长江河口南槽近期滩槽水沙输移特性分析

合集下载

长江口不同河段近期河床演变特点及碍航特性分析

长江口不同河段近期河床演变特点及碍航特性分析
中图分类号 : V 17 T 4 文献标识码 : A 文章编号 :0 5 8 4 ( 0 0 0 — 5 3 0 10 — 4 32 1 )6 0 8— 6
长 江 口航 道是 长 江黄 金 水道 的咽 喉 , 关 系 国 民经 济发 展 和 国 防建 设 全 局 的水 上 运输 通 道 , 是 战略 地 位 非 常 重 要 。 江 口深 水 航 道 治 理 三 期 工 程 已于 2 1 长 00年 3月 1 日通 过 交 通 运 输 部 组织 的 交 工验 收 , 达 4 长
表 1 长 江 口主 要 航 道 现 状
T b 1 u r n i ai n o e Ya g z su r tr a a. C re t t t f h n te E ta y wae w y su o t
注: 主航道徐六 泾一南港段宽度为设标宽度 , 南港北 槽段为航道底 宽; 北支暂 以灵甸 港 、 红阳港 、 五仓
势, 并结合航道发展规 划 目标 , 从航 道水 深、 宽度 、 向及稳定性等指标 , 走 分析 了长江 口不同河段 的碍航特 性。 结果表明 , 长江 口多数河段 尚未得 到有效 的人工控制 , 局部河段航槽稳定性较差 , 部分航段水深较浅 , 制约了航道资源的开发利用。 为合理 开发利用 和有 效保 护长江 口航道资源 , 迫切需要 根据近期 河势变化 特点和碍航特性 , 进一步 明确航道治理基本 原则 与思路 , 提出科学合理 的工程布置方案 。 关键词 : 航道 ; 河床演变 ; 碍航特性 ; 长江 口
1 河 势及 航道 现 状 概 况
长 江 口是丰 水 多沙 、 中等 强度 潮 汐 的三 角洲 分 汊河 口 , 起徐 六 泾 , 讫 人海 口。 过 两 千 多年 的 自然 上 下 经 演 变和 区域 人类 活动 的影 响 , 江 口河 道 已演 变为 三级 分 汉 、 口人海 的 喇叭状 平 面形 态 。 长 四 徐六 泾 节点 形成

长江口潮汐特点与成因及应对措施

长江口潮汐特点与成因及应对措施

长江口潮汐特点与成因及应对措施作者:沈强来源:《珠江水运》2015年第06期摘要:长江口水域是世界上有名的航行复杂地段。

此水域船舶密集,水况复杂。

船舶航行在长江口水域,常感到对潮流把握不住,通过查询潮汐表,对流向与流速也不能预判。

不同的位置,有的地方呈现出往复流的特点,有的地方又呈现出旋转流的特点。

这些对船舶安全航行带来很大的隐患。

究竟是什么原因导致这一特征?航船又该如何应对?本文作者提出了自己独到的观点,供广大航海人员参考。

关键词:长江口水域潮汐船舶安全航行特征1.长江口潮汐特点1.1旋转流现象如图1所示,北槽北导堤南东南端至南汇嘴五米等深线连线以下水域,潮流常呈旋转流特征。

其中北槽D13灯浮下游,潮流呈旋转流特征,初涨水时流向SW流,顺时针旋转至落末时又是SW流。

在南槽S8灯浮以外,也同样出现旋转流特点,初涨水时流向亦为SW流,顺时针旋转急涨水为WNW流。

初落为NE流,急落与落末为SE流。

1.2往复流现象如图1所示,北槽北导堤南东南端至南汇嘴五米等深线连线以上至吴淞口水域,潮流呈往复流特征。

即南槽S7灯浮上游,北槽D13灯浮上游,潮流呈往复流特征,并且落流方向,基本顺着当地10米或5米等深线方向。

无其他因素影响时,初涨在当地高潮前3小时,初落在当地高潮后2小时,急涨在当地高潮前1小时至高潮后半小时。

急落在当地低潮前1小时至低潮后半小时。

1.3蛇行流现象长江口深水航道D13灯浮上游潮流不仅具有上述特征,还具有蛇行特点,即每段流压角不同,既不是沿着航道方向,也不是固定涨流向一个方向流压,落流向另一固定方向流压,而是同是涨流,一段向左流压,一段又向右流压,再一段又向左流压,呈现出蛇行流现象。

