数学习题-(已知双曲线中心在原点且一个焦点为F)
山东省13年-17年春考数学真题试卷

山东省2013年普通高校招生(春季)考试一、选择题1.若集合{}1234M =,,,,{}123N =,,,则下列关系中正确的是 (A ) MN M = (B ) M N N = (C ) N ⊂≠ M (D ) N ⊃≠ M 2.若p 是假命题,q 是真命题,则下列命题为真命题的是(A ) q ⌝ (B ) p q ⌝∧ (C ) ()p q ⌝∨ (D ) p q ∧3.过点()12P ,且与直线310x y +-=平行的直线方程是(A ) 350x y +-= (B ) 370x y +-=(C ) 350x y -+= (D ) 350x y --=4.“2a c b +=”是“a ,b ,c 成等差数列”的(A ) 充分不必要条件 (B ) 必要不充分条件(C ) 充要条件 (D ) 既不充分也不必要条件5.函数y 的定义域为(A ) []15-, (B ) []51--, (C ) (][)15-∞-+∞,, (D ) (][)51-∞-+∞,, 6.已知点()()1234M N ,,,,则12→MN 的坐标是 (A ) ()11, (B ) ()12, (C ) ()22, (D ) ()23,7.若函数2sin 3y x πω⎛⎫=+ ⎪⎝⎭的最小正周期为π,则ω的值为 (A ) 1 (B ) 2 (C ) 12(D ) 4 8.已知点()16M -,,()32N ,,则线段MN 的垂直平分线方程为(A ) 40x y --= (B ) 30x y -+=(C ) 50x y +-= (D ) 4170x y +-=9.五边形ABCDE 为正五边形,以A ,B ,C ,D ,E 为顶点的三角形的个数是(A ) 5 (B ) 10 (C ) 15 (D ) 2010.二次函数()()31y x x =--的对称轴是(A ) 1x =- (B ) 1x = (C ) 2x =- (D ) 2x =11.已知点()92P m m -+,在第一象限,则m 的取值范围是 (A ) 29m -<< (B ) 92m -<< (C ) 2m >- (D ) 9m <12.在同一坐标系中,二次函数()21y a x a =-+与指数函数xy a =的图像可能是(A) (B) (C) (D)13.将卷号为1至4的四卷文集按任意顺序排放在书架的同一层上,则自左到右卷号顺序恰为1,2,3,4的概率等于(A)18(B)112(C)116(D)12414.已知抛物线的准线方程是2x=,则该抛物线的标准方程是(A) 28y x= (B) 28y x=- (C) 24y x= (D) 24y x=-15.已知()tan2πα+=,则2cosα等于(A)45(B)35(C)25(D)1516.在下列函数图像中,表示奇函数且在()0+∞,上为增函数的是(A) (B) (C) (D)17.()521x-的二项展开式中3x的系数是(A) 80- (B) 80 (C) 10- (D) 1018.下列四个命题:① 过平面外一点,有且只有一条直线与已知平面平行;② 过平面外一点,有且只有一条直线与已知平面垂直;③平行于同一个平面的两个平面平行;④垂直于同一个平面的两个平面平行.其中真命题的个数是(A) 1 (B) 2 (C) 3 (D) 419.设01a b<<<,那么log5a与log5b的大小关系是(A) log5a<log5b(B) log5a=log5b(C) log5a>log5b(D) 无法确定20.满足线性约束条件⎩⎨⎧x+y-2≤0x≥0y≥0的可行域如图所示,则线性目标函数22z x y=-取得最大值时的最优解是(A) ()00, (B) ()11, (C) ()20, (D) ()02,第20题图21.若()0a b ab >≠,则下列关系中正确的是(A ) a b > (B ) 22ac bc > (C ) 11a b< (D ) c a c b -<-22. 22. 在△ABC中,已知34a b c ==,,ABC 的面积是(A(BC) (D) 23.若点()3log 3n P m ,关于原点的对称点为()19P '-,,则m 与n 的值分别为 (A ) 13,2 (B ) 3,2 (C ) 13-,2- (D ) 3-,2- 24.某市2012年的专利申请量为10万件,为了落实“科教兴鲁”战略,该市计划2017年专利申请量达到20万件,其年平均增长率最少为(A ) 12.25 % (B ) 13.32 % (C ) 14.87 % (D ) 18.92 %25.如图所示,点P 是等轴双曲线上除顶点外的任一点, 12A A ,是双曲线的顶点,则直线1PA 与2PA 的斜 率之积为(A ) 1 (B ) 1-(C ) 2 (D ) 2-卷二(非选择题,共75分)二、填空题(本大题5小题,每题4分,共20分.请将答案填在答题卡相应题号的横线上)26.已知函数()2f x x =,则()1f t -= . 27.某射击运动员射击5次,命中的环数分别为9,8,6,8,9.这5个数据的方差为 .28.一个球的体积与其表面积的数值恰好相等,该球的直径是 .29.设直线0x y --与圆2225x y +=的两个交点为A B ,,则线段AB 的长度为 . 30.已知向量→a ()cos sin θθ=,,→b ()03=,,若→a ·→b 取最大值,则 →a 的坐标是 .三、解答题(本大题5小题,共55分.请在答题卡相应的题号处写出解答过31.(本小题9分) 在等比数列{}n a 中,24a =,38a =.求:(1) 该数列的通项公式;(2) 该数列前10项的和. 32.(本小题11分) 已知点()43P ,是角α终边上一点,如图所示,求sin 26πα⎛⎫- ⎪⎝⎭的值.)33.