,∴DE=BF,∴AE AD DEAC AB BC==. ∴△ADE ∽△ABC.③如图3,△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC. ∵DE ∥BC ,EF ∥AB ,∴∠CEF=∠A,∠ADE=∠B=∠EFC,AD AE DB EC =,BF AEFC EC=. 又∵四边形BDEF 是平行四边形, ∴BD=EF,DE=BF. ∴AD AE DEEF EC FC==, ∴△ADE ∽△EFC.④如图4,DE ∥FG ∥BC ,找出图中所有的相似三角形. 由DE ∥FG ∥BC ,易知△ADE ∽△AFG ∽△ABC. 2.自学:结合自学指导进行自学. 3.助学 (1)师助生:①明了学情:看学生能否添加辅助线构造比例线段进行转化. ②差异指导:根据学情指导学生弄清引理的证明思路和方法. (2)生助生:小组交流、研讨. 4.强化(1)判定三角形相似的预备定理及其两个基本图形. (2)点两名学生板演自学参考提纲中第③、④题,并点评. 三、评价1.学生学习的自我评价:这节课你有什么收获?还有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生的课堂参与程度、思维状况、小组协作等方面的课堂表现去评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时先给出相似三角形的定义,说明有关概念,明确相似三角形的符号表示和相似比的意义.由于三角形的相似与比例线段密不可分,因此在形成相似三角形的概念之后,主要安排学习比例线段,进而讨论平行于三角形一边的平行线的性质与判定以及平行线分线段成比例定理,为研究相似三角形提供了必要的知识准备.教学过程中应遵循学生的理解认知能力,由浅入深,逐步推进.一、基础巩固(70分)1.(10分)如图,在△ABC中,DE∥BC, 且AD=3,DB=2.图中的相似三角形是△ADE∽△ABC,其相似比是35.第1题图第2题图2.(10分)如图,DE∥BC,DF∥AC,则图中相似三角形一共有(C)A.1对B.2对C.3对D.4对3.(10分)如图,DE∥BC,12ADDB,则AEAC=(B)A.12B.13C.23D.32第3题图第4题图4.(10分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )5.(10分)如图,AB ∥CD ∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,求BC CE .解:∵AB ∥CD ∥EF,∴35BC AD AG GD CE DF DF +===. 6.(20分)如图,DE ∥BC.(1)如果AD=5,DB=3,求DE ∶BC 的值;(2)如果AD=15,DB=10,AC=15,DE=7,求AE 和BC 的长.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC,∴58DE AD BC AB ==. (2)AE AD AC AB =,即151525AE =,求得 AE=9. DE AD BC AB =,即71525BC =,求得 BC=353. 二、综合应用(20分)7.(20分)如图,△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6,求AD 、DC 的长.解:(1)BC AB AC CA DC DA==; (2)∠BAC=∠CDA,∠B=∠ACD,∠ACB=∠DAC; (3)由(1)中的结论和已知条件可知121066DC AD==,求得AD=3,DC=5. 三、拓展延伸(10分)8.(10分)如图,在△ABC 中,DE ∥BC 分别交AB 、AC 于点D 、E ,试证明:ADAB=DOCO.证明:∵DE ∥BC ,∴△ADE ∽△ABC,△DOE ∽△COB,∴,AD DE DO DE AB BC CO CB==. ∴AD DO AB CO =.。
数学教案-相似三角形的判定数学教学教案5篇

相似三角形的判定数学教学教案5篇两角对应相等,两个三角形相似。
两边对应成比例且夹角相等,两个三角形相似。
三边对应成比例,两个三角形相似。
三边对应平行,两个三角形相似。
斜边与直角边对应成比例,两个直角三角形相似。
都是三角形相似的判定。
下面是小编为大家整理的相似三角形的判定数学教学教案5篇,希望大家能有所收获!相似三角形的判定数学教学教案1教学目标(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.(二)能力训练要求1.能根据定义判断两个三角形是否相似,训练学生的判断能力.2.能根据相似比求长度和角度,培养学生的运用能力.(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点相似三角形的定义及运用.教学难点根据定义求线段长或角的度数.教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.[师]很好.请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.相似三角形的判定数学教学教案2一、教学目标1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.2.教学难点:是了解判定定理1的证题方法与思路.