2.长江口潮流成因2.1旋转流成因长江口深水航道D13以外,以及南槽S9以外潮流呈形旋转流的形态,其根本原因在于东海,长江和杭州湾三者共同影响这片海域。

如图2所示。

当某一区域不是联接的两大水域,而是联接的三大水域,并且这三大水域呈品字形分布,则这片水域即呈现标准的旋转流的特点。

长江河口潮滩悬浮泥沙输移规律研究进展

长江河口潮滩悬浮泥沙输移规律研究进展

长江河口潮滩悬浮泥沙输移规律研究进展王初;贺宝根【摘要】通过阅读和研究大量有关文献,对长江口潮滩悬移泥沙的输移规律有了较全面的了解.目前,长江口潮滩、潮沟、以及两者之间的悬浮泥沙输移基本规律的研究已经比较深入,但对于动力过程的探讨仍然局限在少数几个因子,而悬浮泥沙对重金属、氮、磷等营养元素吸附的研究则刚刚开始.由于在潮滩上获取实测资料的难度较大,使潮沟构成的微地貌系统动力结构和悬浮泥沙运动的研究不足,因此,需要在浅层测流的基础上,进一步探讨其规律.【期刊名称】《上海师范大学学报(自然科学版)》【年(卷),期】2003(032)002【总页数】5页(P96-100)【关键词】潮滩;长江河口;悬浮泥沙【作者】王初;贺宝根【作者单位】上海师范大学,城市与旅游学院,上海,200234;上海师范大学,城市与旅游学院,上海,200234【正文语种】中文【中图分类】S332长江河口地区广泛分布着淤泥质潮滩,徐六泾以下的潮滩面积约有800km2.潮滩和其上分布的潮沟构成了河口地区最主要的地貌类型.本文拟对长江河口潮滩及潮沟的悬浮泥沙输移规律研究进行梳理,以便寻找有关长江口潮滩研究的不足之处,为深入研究探明方向.1 长江口水文概况长江河口是一个丰水多沙的大型河口,多年平均径流量29300m3/s ,最大径流量92600 m3/s(1954.8.1),年径流总量达9240亿m3 (资料取自大通水文站).5~10月是长江洪水期,径流量占全年的71.7%,其中尤以7月的径流量最大;11月~翌年4月是长江枯水期,径流量仅占全年的28.3%,2月的径流量最小.1.1 长江口地貌类型长江河口又是一个多汊河口,自徐六泾开始分别被崇明岛,长兴与横沙岛,九段沙分为南北支,南北港及南北槽,为三级分汊、四口入海.长江河口由悬浮泥沙沉积而成的主要地貌类型有:暗沙、拦门沙、水下三角洲和潮滩[1].长江口的潮滩一般可分为河口心滩(白茆沙、扁担沙、九段沙等)和边滩(南汇、崇明东滩及边滩).杨世伦[2,3]根据岸滩形状及其与水下地形的关系将长兴、横沙岛及九段沙的岸滩分为“江岸型”、“洲头型” 及“潮滩型”,并分析了其成因,根据潮滩的冲淤状况又可以分为“淤进型”“蚀退型”“稳定型”(或“准稳定型”).1.2 长江口动力条件长江口是一个中等潮差河口,口门处中浚站测得的多年平均潮差为2.66m,最大潮差为4.62m,最小潮差为0.17m.潮流是长江口主要的动力因子[1,2].由于受科氏力的影响,在口门外潮流表现为旋转流,口门内受到地形约束多为往复流,洪季的涨潮流速大于枯季流速.径流同样是河口重要的动力因子,由于径流作用口门内的落潮流速一般大于涨潮流速,涨潮流上溯过程中受径流顶托及地形的阻碍使潮波变形,造成涨落潮历时不一致,落潮历时大于涨潮历时[1].长江口波浪受风控制的特征较为明显,波浪对开敞的河口潮滩地貌短期演变起着重要作用[4].2 悬浮泥沙输移形式长江河口来沙量巨大且水动力条件复杂,悬浮泥沙的输移形式很多,河口段泥沙的输移形式通常可以分为槽内输移、涨落槽间输移、滩槽间输移和滩面输移[2,7];口门处最大浑浊带泥沙在径、潮流和盐度锋的作用下发生垂直输移[7~9].2.1 槽内悬浮泥沙输移长江口河槽是长江向海输送水、沙的主要途径.根据优势流理论长江河口分成落潮优势流河段、涨潮优势流河段,口门以内径流的作用较强,槽内悬浮泥沙整体向口外输移[1].2.2 滩、槽间悬浮泥沙输移长江系多汊河口,在口门处呈现出滩、槽交替出现的特点.滩、槽之间的平面环流实现了在滩、槽之间悬浮泥沙输移交流.河槽中水、沙向海净输移,在口门处由于水面展宽,径流作用减弱和相应潮流势力加强,两者达到动力平衡;盐水锋作用令泥沙作垂直输移使悬沙滞留于口门附近并在此大量沉积下来[2].在无风或微风条件下,潮滩上径流作用很小,涨潮流的作用占主导地位,泥沙净向陆地输移,口门处的泥沙又被携至潮滩并沉积下来,这样便形成了一个完整的环流.在大风天气条件下,特别是有风暴潮出现时潮滩沉积物大量被冲刷,泥沙又进入河槽,形成了与前者相反的平面环流.2.3 滩面及潮沟的泥沙输移以前对泥沙输移的研究多集中于对槽内及滩、槽间泥沙输移模式的探讨[1,8],对于在潮滩、潮沟这样的浅层面流、线流条件下的泥沙输移研究(包括潮滩和潮沟间的泥沙交换)十分有限,而且也局限于对一两个动力因子的探讨[4,10~12],对其系统的研究则显得相当不够.主要原因在于:(1)潮滩上设立长期的观察点较为困难,野外实测获取第一手资料的难度极大;(2)即使设立了长期观察点,受到滩沟形态演变的影响,资料的稳定性和代表性也存有疑问;(3)潮滩及潮沟中的动力条件和地形地貌十分复杂,研究难度较大.但这方面的研究却是深入研究潮滩演变规律及物质循环规律的基础和关键,所以有着极大的研究价值.3 水动力对潮滩悬浮泥沙输移的作用长江口是水动力条件十分复杂的区域,潮流、径流、波浪、风暴潮等动力因子交织在一起极大影响了悬浮泥沙在潮滩上的输移[1,8].3.1 潮流在长江三角洲的发育过程中,潮流是一个重要的动力因子.它在长江口的悬浮泥沙输移过程中起着重要作用,也是现代潮滩地貌发育的重要动力因素[1,13,14].沉降滞后和侵蚀滞后的概念基本描述了潮滩上悬浮泥沙输移特征[13].对潮锋的研究是对浅层面流作用下滩面上泥沙输移规律有价值的研究[10,11].