(本小题11分) 如图所示,已知棱长为1的正方体1111ABCD A B C D -.(1) 求三棱锥1C BCD -的体积;(2) 求证:平面1C BD ⊥平面11A B CD .34.(本小题12分) 某市为鼓励居民节约用电,采用阶梯电价的收费方式.居民当月用电量不超过100度的部分,按基础电价收费;超过100度不超过150度的部分,按0.8元/度收费;超过150度的部分按1.2元/度收费.该市居民当月用电量x (度)与应付电费y (元)的函数图像如图所示.(1) 求该市居民用电的基础电价是多少元/度?(2) 某居民8月份的用电量为210度,求应付电费多少元?(3) 当(]100150x ∈,时,求x 与y 的函数关系式(x 为自变量).35.(本小题12分) 已知椭圆的一个焦点为()10F . (1) 求该椭圆的标准方程;(2) 圆2245x y +=的任一条切线与该椭圆均有两个交点A ,B ,求证:OA OB ⊥(O 为坐标原点). A B C D C 1A 1B 1 D 1 第33题图机密★启用前山东省2015年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟.考试结束后,请将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.卷一(选择题,共60分)一、选择题(本大题共20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,填涂在答题卡上)1.集合{}1,2,3A =,{}1,3B =,则A B 等于( )A.{1,2,3}B.{1,3}C.{1,2}D.{2}【考查内容】集合的交集【答案】B2.不等式15x -<的解集是( ) A.(6-,4) B.(4-,6) C.(,6)(4,)--+∞∞ D.(,4)(6,)--+∞∞【考查内容】绝对值不等式的解法【答案】B 【解析】1551546x x x -<⇒-<-<⇒-<<.3.函数1y x=的定义域是( ) A.{}10x x x -≠且… B.{}1x x -… C.{}>10x x x -≠且 D.{}>1x x -【考查内容】函数的定义域【答案】A【解析】10x +…且0x ≠得该函数的定义域是{}10x x x -≠且….4.“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考查内容】充分、必要条件【答案】C【解析】“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,“直线与圆相切” ⇒“圆心到直线的距离等于圆的半径”.5.在等比数列{}n a 中,241,3a a ==,则6a 的值是( )A.5-B.5C.9-D.9【考查内容】等比数列的性质【答案】D【解析】2423a q a ==,2649a a q ==. 6.如图所示,M 是线段OB 的中点,设向量,OA a OB b ==,则AM 可以表示为( )第6题图 15SD1 A.12a b + B.12a b -+ C.12a b - D.12a b -- 【考查内容】向量的线性运算【答案】B 【解析】12AM OM OA b a =-=-. 7.终边在y 轴的正半轴上的角的集合是( ) A.2,2x x k k ⎧π⎫=+π∈⎨⎬⎩⎭Z B.,2x x k k ⎧π⎫=+π∈⎨⎬⎩⎭Z C.2,2x x k k ⎧π⎫=-+π∈⎨⎬⎩⎭Z D.,2x x k k ⎧π⎫=-+π∈⎨⎬⎩⎭Z【考查内容】终边相同的角的集合【答案】A【解析】终边在y 轴正半轴上的角的集合是2,2x k k ⎧π⎫+π∈⎨⎬⎩⎭Z . 8.关于函数22y x x =-+,下列叙述错误的是( )A.函数的最大值是1B.函数图象的对称轴是直线1x =C.函数的单调递减区间是[1,)-+∞D.函数的图象经过点(2,0)【考查内容】二次函数的图象和性质【答案】C【解析】222(1)1y x x x =-+=--+,最大值是1,对称轴是直线1x =,单调递减区间是[1,)+∞,(2,0)在函数图象上.9.某值日小组共有5名同学,若任意安排3名同学负责教室内的地面卫生,其余2名同学负责教师外的走廊卫生,则不同的安排方法种数是( )A.10B.20C.60D.100【考查内容】组合数的应用【答案】A【解析】从5人中选取3人负责教室内的地面卫生,共有35C 10=种安排方法.(选取3人后剩下2名同学干的活就定了)10.如图所示,直线l 的方程是( )第10题图 15SD20y -=20y -=310y --=D.10x -=【考查内容】直线的倾斜角,直线的点斜式方程 【答案】D【解析】由图可得直线的倾斜角为30°,斜率3tan 30k ==,直线l 与x 轴的交点为(1,0),由直线的点斜式方程可得l :01)y x -=-,即10x -=. 11.对于命题p ,q ,若p q ∧是假命题,p q ∨是真命题,则( )A. p ,q 都是真命题B. p ,q 都是假命题C. p ,q 一个是真命题一个是假命题D.无法判断【考查内容】逻辑联结词 【答案】C【解析】由p q ∧是假命题可知p ,q 至少有一个假命题,由p q ∨是真命题可知p ,q 至少有一个真命题,∴p ,q 一个是真命题一个是假命题.12.已知函数()f x 是奇函数,当0x >时,2()2f x x =+,则(1)f -的值是( ) A.3- B.1- C.1 D.3 【考查内容】奇函数的性质 【答案】A【解析】2(1)(1)(12)3f f -=-=-+=-.13.已知点(,2)P m -在函数13log y x =的图象上,点A 的坐标是(4,3),则AP 的值是()B.C.D.