四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.什么叫相似三角形?什么叫相似比?2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.[讲解新课]我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:问:判定两个三角形全等的方法有哪几种?答:SAS、ASA(AAS)、SSS、HL.问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.(2)用类比方法找出的新命题一定要加以证明.如图5-53,在ⅠABC和Ⅰ 中,,.问:ⅠABC和Ⅰ 是否相似?分析:可采用问答式以启发学生了解证明方法.问:我们现在已经学习了哪几个判定三角形相似的方法?答:①三角形的定义,②上一节学习的预备定理.问:根据本命题条件,探讨时应采用哪种方法?为什么?答:预备定理,因为用定义条件明显不够.问:采用预备定理,必须构造出怎样的图形?答:或.问:应如何添加辅助线,才能构造出上一问的图形?此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.(1)在ⅠABC边AB(或延长线)上,截取,过D作DEⅠBC交AC于E.“作相似.证全等”.(2)在ⅠABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.,,Ⅰ .例1 已知和中,,,.求证:Ⅰ .此例题是判定定理的直拉应用,应使学生熟练掌握.例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图5-54,在中,CD是斜边上的高.求证:Ⅰ Ⅰ .该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.即ⅠⅠⅠⅠ.[小结]1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.2.判定定理1的应用以及记住例2的结论并会应用.七、布置作业教材P238中A组3、4.相似三角形的判定数学教学教案31、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。
数学教案三角形相似的判定(优秀3篇)

数学教案三角形相似的判定(优秀3篇)知识结构本文范文为朋友们整理了3篇《数学教案三角形相似的判定》,可以帮助到您,就是本文范文我最大的乐趣哦。
角形相似的判定篇一(第3课时)一、教学目标1.使学生了解直角三角形相似定理的证明方法并会应用。
2.继续渗透和培养学生对类比数学思想的认识和理解。
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。
4.通过学习,了解由特殊到一般的唯物辩证法的观点。
二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是直角三角形相似定理的应用。
2.教学难点:是了解直角三角形相似判定定理的证题方法与思路。
四、课时安排3课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.我们学习了几种判定三角形相似的方法?(5种)2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写). 其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)3.什么是“勾股定理”?什么是比例的合比性质?【讲解新课】类比判定直角三角形全等的“HL”方法,让学生试推出:直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
已知:如图,在∽ 中,求证:∽建议让学生自己写出“已知、求征”。
这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。
应让学生对此有所了解。
定理证明过程中的“ 都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。
例4 已知:如图,,,,当BD与、之间满足怎样的关系时∽ .解(略)教师在讲解例题时,应指出要使∽ .应有点A与C,B与D,C与B 成对应点,对应边分别是斜边和一条直角边。
《1.1.1相似三角形判定定理》教学案1

《1.1.1相似三角形判定定理》教学案【教学目标】1.使学生理解相似三角形和相似比的概念,掌握相似三角形的判定定理,会灵活运用这些定理解决一些简单的证明和计算问题.会按已知相似比作一个三角形与已知三角形相似.2.通过相似三角形判定定理的学习,要求了解类比方法的作用,认识类比方法是获取新知识的一种重要方法.【重点和难点】相似三角形的有关概念及相似三角形的基本定理.【教学过程】一、相似三角形【知识要点】1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形.2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”.3.相似三角形的相似比:相似三角形的对应边的比叫做相似比.4.相似三角形的判定定理:定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似).