潮流对河口泥沙的输移作用可以分为两个阶段:潮锋作用过程和锋后水流过程.潮锋是水流在滩坡平缓的淤泥质潮间带涨潮水体前锋历时数十分钟的水流加速过程[10].通过对1979~1992年间各种类型潮滩水沙数据的分析发现从涨潮前锋到达滩面至该处达到一定水深期间会出现一段历时数10 min左右的水流高速期.其流速比随后水流的平均流速高1~3倍.相应的水体含沙量也较高,如长江口南边滩和杭州湾湾口及北岸的潮滩在风浪平静的涨潮过程中潮锋带水体的含沙量亦可达10kg/m3,相对于区域水体0.5~2.5 kg/m3的含沙量要高得多[10].究其原因是较薄水层(数10 cm)短时期内的流速脉动引起的水体高紊动状态使滩面沉积物出现再悬浮,加之从潮间带外携来的泥沙使得潮锋带水体含沙量高于锋后水体.潮锋作用的强弱由潮滩的潮位变率及滩面坡度决定[10,11].3.2 径流径流不仅为长江河口带来了巨量泥沙,同时也是河口复杂动力环境的重要组成部分.但径流对潮滩上的悬浮泥沙输移所起的作用远没有潮流大,它主要加强了落潮流的势力并改变流速不对称性从而影响悬沙的输移[8].根据优势流理论,以径流作用为主的河段称作落潮优势流河段.洪季时除了长江北支,长江口横沙岛以西的水域以径流作用为主,表层及近底层的悬沙向海输移[1].如通过对南槽上首的径流占优落潮优势流河段的输沙量的研究,发现在表层0.2水深和0.6水深的悬沙均向海发生输移.在径流作用不强的河段即涨潮优势流河段表层及近底层的悬沙输移则与落潮流优势流河段正好相反,表现为向陆地输移[1].3.3 波浪一般观点认为潮流是潮滩发育的主要动力,但在长江口一些面向开敞海域(如南汇东滩等地)的潮滩,波浪塑造滩面的作用也是不可忽视的[4,5,8,12].茅志昌[12]研究了南汇东滩的波浪作用及其对滩面冲淤的影响,发现风速、波浪与滩面冲淤之间的关系是:小于或等于5级风速引起的波浪场常使滩地发生淤积,而大于6级的风速产生的波浪则会对滩面进行冲刷.通过用能量法分析认为,影响滩面冲淤性质的波浪破碎水深和破波带宽度会随波高、潮位及底坡坡度发生变化.杨世伦[4]就波浪对开敞潮滩的作用进行了研究,以引水船站的风、浪相关性为依据,结合南汇东滩的实测数据认为风浪是控制开敞潮滩短期演变的主要动力因子,它决定了潮滩(特别是光滩)泥沙的起动或沉降.3.4 风暴潮风暴潮是台风、低气压、海啸等事件引起的短时期内造成水位陡然上升的自然灾害.长江河口在夏、秋季多有台风侵袭,此时如遇天文大潮,就会出现特大风暴潮.风暴潮虽然是短期的动力因子,但其对潮滩地貌的迅速改变却影响巨大.许世远等[16,17]研究了长江三角洲的风暴潮沉积系列,发现从长江三角洲的滨后沼泽低地到前三角洲均发育风暴沉积,在沉积剖面中的比例可达30%~40%, 与常态沉积形成韵律性层理.邵虚生[21]等也认为上海潮滩沉积物原生沉积构造中的韵律性层理是常年低能期和大潮台风高能期交替作用的产物.对风暴沉积系列研究也揭示了其动力及泥沙输移的过程.风暴沉积的底部冲刷面清晰保存,沉积结构较粗且自下而上粒度变细等显示出风暴沉积是风暴潮高峰期及随后消退期快速堆积的产物,反映了期间水动力有弱—突强—渐弱的过程变化[16,17].4 潮滩植物对悬浮泥沙输移过程的影响近年来,植物影响潮滩动力环境及泥沙输移过程的研究成为河口学的研究热点[24].当淤泥质潮滩达到一定的高程后便会有植物的出现.植物的出现会改变潮滩的动力条件,从而改变滩面的冲淤作用[19~22].4.1 植物对水动力条件的影响植物对水动力有两方面作用.一是缓流作用:植被是一种粗糙的下垫面,潮间带植物会阻滞水流[19,20].通过对南汇东滩植被带和刈割地流速的对比,发现植被带的流速在任何情况下都小于刈割地,对平均流速的缓流系数(植被带流速/无植被地流速)为0.71.通过对南汇东滩相同高程但不同植被覆盖的地区实地观测,发现沼泽的近底层流速总是小于相邻的光滩,流速可降低20%~60%.并认为植物缓流作用的大小与植株的覆盖率及测点距沼泽外缘的距离成正相关[20].另一是消浪作用:波浪对开敞型潮滩短期内演变起着重要影响,主要表现为对滩面的冲蚀,而植被却有削减波浪波高及波能的作用,特别在植被完全被淹没之前作用最为明显.涨潮初期植物冠顶未被淹没,沼泽中的平均波高及波能都只有光滩的43%和19%,并发现在正常天气条件下,波能传入沼泽后50m左右便完全消失.4.2 植物对潮滩悬沙输移的影响植物的消浪、缓流作用能改变水动力条件,再加上植物本身的特性,植物对潮滩悬浮泥沙输移有着不可忽视的影响.植被带在洪季时,悬浮泥沙浓度总的来说要小于光滩.如“沼泽岛”的悬浮泥沙浓度为相邻光滩的71%[22].其主要原因是植被对潮流及波浪的削弱作用使水体的挟沙能力大减,至使悬沙大量下沉引起的.从植被带沉积物的组成来看,不难推断出悬浮泥沙的粒度大小与光滩的差别.据杨世伦[19]的研究,沉积物在光滩—海三棱镳草—互花米草的植被变化过程中平均粒径逐渐减小,从5.83Φ减小至8.27Φ,而粘土含量则由12%增为43%.植物对潮滩上悬浮泥沙输移影响的研究仍需深入,此外,营养元素随悬沙的输移、积累对潮滩植物生长的影响,以及潮滩悬沙输移对植物生长状况的反馈也是很值得深入探讨的.5 潮滩悬沙输移的环境效应通过对上海滨岸潮滩4个具有代表性的采样断面潮滩表层沉积物中重金属含量的季节性变化的分析[28],发现在水动力作用较弱的地貌部位,表层沉积物中重金属元素趋于富集.并发现在东海农场表层沉积物中重金属含量的季节变化与其它地区不同,认为是受长江冲谈水的影响[28].刘敏等[29,30]对长江口滨岸潮滩表层沉积物中各种形态的磷进行了研究,发现沉积物粒径与形态磷之间有密切联系,粒径越小形态磷的含量越高.