【考查内容】对数的运算,向量的坐标运算,向量的模 【答案】D【解析】∵点(,2)P m -在函数13log y x =的图象上,∴2131log 2,()93m m -=-==,∴P 点坐标为(9,2)-,(5,5),52AP AP =-=14.关于x ,y 的方程221x my +=,给出下列命题:①当0m <时,方程表示双曲线; ②当0m =时,方程表示抛物线;③当01m <<时,方程表示椭圆; ④当1m =时,方程表示等轴双曲线;⑤当1m >时,方程表示椭圆. 其中,真命题的个数是( ) A.2 B.3 C.4 D.5【考查内容】椭圆、双曲线和抛物线的标准方程,等轴双曲线的概念 【答案】B【解析】当0m <时,方程表示双曲线;当0m =时,方程表示两条垂直于x 轴的直线;当01m <<时,方程表示焦点在y 轴上的椭圆;当1m =时,方程表示圆;当1m >时,方程表示焦点在x 轴上的椭圆.①③⑤正确.15.5(1)x -的二项展开式中,所有项的二项式系数之和是( ) A.0 B.1- C.32- D.32 【考查内容】二项式定理 【答案】D【解析】所有项的二项式系数之和为012345555555C C C C C C 32+++++=.16.不等式组1030x y x y -+>⎧⎨+-<⎩表示的区域(阴影部分)是( )A B C D 15SD3 15SD4 15SD5 15SD6 【考查内容】不等式组表示的区域 【答案】C【解析】可以用特殊点(0,0)进行验证:0010-+>,0030+-<,非严格不等式的边界用虚线表示,∴该不等式组表示的区域如C 选项中所示.17.甲、乙、丙三位同学计划利用假期外出游览,约定每人从泰山、孔府这两处景点中任选一处,则甲、乙两位同学恰好选取同一处景点的概率是( ) A.29 B.23C.14D.12【考查内容】古典概率【答案】D【解析】甲、乙两位同学选取景点的不同种数为224⨯=,其中甲、乙两位同学恰好选取同一处景点的种数为2,故所求概率为2142=. 18.已知向量(cos,sin ),(cos ,sin ),12121212a b 5π5πππ==则a b 的值等于( )A.12C.1D.0【考查内容】余弦函数的两角差公式,向量的内积的坐标运算【答案】A【解析】1 sin cos cos sin sin1212121262 a bπππππ=+==.19.已知,αβ表示平面,m,n表示直线,下列命题中正确的是()A.若mα⊥,m n⊥,则nαP B.若mα⊂,nβ⊂,αβP,则m nPC.若αβP,mα⊂,则mβP D.若mα⊂,nα⊂,mβP,nβP,则αβP【考查内容】空间直线、平面的位置关系【答案】C【解析】A. 若mα⊥,m n⊥,则nαP或n在α内;B. 若mα⊂,nβ⊂,αβP,则m nP或m与n异面;D. 若mα⊂,nα⊂,mβP,nβP,且m、n相交才能判定αβP;根据两平面平行的性质可知C正确.20.已知1F是双曲线22221(0,0)x ya ba b-=>>的左焦点,点P在双曲线上,直线1PF与x轴垂直,且1PF a=,则双曲线的离心率是()C.2D.3【考查内容】双曲线的简单几何性质【答案】A【解析】1F的坐标为(,0)c -,设P点坐标为(,)cy-,2222()1yca b--=,解得2bya=,由1P F a=可得2baa=,则a b=卷二(非选择题,共60分)二、填空题(本大题共5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.直棱柱的底面是边长为a的菱形,侧棱长为h,则直棱柱的侧面积是.【考查内容】直棱柱的侧面积【答案】4ah22.在△ABC中,105A∠=,45C∠=,AB=则BC= .【考查内容】正弦定理【解析】由正弦定理可知,sin sinAB BCC A=,sin sin1056sinAB ABCC===23.计划从500名学生中抽取50名进行问卷调查,拟采用系统抽样方法,为此将他们逐一编号为1-500,并对编号进行分段,若从第一个号码段中随机抽出的号码是2 ,则从第五个号码段中抽取的号码应是.【考查内容】系统抽样【答案】42【解析】从500名学生中抽取50名,则每两相邻号码之间的间隔是10,第一个号码是2,则第五个号码段中抽取的号码应是241042+⨯=.24.已知椭圆的中心在坐标原点,右焦点与圆22670x y x +--=的圆心重合,长轴长等于圆的直径,则短轴长等于 . 【考查内容】椭圆的简单几何性质【答案】【解析】圆22670x y x +--=的圆心为(3,0),半径为4,则椭圆的长轴长为8,即3,4c a ==,b =.25.集合,,M N S 都是非空集合,现规定如下运算: {}()()()M N S x x MN NS SM ⊗⊗=∈.且()x MNS ∉.若集合{}{},A x a x b B x c x d =<<=<<,{}C x e x f =<<,其中实数a ,b ,c ,d ,e ,f ,满足:①0,0,a b c d e f <<<;②a b c d e -=-=-;③a b c d e +<+<+.则A B C ⊗⊗= .【考查内容】不等式的基本性质,集合的交集和并集【答案】{}x c x e b x d <<或剟【解析】∵a b c d +<+,∴a c d b -<-;∵a b c d -=-,∴a c b d -=-;∴b d d b -<-,b d <;同理可得d f <,∴b d f <<.由①③可得0a c e b d f <<<<<<.则{}A B x c x b =<<,{}B C x e x d =<<,{}CA x e x b =<<.ABC ⊗⊗={}x c x e bx d <<或剟.三、解答题(本大题共5小题,共40分.请在答题卡相应的题号处写出解答过程)26.