定理2:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.)定理3:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)二、思考探究(1)相似三角形的定义中突出的一个特征是“形状相同但大小不一定相同”,这是和全等三角形的重点区别,以下表中我们也可以看出:全相(2)表示两个三角形相似时注意通常要把表示对应顶点的字母写在相应的位置上,这样比较容易找到相似三角形的对应角和对应边.例如:如图图中A 对应着P ,B 对应着M ,C 对应着N .因此两个三角形相似应写为△ABC ∽ △PMN .三、相似三角形的判定定理.(1)三角形相似的判定方法与全等的判定方法的联系列表如下:比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法.这就是从一个基本问题出发运用类比,联想特殊到一般反过来指导特殊的思维方法.从而发散我们的思维.提高我们分析问题和解决问题的能力.四、典型例题例1 已知点A ,B ,C 在∠O 的一边l 上,点A ’,B ’,C ’在另一边l ’上,并且直线AB ’//BA ’,BC ’//CB ’.求证:AC ’//CA ’.证明:因为AB ’//BA ’,BC ’//CB ’,所以'','',OAB OBA OBC OCB ∆∆∆∆∽∽ (相似三角形的判断定理1).设两对相似三角形的相似比分别为12,,k k 则112211222112,'',,'',OA ()OC,''()OA','.'OA k OB OB k OA OB k OC OC k OB k OB k k OC k OB k k OA OC k k OC OA ==========所以所以又因为∠O 为△AOC ’和△COA ’的公共角,所以 △OAC ’ ∽ △OCA ’,(判定定理2) 所以∠OAC ’=OCA ’. 因此,AC ’//CA ’.例2 求证:顺次连接三角形三边中点所得三角形与原三角形相似. 已知:如图,D ,E ,F 分别是△ABC 三边BC ,CA ,AB 的中点. 求证:△DEF ∽ △ABC.证明:因为D ,E ,F 分别是△ABC 三边的中点,所以DE ,EF ,FD 都是△ABC 的中位线,因此111//,//,//,222.EF BC DF CA DE AB AB BC CADE EF FD==因此△DEF ∽ △ABC .(判定定理2)五、课堂小结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题27.2.1相似三角形的判定(第一课时)
备课
教师
李海红单位梅河口市第二实验中学
教学目标
知识与技能
了解相似比的定义,掌握判定两个三角形相似的方法。
过程与方法让学生经历从实验探究到归纳证明的过程
情感态度价值观培养学生的观察﹑发现﹑比较﹑归纳能力
教学
重点
运用相似三角形的基本定理和判定方法进行证明
教学难点对“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”这一定理的两种情形的理解与掌握。
教法探究法
学法自主探究
教具
教学
流程
教师与学生活动内容设计意图
创设情境1、我们学习了相似多边形的性质(对应角相等、对应边的比相
等)。
反过来情况又怎么样?试就三角形的情况进行讨论。
2、多边形中最基本的图形是什么?相似多边形中呢?根据相似多
边形的判定的条件你能否写出相似三角形判定条件?
创设问题情
境,引起学生学习
的兴趣。
自主探究
(1) 如图27.2-1),任意画两条直线l1 , l2,再画三条与l1 , l2相
交的平行线l3 , l4,l5.分别量度l3 , l4,l5.在l1上截得的两条线段AB,
BC和在l2上截得的两条线段DE, EF的长度, AB︰BC 与DE︰EF相等
吗?任意平移l5 , 再量度AB, BC, DE, EF的长度, AB︰BC 与DE︰EF
相等吗?
通过学生画
图,自己分析结果,
激发学生的学习兴
趣。
自主探究
(2) 问题,AB︰AC=DE︰(),BC︰AC=()︰DF.强调“对
应线段的比是否相等”
(3) 归纳总结:
平行线分线段成比例定理三条_________截两条直线,所得的
________线段的比________。
应重点关注:平行线分线段成比例定理中相比线段同线;
活动2平行线分线段成比例定理推论
思考:1、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到
l3上,如图27.2-2(1),,所得的对应线段的比会相等吗?依据是什
么?
2、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l4上,
如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?
3、归纳总结:
平行线分线段成比例定理推论平行于三角形一边的直线截其
他两边(或两边延长线),所得的_______线段的比_________.
思考:
在△ABC中,DE∥BC,分别交AB,AC于点D,E,△ADE与
△ABC有什么关系?
由上题,请你归纳结论
引导学生先证明两个三角形的对应角相等。
再证明两个三角形的对应边的比相等
引导学生总结
师生共同书
写,培养学生的思
考能力。
归纳
小结
这节课你学到了什么知识?有哪些收获?
作业
布置
复习本节课内容,做好预习
板书设计
课题平行线分线段成比例定理、推论判定定理。