高效江等[31]通过对上海滨岸潮滩的表层沉积物,上覆水和间隙水中的无机氮的研究总结出了无机氮浓度的季节性变化规律,认为水动力条件的变化对潮滩无机氮的分布有很大影响.同时滩-水界面的各类形态的N、P的垂向输移、扩散也有了一定的研究[29,31].但对于整个潮滩(包括潮沟)中的营养元素随悬沙的输移、沉积过程和机制,及其通量的研究还未涉及,潮滩对于营养元素迁移的影响仍很难确定,故这方面的研究急待深入.6 展望当前对长江口悬浮泥沙输移规律的研究取得了一系列的成果,但仍然存在着一些问题.长江口潮滩、潮沟、以及两者之间的悬浮泥沙输移基本规律的研究已经比较深入,但对于悬沙输移动力过程的探讨仍然局限在少数几个因子,系统的研究还很不够.悬浮泥沙对重金属、氮、磷等营养元素吸附的研究则刚刚开始,悬沙输移对重金属、氮、磷等物质的迁移、积累及分布的影响仍难以确定.对潮沟构成的微地貌系统动力结构和悬浮泥沙运动的研究不足是造成以上问题的主要原因.浅水条件下泥沙输移规律研究是潮滩物质循环研究的基础,所以要在长期浅层测流的基础上,进一步对浅水环境中的潮滩悬浮泥沙输移规律进行深入研究.[1] 茅志昌,潘定安,沈焕庭. 长江河口悬沙的运动方式与沉积形态特征分析[J]. 地理研究,2001(2): 170-177.[2] 杨世伦,徐海根. 长江口长兴、横沙岛潮滩沉积特征及其影响机制[J]. 地理学报,1994 ,49(5):450-456.[3] 杨世伦,姚炎明,贺松林. 长江口冲积岛岸滩剖面形态和冲淤规律[J]. 海洋与湖沼,1999,(6):764-769.[4] 杨世伦. 风浪在开敞潮滩短期演变中的作用——以南汇东滩为例[J]. 海洋科学,1991,(2):59-64.[5] 沈焕庭,潘定安. 长江口最大浑浊带[M]. 北京:海洋出版社,2000.38-61.[6] 沈焕庭,李九发,朱慧芳,等. 长江河口悬沙输移特性[J]. 泥沙研究, 1986,(1):1-12.[7] 杨世伦,姚炎明,贺松林.长江口冲积岛岸滩剖面形态和冲淤规律[J]. 海洋与湖沼,1999,30(6):764-769[8] 杨世伦,谢文辉,朱骏,赵庆英. 大河口潮滩地貌动力过程的研究[J]. 地理学与国土研究,2001 ,17(3):44-48.[9] 李九发,时伟荣,沈焕庭. 长江河口最大浑浊带的泥沙特性和输移规律[J]. 地理研究,1994 ,13 (1):51-59.[10] 徐元,王宝灿,章可奇. 上海淤泥质潮滩潮锋作用及其形成机制初步探讨[J].地理研究,1994,13(3): 60-68.[11] 徐元. 淤泥质潮滩潮锋的形成机制及其作用[J]. 海洋与湖沼, 1998 , 29(2):148-155.[12] 茅志昌. 南汇东滩的波浪作用和滩面冲淤分析[J]. 上海水利, 1992,(3):1-6.[13] 时钟,陈吉余. 中国淤泥质潮滩沉积研究的进展[J]. 地球科学进展,1996 , (6):[14] 朱玉荣. 潮流在长江三角洲形成发育过程中所起作用的探讨[J]. 海洋通报,1999 ,18(2):1-10.[15] 徐元,王宝灿. 淤泥质潮滩表层沉积物稳定性时空变化的探讨[J]. 海洋学报,1996 ,18(6):50-60.[16] 许世远,邵虚生. 杭州湾北岸滨岸的风暴沉积[J]. 中国科学,1984,(12):1136-1143.[17] 许世远,严钦尚,陈中原. 长江三角洲风暴沉积系列研究[J]. 中国科学(B辑),1989(7):767-763.[18] 李九发,何青,徐海根. 长江河口浮泥形成机理及变化过程[J]. 海洋与湖沼,2001 ,32(3):302-310.[19] 杨世伦,时钟,赵庆英. 长江口潮沼植物对动力沉积过程的影响[J]. 海洋学报,2001,23(4):75-80.[20] 时钟,陈吉余. 盐沼的侵蚀、堆积和沉积动力[J]. 地理学报,1995,50(6):562-567.[21] 贺宝根,左本荣. 九段沙微地貌演变与芦苇的生长[J]. 上海师范大学学报(自然科学版),2000,29(4):86-90.[22] 度武艺,谢佩尔 J. 海草对潮滩沉积作用的影响[J]. 海洋学报,1991,13(2):230-239.[23] 杨世伦,陈吉余. 试论植物在潮滩发育演变中的作用[J].海洋与湖沼,1994,25(6):631-635.[24] 陈卫跃. 潮滩泥沙输移及沉积动力环境-以杭州湾北岸、长江口南岸部分潮滩为例[J].海洋学报,1991,13(6):813-821.[25] 李九发,时伟荣,沈焕庭. 长江河口最大浑浊带的泥沙特性和输移规律[J].1994,13(1):51-59.[26] 沈健,沈焕庭,潘定安,等. 长江河口最大浑浊带水沙输运机制分析[J]. 1995,50(5):411-420.[27] 陈宝冲. 长江口北支河势的变化与水、沙、盐的输移[J]. 地理科学,1993 ,13(4): 346-352[28] 毕春娟,陈振搂,许世远. 水动力作用对潮滩表层沉积物重金属时空分布的影响[J]. 上海环境科学,2002,21(6):330-333.[29] 刘敏,侯立军,许世远,欧冬妮,张斌亮,刘巧梅,杨毅. 长江河口潮滩表层沉积物对磷酸盐的吸附特征[J]. 地理学报,2002 ,57(4): 397-406.[30] 刘敏,许世远,侯立军,欧冬妮. 长江口滨岸潮滩沉积物中磷的存在形态和分布特征[J]. 海洋通报,2001,20(5):10-17.[31] 高效江,张念礼,陈振楼,许世远,陈立民. 上海滨岸潮滩水沉积物中无机氮的季节性变化[J]. 地理学报,2002 ,57(4): 407-412.。