(本小题6分)某学校合唱团参加演出,需要把120名演员排成5排,并且从第二排起,每排比前一排多3名,求第一排应安排多少名演员. 【考查内容】等差数列的实际应用【解】由题意知各排人数构成等差数列{}n a ,设第一排人数是1a ,则公差3d =,前5项和5120S =,因为1(1)2n n n S na d -=+,所以154120532a ⨯=+⨯,解得118a =. 答:第一排应安排18名演员.27.(本小题8分)已知函数2sin(2),y x x ϕ=+∈R ,02ϕπ<<.函数的部分图象如图所示.求: (1)函数的最小正周期T 及ϕ的值; (2)函数的单调递增区间.15SD7 第27题图【考查内容】正弦型函数的图象和性质 【解】(1)函数的最小正周期22T π==π,因为函数的图象过点(0,1),所以2sin 1ϕ=,即1sin 2ϕ=,又因为02ϕπ<<,所以6ϕπ=. (2)因为函数sin y x =的单调递增区间是[2,2],22k k k ππ-+π+π∈Z .所以222262k x k πππ-+π++π剟,解得36k x k ππ-+π+π剟, 所以函数的单调递增区间是[,],36k k k ππ-+π+π∈Z .28.(本小题8分)已知函数()x f x a =(0a >且1a ≠)在区间[2,4]-上的最大值是16. (1)求实数a 的值;(2)若函数22()log (32)g x x x a =-+的定义域是R ,求满足不等式log (12)1a t -…的实数t 的取值范围.【考查内容】指数函数的单调性 【解】(1)当01a <<时,函数()f x 在区间[2,4]-上是减函数, 所以当2x =-时,函数()f x 取得最大值16,即216a -=,所以14a =. 当1a >时,函数()f x 在区间[2,4]-上是增函数,所以当4x =时,函数()f x 取得最大值16,即416a =,所以2a =.(2)因为22()l o g (32)g x xx a =-+的定义域是R ,即2320x x a -+>恒成立.所以方程2320x x a -+=的判别式0∆<,即2(3)420a --⨯<,解得98a >,又因为14a =或2a =,所以2a =.代入不等式得2log (12)1t -…,即0122t <-…,解得1122t -<…,所以实数t 的取值范围是11[,)22-.29.(本小题9分)如图所示,在四棱锥S ABCD -中,底面ABCD 是正方形,平面SAD ⊥平面ABCD ,2,3SA SD AB ===.(1)求SA 与BC 所成角的余弦值; (2)求证:AB SD ⊥.15SD8 第29题图【考查内容】异面直线所成的角,直线与平面垂直的判定和性质【解】(1)因为AD BC P ,所以SAD ∠即为SA 与BC 所成的角,在△SAD 中,2SA SD ==, 又在正方形ABCD 中3AD AB ==,所以222222232cos 2223SA AD SD SAD SA AD +-+-∠==⨯⨯34=,所以SA 与BC 所成角的余弦值是34.(2)因为平面SAD ⊥平面ABCD ,平面SAD平面ABCD AD =,在正方形ABCD 中,AB AD ⊥,所以AB ⊥平面SAD ,又因为SD ⊂平面SAD ,所以AB SD ⊥.30.(本小题9分)已知抛物线的顶点是坐标原点O ,焦点F 在x 轴的正半轴上,Q 是抛物线上的点,点Q 到焦点F 的距离是1,且到y 轴的距离是38.(1)求抛物线的标准方程;(2)若直线l 经过点M (3,1),与抛物线相交于A ,B 两点,且OA OB ⊥,求直线l 的方程.15SD10 第30题图【考查内容】抛物线的定义、标准方程和性质,直线与抛物线的位置关系【解】(1)由已知条件,可设抛物线的方程为22y px =,因为点Q 到焦点F 的距离是1, 所以点Q 到准线的距离是1,又因为点Q 到y 轴的距离是38,所以3128p =-,解得54p =,所以抛物线方程是252y x =. (2)假设直线l 的斜率不存在,则直线l 的方程为3x =,与252y x =联立,可解得交点A 、B的坐标分别为,易得32OA OB =,可知直线OA 与直线OB 不垂直,不满足题意,故假设不成立,从而,直线l 的斜率存在.设直线l 的斜率为k ,则方程为1(3)y k x -=-,整理得31y kx k =-+,设1122(,),(,),A x y B x y 联立直线l 与抛物线的方程得23152y kx k y x =-+⎧⎪⎨=⎪⎩①② ,消去y ,并整理得22225(62)96102k x k k x k k --++-+=,于是2122961k k x x k -+=.由①式变形得31y k x k+-=,代入②式并整理得2251550ky y k --+=, 于是121552k y y k-+=,又因为OA OB ⊥,所以0OA OB =,即12120x x y y +=, 229611552k k k k k -+-++=,解得13k =或2k =. 当13k =时,直线l 的方程是13y x =,不满足OA OB ⊥,舍去.当2k =时,直线l 的方程是12(3)y x -=-,即250x y --=,所以直线l 的方程是250x y --=.机密★启用前山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。
专题22 双曲线(解答题压轴题)(原卷版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

x2 a2
y2 4
1 a
0 的中心为原点 O ,左、右
焦点分别为
F1 、
F2
,离心率为
35 5
,点
P
是直线
x
a2 3
上任意一点,点 Q
在双曲线
E
上,
且满足 PF2 QF2 0 .
