一元线性回归分析案例 ppt课件

合集下载

《线性回归分析》PPT课件

《线性回归分析》PPT课件

2019/5/8
金融与统计学院
2
古典线性回归分析三个基本特征
分析框架
“古典框架”,认为经济变量之间存在 确定的函数关系,计量经济分析就是发 现或推断这种关系。
需要确定的参数
线性模型中的线性参数,即线性函数的 系数。
2019/5/8
金融与统计学院
3
分析方法
主要是对因果关系的回归分析
相关分析用相关系数度量变量之间线 性联系的程度,回归分析用固定的解 释变量估计和预测被解释变量的平均 值。
相关分析中的变量对称,回归分析中 的变量不对称
相关分析中的变量随机,回归分析中 的解释变量固定(非随机)
2019/5/8
两个无聊但有钱的美国人W.N.Thurman和 M.E.Fisher (1988)针对1930~1983年美国 年鸡蛋产量和年鸡产量数据,分别用滞后1~4 期的检验式对“先有鸡还是先有蛋”做格兰杰 因果关系检验,结论是先有蛋。
2019/5/8
金融与统计学院
4
先讨论一元线性回归分析的原因
两个变量之间的线性因果关系在现实经济中普遍存 在;
2019/5/8
金融与统计学院
12
使用相关系数须注意
变量X、Y随机、对称
rXY rYX
相关系数反映变量之间的线性相关程度 样本相关系数是总体相关系数的估计值 相关系数不能确定变量之间的因果关系
2019/5/8
金融与统计学院
13
回归分析
回归:由英国著名生物学家兼统计学家 高尔顿(Francis Galton,1822— 1911 )在研究人类遗传问题时提出。
对于这个一般结论的解释是:大自然具有一种约束力, 使人类身高的分布相对稳定而不产生两极分化,这就是 所谓的回归效应。

回归分析应用PPT课件

回归分析应用PPT课件

回归分析的应用场景
A
经济预测
通过分析历史数据,预测未来的经济趋势,如 股票价格、GDP等。
市场营销
通过研究消费者行为和购买历史,预测未 来的销售趋势和客户行为。
B
C
医学研究
研究疾病与风险因素之间的关系,预测疾病 的发生概率。
科学研究
在各种科学领域中,如生物学、物理学、化 学等,回归分析被广泛应用于探索变量之间 的关系和预测结果。
06 回归分析的局限性
多重共线性问题
总结词
多重共线性问题是指自变量之间存在高 度相关关系,导致回归系数不稳定,影 响模型预测精度。
VS
详细描述
在回归分析中,如果多个自变量之间存在 高度相关关系,会导致回归系数的不稳定 性,使得模型预测精度降低。这种情况在 数据量较小或者自变量较多的情况下更容 易出现。为了解决这个问题,可以采用减 少自变量数量、使用主成分分析等方法。
预测能力评估
使用模型进行预测,并比较预 测值与实际观测值之间的误差
,评估模型的预测能力。
03 多元线性回归分析
多元线性回归模型
01
确定因变量和自变 量
在多元线性回归模型中,因变量 是我们要预测的变量,而自变量 是影响因变量的因素。
02
建立数学模型
03
模型参数解释
通过最小二乘法等估计方法,建 立因变量与自变量之间的线性关 系式。
回归分析可以帮助我们理解数据的内在规律,预测未来的趋势,并优化决 策。
回归分析的分类
01
一元回归分析
研究一个自变量和一个因变量之间的关系。
02
多元回归分析
研究多个自变量和一个因变量之间的关系。
03
线性和非线性回归分析

21一元线性回归模型.ppt

21一元线性回归模型.ppt

同理,p(Y= ? /X=260)=1/7
条件均值(条件期望 ) :
对Y的每一条件概率分布,我们能算出它 的均值 :
记做E(Y/X=Xi)
[简写为E(Y/Xi) ]
并读为“在X取特定Xi值时的Y的期望值”。
计算方法:
将表2.1中的有关列乘以表2.2中的相应列 的条件概率,然后对这些乘积求和便是。
第二章 一元线性回归模型
§2.1 一元线性回归模型概念基础 回归是计量经济学的主要工具 一、“回归”一词的历史渊源
Francis Galton F.加尔顿
回归一词最先由F.加尔顿 (FrancisC,alton)引入
加尔顿的普遍回归定律还被他的朋友 K.皮尔逊(KartPearson)证实
Karl Pearson K.皮尔逊
综合来看,回归分析一般可以用来:
(1) 通过已知变量的值来估计因变量的均值。
(2)对独立性进行假设检验―――根据经济理 论建立适当的假设。
例如,对于需求函数,你可以检验假设:需求的 价格弹性为-1.0;即需求曲线具有单一的价格 弹性。也就是说,在其他影响需求的因素保持 不变的情况下,如果商品的价格上涨1%,平 均而言,商品的需求量将减少1%。
P (
1/7 1/5 1/5 1/6 1/5 1/7 1/5 1/7 1/5
Y/ 1/7 1/5 1/5 1/6 1/5 1/7 1/5 1/7 1/5
Xi ) 1/7
1/6
1/7
1/7
1/7
1/7
1/7
Y的条 48 46 44 42 40 38 36 34 32 30
件均值
E(Y/X=Xi) Y的条件均值
·
·
·
· ·