长江口水动力学及其泥沙运输规律

长江口水动力学及其泥沙运输规律

长江口水动力学及其泥沙运输规律一、长江口概况:长江河口地处我国东部沿海,受到来自流域径流、泥沙和外海潮流、成水入侵、风、波浪及河口科氏力和复杂地形等绪多园了的影响,动力条件多变,泥沙输运复杂。

从陆海相互作用的角度看,长江河口至少存在几个水沙特性不同的典型河段,而每个典型河段又存在不同性质的界面,如:大通河段(潮区界)、江阴河段(潮流界)、徐六径河段(盐水入侵界)、拦门沙河段(涨落潮流优势转换界面)、口外海滨区(泥沙向海扩散的外边界和长江冲淡水扩散的外边界)。

每个典型河段及关键界而都涉及到物质和能量的传输;每个典型河段及关键界面都有其固有性质,且相互影响,可以说河口过程在很大程度上被发生在每个典型河段的界面上各种现象所制约。

二、水动力方程及验证1、长江口水动力过程的研究进展(长江口水动力过程的研究进展)在过去20多年中, 长江口水动力过程研究成果大量来自河口海岸学家、物理海洋学家、海岸工程师、环境流体力学家的文献、著作。

本文的目的是力图把这些文献(以正式发表的文献为准,不包括研究报告)汇集起来,对长江口潮流、余流、波浪、盐水入侵的研究进行总结, 究竟我们对长江口水动力过程了解多少?究竟长江口水动力过程还有哪些问题值得研究?1.1 长江口余流、环流、水团、长江冲淡水基于现场实测资料, 胡辉等1985年对长江口外海滨余流的运动变化特性进行了一定的研究。