(1)求实数 a 的值;
(2)证明:直线 PQ 与直线 OQ 的斜率之积是定值;
(3)若点 P 的纵坐标为1,过点 P 作动直线 l 与双曲线右支交于不同的两点 M 、N ,在线段
(2)是否存在直线 l,使得 l 与 M 交于 A,B 两点,且弦 AB 的中点为 P 4, 6 ?若存在,求 l
的斜率;若不存在,请说明理由.
②双曲线中的最值问题
1.(2022·全国·高三阶段练习)在一张纸上有一圆 C : (x 2 3)2 y2 36 ,定点 M 2 3, 0 ,
折叠纸片 C 上的某一点 M1 恰好与点 M 重合,这样每次折叠都会留下一条直线折痕 KQ ,设 折痕 KQ 与直线 M1C 的交点T .
专题 22 双曲线(解答题压轴题)
双曲线(解答题压轴题)
①双曲线的中点弦问题 ②双曲线中的最值问题 ③双曲线中定点、定值、定直线问题
④双曲线中向量问题 ⑤双曲线综合问题 ①双曲线的中点弦问题 1.(2022·四川·树德中学高三期中(文))已知抛物线 C : x2 2 py ( p 0 )的焦点为 F , P 为 C 上的动点,Q 为 P 在动直线 y t ( t 0 )上的投影.当 △PQF 为等边三角形时,其面
曲线 C 的实轴长为 2,焦距为 2 3 ,且点 P(0,-1)到渐近线的距离为 3 . 3
(1)求双曲线 C 的方程;
高中数学双曲线练习题及答案

高中数学双曲线练习题及答案双曲线相关知识双曲线的焦半径公式:A。
$\frac{x^2}{12}-\frac{y^2}{24}=1$B。
$\frac{y^2}{12}-\frac{x^2}{24}=1$C。
$\frac{y^2}{24}-\frac{x^2}{12}=1$D。
$\frac{x^2}{24}-\frac{y^2}{12}=1$3.设 $e_1,e_2$ 分别是双曲线 $-\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 和 $-\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$ 的离心率,则$e_1^2+e_2^2$ 与 $e_1e_2$ 的大小关系是 $1:$定义:双曲线上任意一点 $P$ 与双曲线焦点的连线段,叫做双曲线的焦半径。
2.已知双曲线标准方程 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$点 $P(x,y)$ 在左支上PF_1│=-(e x+a)$;$│PF_2│=-(e x-a)$点 $P(x,y)$ 在右支上PF_1│=ex+a$;$│PF_2│=ex-a$运用双曲线的定义例1.若方程 $x^2\sin\alpha+y^2\cos\alpha=1$ 表示焦点在$y$ 轴上的双曲线,则角 $\alpha$ 所在象限是()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限练1.设双曲线 $\frac{x^2}{16}-\frac{y^2}{9}=1$ 上的点$P$ 到点 $(5,0)$ 的距离为 $15$,则 $P$ 点到 $(-5,0)$ 的距离是()A。
7 B。
23 C。
5 或 23 D。
7 或 232.已知双曲线的两个焦点是椭圆$\frac{x^2}{10}+\frac{5y^2}{32}=1$ 的两个顶点,双曲线的两条准线分别通过椭圆的两个焦点,则此双曲线的方程是()。
A。
$\frac{x^2}{6}-\frac{y^2}{4}=1$ B。
高中数学选择性必修一双曲线(习题课)

题型四 双曲线的综合问题
例 4 (2021·新高考Ⅰ卷)在平面直角坐标系 Oxy 中,已知点 F1(- 17,0), F2( 17,0),点 M 满足|MF1|-|MF2|=2.记 M 的轨迹为 C.
(1)求 C 的方程; (2)设点 T 在直线 x=12上,过 T 的两条直线分别交 C 于 A,B 两点和 P,Q 两 点,且|TA|·|TB|=|TP|·|TQ|,求直线 AB 的斜率与直线 PQ 的斜率之和.