一元线性回归分析PPT课件

一元线性回归分析PPT课件
第18页/共40页
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. ( Y t Y ) ( Y ˆ t Y ) ( Y t Y ˆ t)
n
n
n
(Y t Y )2 (Y ˆt Y )2 (Y t Y ˆ)2
t 1
t 1
t 1
n
(Yt Y)2 :总离差平方和,记为SST;
t1
n
第8页/共40页

食品序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
求和
脂肪Xt 4 6 6 8 19 11 12 12 26 21 11 16 14 9 9 5
热量Yt 110 120 120 164 430 192 175 236 429 318 249 281 160 147 210 120
第1页/共40页
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
第2页/共40页
一元线性回归模型
(一)总体回归函数
Yt=0+1Xt+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(ˆ1t(n2)Sˆ1)
2
第15页/共40页
回归分析的Excel实现
“工具”->“数据分析”->“回归”
第16页/共40页
ˆ 0
S ˆ 0
ˆ 1
S ˆ 1
(ˆ0t(n2)Sˆ0)
2
(ˆ1t(n2)Sˆ1)
2
第17页/共40页

第十一章 一元线性回归.ppt

第十一章 一元线性回归.ppt
由(11—1)式可推知,若总体不存在直线关 系,则总体回归系数β=0;若总体存在直线关系, 则β≠0。所以对直线回归系数b的假设检验为: HO:β=0;HA:β≠0。
在HO成立的条件下,回归系数b服从t分布。
统计量t b / Sb , df n 2.........(.11 3) 其中,Sb S yx / S XX ,称为回归系数标准误
(三)直线回归方程的建立 在x、y的坐标平面上可作出无数条直线,而
回归直线是所有直线中最接近散点图中全部散点
的直线。设样本直线回归方程为:yˆ = a +bx
其中a是的估计值,称为 回归截距;b是β的估计值,
称为回归系数;yˆ i是+βxi的
估计值。
图11—2 直线回归散点图
回归值 yˆi与yi观察值间的偏差(或称残差)为:
Sb S yx / S XX 60.9525/ 1685 1.4849 t b / Sb 21.7122/1.4849 14.62
当df = n-2 = 12-2 = 10,查附表4得
t 0.05(10) = 2.228,t 0.01(10) = 3.169
t = 14.62 > 3.169
函数关系-有确定的数学表达式
直线回归分析
(确定性的关系)
一元回归分析

曲线回归分析

间 的 关
因果关系 回归分析
多元线性回归分析

多元回归分析
多元非线性回归分析
相关关系
(非确定性的关系)
简单相关分析-直线相关分析
平行关系 相关分析
复相关分析
多元相关分析
偏相关分析
主要内容:
第一节 直线回归

中职数学课件10.2一元线性回归

中职数学课件10.2一元线性回归
因此,当一个人身高为183cm时,其体重大约是69.31kg.
意义是:身高x每增
加1cm,体重y就增
加0.43kg .
10.2 一元线性回归
情境导入
探索新知
典型例题 巩固练习 归纳总结 布置作业
练习
1.判断下列各组变最是否具有相关关系.
(1)某农作物的施肥量与产量;
(2)学生年龄与学生学号;
(3)商品价格与商品销售量;
(2)当气温为38℃时,试预测该品牌冷饮的销量(结果保留整数).
10.2 一元线性回归
情境导入
探索新知
典型例题 巩固练习 归纳总结 布置作业
10.2 一元线性回归
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
数学上,如何描述这种关系呢?
研究表明,人的身高与体重之间存在着一定的相关
性.但人的体重并不是身高的两数,对于确定的身高,
体重具有不确定性.
10.2 一元线性回归
情境导入
探索新知
典型例题 巩固练习 归纳总结 布置作业
当一个变量取某个值时,另一个变量的取值与
它有关,且带有一定的随机性,则称这两个变量之
间的关系为不确定性相关关系,简称相关关系.
想一想
生活中还有哪
些变量具有相
关关系?
10.2 一元线性回归
情境导入
探索新知
典型例题 巩固练习 归纳总结 布置作业
与函数关系不同,相关关系是两个变量之间的一种非确定性依赖关
系.下面以上节表中名同学的身高x与体重y为例,探讨两个变量之间的相
关关系的特征.
10.2 一元线性回归
当x=6 时,y=6 时,y大约是多少?
10.2 一元线性ቤተ መጻሕፍቲ ባይዱ归