研究结果表明: 长江口外余流约为潮流的1/ 2~1/ 5 , 上层余流以向东为主, 中层余流多偏北, 底层余流有偏西的趋势。

径流是长江口外上层余流的重要组成部分,并以冲淡水的形式存在; 中、下层余流则与台湾暖流的顶托和牵引有关。

王康、苏纪兰1987年研究了长江口南港的横向环流、垂直环流及其对悬移质输运的影响。

在前人基础上导出了长江口相对观测层次的物质断面传输公式,增加了反映环流及振荡切变的各种相互关系的有关项。

基于现场观测资料,Wang等1990年研究了长江口水团、长江冲淡水团等的基本特征。

长江口南支河槽悬浮颗粒现场粒径特征

长江口南支河槽悬浮颗粒现场粒径特征

得枯 季小潮 期 间一个 潮 周期 涨 落 潮 变化 中水 体悬 浮 颗 粒 的粒径 。同时将 O S A 置 于水 表 面 10 7 和 B 一3 .m、 m 1m 处 , 4 用来 测量 表 中底 层 的悬 浮 泥沙 含 量 ; C AD P放 置 于水下 10 处 , .m 用来 测 量水 体一 个潮 周期 内的流速
蟪 8 l 0
2O 53
20 05
1O 5 V
3O O 3
2芎 5 0
2o o
袋 6 O
4 0 2 0 O
4 0
3 O 2 0

5 0
占 占

昌昌昌昌昌昌昌昌星昌昌罨量昌昌
兽 高 。 叶 。。 兽
时 间 【点 _ A 底层 )
因此 流速与 粒径 的关 系较为 复杂 。
3 2 浊度 与粒 径 . 悬 浮颗 粒粒径 会 随着 浊 度 的变化 而变 化 。图 3表
1o 6
1 6o
关而是在悬浮颗粒的浓度达到最高前 , 颗粒的平均粒径 会达到最大。这可能是因为浊度逐渐增大 , 颗粒之间的 碰撞机会增大, 从而促使 絮凝体出现, 得颗粒粒径增 使 大 。但是 随着 浊度 的进 一 步 增 加 , 时流 速 开 始减 弱 , 这 絮凝体 的形成 开始 减小 , 因此粒 径会 减小 。
g g g g g 窨 g 窨g 窨 g g g : ; ;
r r
时间 《 点 B 毫层 )
图 3 长江河 口涨落潮槽 内悬浮颗 粒粒 径垂 向分布及 其与水体浊度的关 系( 粗线为粒径)
3 3 盐度与粒 径 .
在本 次 观 测 中 盐 度 的 变 化 在 0 9 1 2 s . ~ . pu之 间 。 相 对于 徐 六 泾 (. 6 0 1p u 和 九 段 沙 附 近 的 盐 度 0 1 ~ . 7 s)

河口与河流水沙运动的差异

河口与河流水沙运动的差异

河口与河流水沙运动的差异姓名:王伟学号:131303020068河口与河流水沙运动的差异摘要:河口的地理位置特殊,由于潮汐,盐淡水交界等众多原因,水沙运动在很大程度上与河流有重大不同。

在分析国内存在的长江口、珠江口、黄河口等众多河口进行分析的基础上,从水流条件、水流运动机理、泥沙特征、泥沙运动机理方面分析对比了河口水沙与河流水沙的不同点。

关键词:河口潮汐盐淡水水沙运动水流泥沙运动机理河流1.引言:河口水沙和河流水沙在运动规律以及影响条件的都有诸多的不同点,在对其进行分析的时候,且不可一概而论。

目前对河口水沙的研究甚多,但对河流水沙运动略有不足。

河口与河流作为流域的一部分,在对整个流域的水沙进行分析的时候,明确两者的区别也是必不可少的。

在面对不同的河口时,其水沙运动还是有一些不同,在不同的地理条件,水动力条件下,泥沙运动的情况也会有所不同。

在河口海岸地区, 波浪与潮流是引起泥沙输移的主要动力因素[1]。

而在河流地区,河流泥沙则主要来自于降水和径流所造成的土壤侵蚀[2]。

在对不同的河口时,我们主要进行了分析:2.水流条件对于海陆双相河口,但随着下泄径流的急剧减少,河口水流动力已被潮汐动力所控制。

风和浪不像潮汐一样每天发生,但是一旦出现,便能量很大,也足以使潮流强度增大数倍。

温随群[3]等在对海河口、李东风等[4]在对黄河口、于东生[5]在对长江口、张华庆在对珠江口的研究中,都清楚的表明河口区主要是陆相和海相动力共同作用区,水流条件比较复杂,其主要水流动力也以潮汐动力为主。

以于东生在对长江口的研究为例,长江口的水流泥沙运动复杂,其主要体现在[5]:(1)长江口水流受海洋动力和河流径流的多种制约,水流变化多端;(2)由于科氏力及盐水入侵等因素的影响而产生的环流增加了问题的复杂性;(3)槽滩相间的复杂地形使对流非线性的作用增强;(4)潮流的非线性藕合作用增大了研究的难度;(5)频繁发生的风暴潮给长江口研究加大了难度对于潮汐河口水流既受河川径流的影响,又受海洋潮汐的影响,是一种周期性、往复性的非恒定流。