【解析】 (1)因为|MF1|-|MF2|=2<|F1F2|=2 17, 所以点 M 的轨迹 C 是以 F1,F2 分别为左、右焦点的双曲线的右支. 设双曲线的方程为ax22-by22=1(a>0,b>0),半焦距为 c,则 2a=2,c= 17, 得 a=1,b2=c2-a2=16, 所以点 M 的轨迹 C 的方程为 x2-1y62 =1(x≥1). (2)设 T(12,t),由题意可知直线 AB,PQ 的斜率均存在且不为 0,设直线 AB 的方程为 y-t=k1(x-12)(k1≠0),直线 PQ 的方程为 y-t=k2(x-12)(k2≠0),
+2kx-2=0.
4k2+8(1-k2)>0,
由题设条件得-1-2kk2<0,
∴- 2<k<-1.
-1-2 k2>0,
设 A(x1,y1),B(x2,y2),如图,
则 Qx1+2 x2,y1+2 y2, y1+y2
kPQ=x1+2 2x2+2=(x1y+1+x2y)2 +4. ∵x1+x2=k22-k 1,
( 3,0). (1)求双曲线 C 的方程; (2)若直线 l:y=kx+ 2与双曲线 C 恒有两个不同的交点 A 和 B,且O→A·O→B
>2(其中 O 为原点),求 k 的取值范围. 【解析】 (1)设双曲线方程为ax22-by22=1(a>0,b>0), 由已知得 a= 3,c=2,∴b=1. 故所求双曲线方程为x32-y2=1.
人教A版高中数学选修一第三章《圆锥曲线的方程》提高训练 (1)(含答案解析)

14.(多选)已知椭圆 的左、右焦点分别为F1,F2,过F1的直线l1与过F2的直线l2交于点M,设M的坐标为(x0,y0),若l1⊥l2,则下列结论正确的有()
A. B.
C. D.
三、填空题
15.已知抛物线的顶点在坐标原点,焦点 与双曲线 的左焦点重合,若两曲线相交于 , 两点,且线段 的中点是点 ,则该双曲线的离心率等于______.
3.椭圆 的左、右焦点分别为 ,过焦点 的倾பைடு நூலகம்角为 直线交椭圆于 两点,弦长 ,若三角形 的内切圆的面积为 ,则椭圆的离心率为()
A. B. C. D.
4.已知直线 垂直于抛物线 的对称轴,与E交于点A,B(点A在第一象限),过点A且斜率为 的直线与E交于另一点C,若 ,则p=( )
A. B.
C. D.
5.已知方程 表示焦点在y轴上的椭圆,则m的取值范围是()
A. B.
C. D.
6.已知椭圆C: 的长轴长为4,若点P是椭圆C上任意一点,过原点的直线l与椭圆相交于M、N两点,记直线PM、PN的斜率分别为 ,当 时,则椭圆方程为( )
A. B.
C. D.
7.已知椭圆C:x2+ =1(b>0,且b≠1)与直线l:y=x+m交于M,N两点,B为上顶点.若BM=BN,则椭圆C的离心率的取值范围是()
33.设椭圆 的的焦点为 是C上的动点,直线 经过椭圆的一个焦点, 的周长为 .
(1)求椭圆的标准方程;
(2)求 的最小值和最大值.
34.写出适合下列条件的椭圆的标准方程:
(1)两个焦点在坐标轴上,且经过 和 两点;
(2)过点 ,且与椭圆 有相同的焦点.
35.已知动点 到直线 的距离与到定点 的距离的差为 .动点 的轨迹设为曲线 .
(完整版)圆锥曲线离心率专题历年真题

1.(福建卷)已知双曲线12222=-by a x (a >0,b <0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2]C.[2,+∞)D.(2,+∞)2.(湖南卷)过双曲线M:2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )3.(辽宁卷)方程22520x x -+=的两个根可分别作为()A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )325.(陕西卷)已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为A.2B. 3C.263D.2336. (全国卷)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )(A (B )12(C )2 (D 1 7. (广东卷)若焦点在x 轴上的椭圆2212x y m +=的离心率为12,则m=( )(B)32(C)83(D)238.(福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( ) A .324+B .13-C .213+D .13+9.[全国]设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A .5 B . 5 C .25 D .45 10.( 福建理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .33B .32 C .22 D .2311.( 重庆理)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A .43B .53C .2D .7312.(福建卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3 C.(3,+∞)D.[)3,+∞13.(江西卷 7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=u u u u r u u u u r的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B .1(0,]2C .(0,2D .,1)2 14.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .B .C .(25),D .(215.(陕西卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABC D16.(天津卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )(A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y +=17.(江苏卷12)在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e = . 18.(全国一15)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e= .19、(全国2理11)设F 1,F 2分别是双曲线22221x y a b-=的左、右焦点。
高三数学双曲线试题答案及解析

高三数学双曲线试题答案及解析1.已知双曲线,分别是它的左、右焦点,是其左顶点,且双曲线的离心率为.设过右焦点的直线与双曲线C的右支交于两点,其中点位于第一象限内.(1)求双曲线的方程;(2)若直线分别与直线交于两点,求证:;(3)是否存在常数,使得恒成立?若存在,求出的值,若不存在,请说明理由。
【答案】(1);(2)见解析;(3)存在,,理由祥见解析.【解析】(1)由已知首先得到,再由离心率为2可求得的值,最后利用双曲线中基本量的关系求出值,从而就可写出所求双曲线的标准方程;(2)设直线的方程为:,与双曲线方程联立,消去得到关于的一个一元二次方程;再设,则由韦达定理就可用的式子表示出,再用点P,Q的坐标表示出直线AP及AQ的方程,再令就可写出点M,N的坐标,进而就可写出向量的坐标,再计算得,即证明得;(3)先取直线的斜率不存在的特列情形,研究出对应的的值,然后再对斜率存在的情形给予一般性的证明:不难获得,从而假设存在使得恒成立,然后证明即可.试题解析:(1)由题可知: 1分2分∴双曲线C的方程为: 3分(2)设直线的方程为:,另设:4分5分又直线AP的方程为,代入 6分同理,直线AQ的方程为,代入 7分9分(3)当直线的方程为时,解得. 易知此时为等腰直角三角形,其中,即,也即:. 10分下证:对直线存在斜率的情形也成立.11分12分13分∴结合正切函数在上的图像可知, 14分【考点】1.双曲线的标准方程;2.直线与双曲线的位置关系;3.探索性问题.2.已知双曲线C:(a>0,b>0)的一条渐近线与直线l:垂直,C的一个焦点到l的距离为1,则C的方程为__________________.【答案】x2-=1【解析】由已知,一条渐近线方程为,即又,故c=2,即a2+b2=4,解得a=1,b=3双曲线方程为x2-=1考点:双曲线的渐近线,直线与直线的垂直关系,点到直线距离公式3.若点P在曲线C1:-=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是________.【答案】10【解析】依题意得,点F1(-5,0),F2(5,0)分别为双曲线C1的左、右焦点,因此有|PQ|-|PR|≤|(|PF2|+1)-(|PF1|-1)|≤||PF2|-|PF1||+2=2×4+2=10,故|PQ|-|PR|的最大值是10.4.(本小题满分13分)已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;(2)如图,为坐标原点,动直线分别交直线于两点(分别在第一,四象限),且的面积恒为8,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.【答案】(1) ;(2)存在【解析】(1) 已知双曲线的两条渐近线分别为,所以根据即可求得结论.(2)首先分类讨论直线的位置.由直线垂直于x轴可得到一个结论.再讨论直线不垂直于x轴,由的面积恒为8,则转化为.由直线与双曲线方程联立以及韦达定理,即可得到直线有且只有一个公共点.试题解析:(1)因为双曲线E的渐近线分别为和.所以,从而双曲线E的离心率.(2)由(1)知,双曲线E的方程为.设直线与x轴相交于点C.当轴时,若直线与双曲线E有且只有一个公共点,则,又因为的面积为8,所以.此时双曲线E的方程为.若存在满足条件的双曲线E,则E的方程只能为.以下证明:当直线不与x轴垂直时,双曲线E:也满足条件.设直线的方程为,依题意,得k>2或k<-2.则,记.由,得,同理得.由得, 即. 由得, .因为,所以,又因为.所以,即与双曲线E有且只有一个公共点.因此,存在总与有且只有一个公共点的双曲线E,且E的方程为.【考点】1.双曲线的性质.2.直线与双曲线的位置关系.3. 三角形的面积的表示.5.设的离心率为,则的最小值为( )A.B.C.D.【答案】B【解析】由题意得,所以.【考点】双曲线及重要不等式.6.设圆锥曲线I’的两个焦点分别为F1,F2,若曲线I’上存在点P满足::= 4:3:2,则曲线I’的离心率等于( )A.B.C.D.【答案】A【解析】由::= 4:3:2,可设,,,若圆锥曲线为椭圆,则,,;若圆锥曲线为双曲线,则,,,故选A.7.已知点F是双曲线的左焦点,点E是该双曲线的右焦点,过点F且垂直于x轴的直线与双曲线交于A,B两点,△ABE是锐角三角形,则该双曲线的离心率e的取值范围是() A.(1,+∞)B.(1,2)C.D.【答案】B【解析】由AB⊥x轴,可知△ABE为等腰三角形,又△ABE是锐角三角形,所以∠AEB为锐角,即∠AEF<45°,于是|AF|<|EF|,,即,解得,又双曲线的离心率大于1,从而,故选B。
双曲线基础题(含答案)

双曲线基础题一、单选题1.已知动点(),P x y2=,则动点P 的轨迹是( )A .椭圆B .双曲线C .双曲线的左支D .双曲线的右支2.已知双曲线的两个焦点分别为()10,5F −,()20,5F ,双曲线上一点P 与1F ,2F 的距离差的绝对值等于6,则双曲线的标准方程为( )A .221916x y −=B .221169x y −=C .221916y x −=D .221169y x −=3.已知平面内两定点()13,0F −,()23,0F ,下列条件中满足动点P 的轨迹为双曲线的是( ) A .127PF PF −=± B .126PF PF −=± C .124PF PF −=±D .22126PF PF −=±4.已知双曲线22:1169x y C −=的两焦点分别为1F ,2F ,P 为双曲线上一点,若110PF =,则2PF =( ). A .16B .18C .4或16D .2或185.若双曲线22:1916x y E −=的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于( ) A .11B .9C .5D .36.