长江口近期来沙量变化及其对河势的影响分析

长江口近期来沙量变化及其对河势的影响分析

长江口近期来沙量变化及其对河势的影响分析李保;付桂;杜亚南【摘要】长江来水来沙变化影响因素众多,除自然因素外,人类活动对河流水沙运动影响越来越显著.作为长江流域的终端,长江口地区既受自然因素影响,同时也显著地受到流域人类活动的影响.采用Mann-Kendall法分析大通站近几十年的泥沙监测资料,结果表明:近几十年来,大通站的年均输沙量一直呈下降趋势,2003年大通站的年均输沙量出现显著下降.长江口来沙量减少主要是由于流域来沙量的显著减少,与水库工程拦沙、长江上游水土保持工程、人工采沙及中游河道泥沙淤积等因素有关.长江口来沙量减少对南支及口外三角洲影响相对明显,均表现为冲刷特征,对此长江口综合治理相关部门应当充分给予重视.【期刊名称】《水运工程》【年(卷),期】2012(000)007【总页数】6页(P129-134)【关键词】长江口;大通;输沙量;河势变化【作者】李保;付桂;杜亚南【作者单位】长江水利委员会水文局长江口水文水资源勘测局,上海 200136;交通运输部长江口航道管理局,上海 200003;长江水利委员会水文局长江口水文水资源勘测局,上海 200136【正文语种】中文【中图分类】TV148长江河口是江海相互作用的复杂综合体,径流和潮流相互消长非常明显,呈多级分汊格局。

多年来除了自然因素的影响外,人类活动也以多种方式影响着河口的环境。

1988年,鉴于长江上游水土流失的严重性及三峡工程建设的需要,国务院批准将长江上游列为国家水土保持重点防治区,并于1989年开始分期实施以小流域为单元的水土流失综合防治工程。

新中国成立60年来,国家在长江流域建成的各类水利工程数量远远超过之前2 000多年的总和,基本形成全流域水资源的综合利用体系,这其中包括三峡工程等一大批综合利用水利枢纽。