设双曲线22:4640C x y −+=的焦点为12,F F ,点P 为C 上一点,16PF =,则2PF 为( ) A .22B .14C .10D .27.已知双曲线C :221169x y −=的左右焦点为1F ,2F ,点P 在双曲线C 的右支上,则21PF PF −=( ) A .-8B .8C .10D .8.若方程22122x y m m−=+−表示双曲线,则m 的取值范围是( )A .22m −<<B .2m >−C .0m ≥D .2m ≥9.已知方程22111x y k k−=+−表示双曲线,则实数k 的取值范围是( )A .(﹣1,1)B .(0,+∞)C .[0,+∞)D .(﹣∞,﹣1)∪(1,+∞) 10.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为( ) A .4B .-4C .-14D .1411.若方程22154x y m m +=−+表示的图形是双曲线,则m 的取值范围是( )A .m >5B .m <-4C .m <-4或m >5D .-4<m <512.“102a <<”是“方程22121x y a a+=−表示的曲线为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件13.若双曲线221y x m−=的一个焦点为()3,0−,则m =( ). AB .18 C.D .814.椭圆22214x y a +=与双曲线22212x y a −=有相同的焦点,则=a ( )A .1−B .1C .1±D .215.若方程2244x ky k +=表示双曲线,则此双曲线的虚轴长等于( ) A.B.CD16.双曲线221916x y −=的左顶点与右焦点间的距离为( )A .2B .4C .5D .817.若椭圆22125x y m +=与双曲线221515x y −=的焦点相同,则m 的值为( )A .3±B .4C .6D .918.已知椭圆221(1)x y a a +=>和双曲线221(0)x y m m −=>有相同焦点,则( )A .2a m =+B .2m a =+C .222a m =+D .222m a =+19.与双曲线22154x y −=有公共焦点,且短轴长为2的椭圆方程为( )A .2212x y +=B .22154x y +=C .22110x y +=D .221134x y +=20.若椭圆22125x y m +=与双曲线221515x y −=的焦点相同,则m 的值为( )A .3B .6C .9D .1221.双曲线2214x y −=的一个焦点到一条渐近线的距离是( )AB .2 CD .122.等轴双曲线的一个焦点是()10,6F −,则其标准方程为( )A .2211818x y −=B .22199y x −=C .2211818y x −=D .22199x y −=23.等轴双曲线的两条渐近线的夹角大小为( ) A .π4B .π3C .π2D .2π324.双曲线22221(0,0)x y a b a b−=>>的一条渐近线方程为y x =,则此双曲线的离心率为( )A .2 BC .3 D25.等轴双曲线C :()222210,0x y a b a b−=>>焦距为4,则C 的一个顶点到一条渐近线的距离为( )A .1B .32C .2D .1226.双曲线2214y x −=的渐近线方程为( )A .12y x =± B .2y x =± C.y =D.2y x =±27.双曲线2228x y −=的渐近线方程是( )A .12y x =±B .2y x =± C.y = D.y x =28.已知双曲线()222:1016x y C b b−=>的焦距为10,则双曲线C 的渐近线方程为( )A .916y x =±B .169y x =±C .43y x =± D .34y x =?29.双曲线22221(0,0)x y a b a b −=>>A.y =B.y =C.2y x =±D.y x = 30.若直线31y x =−与双曲线22:1C x my −=的一条渐近线平行,则实数m 的值为( ) A .19B .9C .13D .331.双曲线22143x y −=的离心率是( )A .32B .54C2D .5232.若双曲线C 两条渐近线方程是y x =±,则双曲线C 的离心率是( ). ABC .2D33.已知直线20x y −=双曲线22221y xa b−=的一条渐近线,则双曲线的离心率为( )AB .2 CD34.已知双曲线22221x y a b−=(0a >,0b >)的一条渐近线的斜率为12,则该双曲线的离心率为( ) ABC .2D二、解答题35.求适合下列条件的双曲线的标准方程. (1)焦点在x轴上,a =A ()5,2−; (2)焦点在y 轴上,焦距是16,离心率43e =; (3)离心率e =M ()5,3−. 36.求适合下列条件的双曲线的标准方程: (1)经过点),()3,2; (2)焦点为()0,5−,()0,5,经过点⎝; (3)a b =,经过点()3,1−; (4)经过(3,−和9,54⎫⎛ ⎪⎝⎭两点.37.求满足下列条件的双曲线的标准方程:(1)焦点在x 轴上,离心率为53,两顶点间的距离为6;(2)以椭圆22159x y +=的焦点为顶点,顶点为焦点.38.求适合下列条件的曲线标准方程.(1)虚轴长为16的双曲线的标准方程; (2)过点()1,3P −的抛物线的标准方程.39.求双曲线22494x y −=−的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程. 40.求下列双曲线的实轴和虚轴的长、离心率、焦点和顶点坐标、渐近线方程: (1)2277x y −=; (2)2228x y −=−. 41.根据下列条件,求双曲线的标准方程.(1)焦距为(-5,2),且焦点在x 轴上; (2)焦点为(0,-6),(0,6),且过点A (-5,6).42.m ,n 为何值时,方程221x y m n+=表示下列曲线:(1)圆; (2)椭圆; (3)双曲线?43.已知曲线C 的方程为22173x y m m−=−−,根据下列条件,求实数m 的取值范围:(1)曲线C 是椭圆; (2)曲线C 是双曲线.。