长江上游梯级电站开发、水土保持与南水北调工程的的逐步建设,各关键河段的河势控制工程、沿江引水工程等,均会对来水来沙的时空分布产生影响。

长江口潮滩水动力过程、泥沙输移与冲淤变化

长江口潮滩水动力过程、泥沙输移与冲淤变化

长江口潮滩水动力过程、泥沙输移与冲淤变化长江口潮滩水动力过程、泥沙输移与冲淤变化一、引言长江口是我国重要的河口区域之一,也是世界上最大的河口之一。

长江口潮滩是长江河口入海前形成的泥沙富集区,其水动力过程、泥沙输移与冲淤变化对河口地区的生态环境和人类活动有着重要影响。

本文旨在探究长江口潮滩的水动力过程、泥沙输移机制与冲淤变化规律。

二、长江口潮滩的水动力过程长江口潮滩区域水动力过程主要受长江入海口水动力条件和潮汐作用影响。

长江入海口水动力条件直接影响着潮滩水动力过程的形成和发展。

长江水势的强弱、潮汐的幅度与周期等因素,决定了潮滩区域的水动力过程。

长江入海口水势的强弱对潮滩水动力过程具有重要影响。

在长江入海口,由于江水和海水相互作用,形成了一股定向的排泄流。

入海口的水势强度主要由长江入海流量、堤防水位等参数决定。

水势强度大时,排泄流速度快,可带动泥沙向海洋输移,促进潮滩的冲淤过程。

水势弱时,则泥沙沉积于潮滩区域,导致潮滩发生淤积。

潮滩区域的潮汐作用也对水动力过程产生影响。

潮汐作用主要体现在潮滩区域的潮汐波动过程中。

潮滩地区处在潮汐影响最为显著的沙坪嘴潮滩和梅洲潮滩之间,潮汐波动频繁。

潮滩区域潮汐波动产生的涌浪和涨潮漩涡,影响了水流的速度和方向,导致泥沙的输移与冲淤。

三、长江口潮滩的泥沙输移机制长江口潮滩的泥沙输移主要受水流能力和沉积能力的相互作用影响。

水流能力是指水流对泥沙运动的推动能力,沉积能力是指泥沙在水流的作用下沉积和积聚的能力。

水流能力主要受水势和潮汐作用影响。

长江入海口的水势与潮汐波动的变化会引起泥沙运动的差异。

水势强劲时,水流的能力增大,可将泥沙向外输移;水势较弱时,泥沙沉积于潮滩区域。

潮汐作用则通过潮汐波浪和漩涡的形成,增大了水流对泥沙的推动力,促进了泥沙的输移。

沉积能力主要受泥沙颗粒特性和水流动力学效应影响。

泥沙的颗粒大小和密度决定了其沉积能力。

较细小的泥沙颗粒可以在水流中悬浮,沉积能力较弱;粗大的泥沙颗粒则更容易沉积于潮滩区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郭 小 斌 , 九 发 , 占 海 , 一 斌 李 李 王
( 东 师 范 大 学 河 口海岸 学 国 家 重 点 实验 室 , 海 20 6 ) 华 上 0 0 2
摘 要 : 了深 刻认 识 近 期 长 江 河 口演 变趋 势 , 据 2 0 ,0 6年 和 2 1 为 依 0 5 20 0 0年 长 江 口 南槽 滩 槽 洪枯 季 实 测 水 文 泥
沙数 据 , 分析 了主 槽 与 浅 滩 的水 动 力 条 件 及 悬 沙浓 度 的 时 空 分 布 特 征 。利 用机 制 分 解 法 , 究 了 河 口滩 槽 间 研
泥 沙输 移 及 交换 机 制 。 研 究 结 果 表 明 , 江 口 南槽 主要 以往 复 流 为 主 , 长 落潮 流速 大 于 涨 潮 流速 。 随 着 水 深 变
年代 中期 以来 , 江来 沙量 呈 明显 的减 少 趋 势 。特别 长
是 20 0 3年 6月 长江三 峡水 库正始 蓄水 后 , 沙量 减 少 来 趋 势更 显著 , 此期 间平均 含沙 量只有 0 1 9k / 。另 . 7 g m’ 外, 由于 1 9 9 8年 长 江 口深 水 航道 治 理 等工 程 建设 , 南 北槽 的分流分 沙 比已发 生 明显 变 化 , 槽 上 断面 的 落 南 潮分 流 比呈 增 加趋 势 。 因此 , 新 的地 形 条 件 、 在 流
和 0 14 k/ N H .7 g m ; B 6和 N H , 观 测 日期 为 2 1 B 7O 站 n 0 00
通 讯 作 者 : 九发 , , 授 , 士 生导 师 , 李 男 教 博 主要 从 事 河 口海 岸 沉积 过 程 方 面 的研 究 。E—m i ji r.eu e u e a :f@ een .d .n 含沙量 分别 为 1 0 s和 0 14k / N H1 93 0m / .0 g m ; C 和 N H B 3测站 观测 日期 为 2 0 0 5年 7月 , 当月 大 通平 均 流量 和 含 沙 量 分 别 为 3 0 s和 0 2 9 k / 940m / . 6 g m ; N H , B , B 2以及 N H C 2 N HI N H B 4测站 观测 日期 为 2 0 06 年 8月 , 月 大 通 平 均 流 量 和含 沙 量 分 别 为 2 0 当 70 0 m / 和 0 17 k/ N H s . 1 g m ; B 5测 站观 O 日期 为 2 0 n , 4 0 6年 7月 , 当月大 通平 均 流量 和含 沙 量分 别 为 3 0 s 69 0 m /
图 1 研 究 区域 及 测 站 示 意
基 金 项 目 : 家 自然 科 学基 金 项 目( 0 3 0 3 5 0 1 3 5 4 国 59 9 0 ,16 10 4 )
作 者 简 介 : 小斌 , 硕 士 研 究 生 , 要 从 事 河 口海 岸 动 力沉 积 方 面的 研 究 。E—m i: sq m n 16 em 郭 男。 主 alm n q a@ 2 .o
2 1 资料 来 源 .
研 究采 用 2 0 0 5年洪 季 2个 测 站 , 季 4个 测 站 , 枯 20 0 6年洪 季 5个 测站 以及 2 1 0 0年 洪 季 2个 测 站水 沙 观测 资料 ( 图 1 。其 中 , C代 表 主槽 , B代 表 浅 见 ) N N 滩 ,K代 表枯 季 ,H代表 洪季 。N K , C 2, B C 1 N K N K1, N K B 2的观测 日期 为 2 0 0 5年 4月 , 当月大通 站平 均流
缘缓慢淤 涨。


词 : 流 ;滩 槽 泥 沙 交换 ;悬 沙输 移 ;长 江 河 口 潮
中 图法 分 类 号 :P 3 . 325
文献 标 志码 :A
1 研 究 背 景
长江 河 口 自徐六 径 呈 三 级分 汊 四 口人海 , 中南 其
2 资 料 来 源 及 数 据 处 理 方 法
槽作 为长 江 口人 海 的主 要 通 道 , 陆动 力 相互 作 用 明 海
显, 是最 大浑 浊带发 育 河 道 , 是拦 门浅 滩河 道 , 环 也 对 境变 化 十分敏感 。与南槽 毗邻 的南汇 潮滩 是 长 江
河 口口门附近堆 积形 成 的最宽 阔的边 滩之 一 。以往诸
多学 者对 长江河 口浅 滩 以及主槽 水沙 特性 及输移 做过 大 量 的分析研究 , 河 口地 区滩 槽 水 沙运 动 及 泥 沙交 在 换 研究 方面 , 取得 一 定 的成 果 。但是 自上 世纪 8 0
浅 , 流 流 速 过 程 线 存 在 差 异 , 不 同 区域 的 水 流 抉 沙 能 力 和 输 沙 过 程 不 同 。 输 沙 以 平 流 项输 沙通 量 为主 , 水 使 但
潮 泵作 用在 南槽 地 区泥 沙输 移 中也 占有 重 要 地 位 , 成 “ 槽 出 沙 、 水 进 沙 ” 输 沙 模 式 , 使 南 汇 边 滩 前 形 主 浅 的 促
第4 3卷 第 1 1期
2 12 年 6 月 0
人 民 长 江
Ya g z Ri e n te vr
 ̄o . 1 43, No. 1 1
J e, un
2 2 01
文章 编 号 :0 1—419( 01 1 10 7 2 2) 1—0 01—0 0 5
长 江 河 口南 槽近 期滩 槽 水 沙输 移 特 性 分 析
域 来 沙 变 异 以 及 河 口大 型 工 程 影 响 下 , 必 要 分 析 近 有 期 滩 槽 水 沙 输 运 特 点 , 讨 南 槽 水 域 滩 槽 水 沙 交 换 机 探
制, 以深刻认 识近 期长 江河 口演变 趋势 , 为长 江河 口治
理与 围垦 工程提 供科学 的依 据 。
收 稿 日期 :0 2—9 21 3—2 0
相关文档
最新文档