一元回归分析(第1讲)

一元回归分析(第1讲)

x )( y i y )
i
x
i 1
n
i
y i nx y
ˆ 3、 1
(x
i 1
x ) yi
( xi x ) 2
OLSE的性质
1、线性:
ˆ 就是指估计量 ˆ0,1为随机变量y i 线性函数即: ˆ 0 ˆ 1 n n ( xi x ) y i
决定系数(coefficient of determination)
r2 SSR SSE 1 SST SST
取值范围:[0,1],越接近1,说明实际观测点离样本线越 近,拟合优度越高。
r2高并不表示模型选择正确。
决定系数的含义
• 可决系数定义为: S S R S S E 1
r2 SST SST SSR SSE 1 SST SST
回归分析的变量
因变量
因变量必须是间距测度等级以上的变量(连续变量)
自变量
自变量可以是间距测度等级以上的变量(连续变 量)、也可以是名义测度等级的变量(分类变量)。 ▲注意: 回归分析对变量的处理方法存在不对称性,即区分应变量 (被解释变量)和自变量(解释变量)。
一元线性回归模型
回归模型建立的步骤
回归分析的参数估计(OLSE)
由此得回归方程:
ˆ ˆ ˆ y i 0 1 xi ˆ y i 称为拟合值或回归值 回归残差: ˆ ei y i y i 残差平方和: e
2

ˆ ( y i y i)
2 i 1
n
ˆ ˆ (y i 0 1 xi ) 2
H1 : 1 0 回归方程显著
2)、构造统计量: SSR F SSE /(n 2)

一元线性回归案例

一元线性回归案例
对首席执行官(CEO)构成的总体,令S表示年 薪(salary),单位千美元.以R表示某CEO所 在公司在过去三年中的平均股本回报率 (roe).(股本回报率定义为净收入占普通股 价值的百分比.)
S= β1+β2 R+u
例9. CEO薪水与股本回报率
1990年以209位CEO为样本,数据来源为《商 业周刊》(Business Week,5/6/91).样本中 CEO平均年薪1281.12千美元,最低223千 美元,最高14822千美元. 1988-1990年平 均股本回报率17.18%,最低和最高分别为
出勤率无关,但这几乎不可能.
例5. 学校的数学成绩与学校午餐项目
以math10表示高中十年级学生在一次标准化 数学考试中通过的百分比.lnchprg表示有资 格接受午餐计划的学生的百分比.
若其他条件不变,若学生太贫穷不能保证正常 饮食,可以有资格接受学校午餐项目的资助, 他的成绩应有所提高.
例5. 学校的数学成绩与学校午餐项目
例2. 一个简单的工资方程
美国研究者以1976年的526名美国工人为样 本,OLS回归方程为:
W=-0.90 +0.54 E 这里W单位为美元/小时,E单位为年. E平均工资计算为5.90美元/小时. 根据消费者价格指数,这一数值相当于2003
年的19.06美元.
例2. 一个简单的工资方程
对同样的数据,但是把log(w)作为因变量, 得到的回归方程为:
Log(invpc)=-0.550+1.24log(price) (0.043) (0.382)
N=42 R^2=0.208 显著性检验不明显,事实上这一关系也是错误的,未
来我们将加上时间序列分析中特有的趋势分析说 名这个问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
8.5一元线性回归分析案例
PPT课件
1
课题:选修2-3 8.5 回归分析案例
数学3——统计内容
再冷的石头,坐上三年也会暖 !
1. 画散点图
2. 了解最小二乘法的思想
3. 求回归直线方程
y=bx+a
4. 用回归直线方程解决应用问题
PPT课件
n
n
y ^
(xi x)( yi y)
xi
nx y
i
b i1 n
(xi x)2

i 1 n
xi2

2
nx
,......(2)
i 1
i 1
其中x

1 n
n i 1
xi ,
y

1 n
n i 1
yi .
(x, y) 称为样本点的中心。
PPT课件
9
课题:选修2-3 8.5 回归分析案例
y
500 水稻产量
450
· ··
400
·
350 · · ·
300
10 20 30 40 50
445 450 455
施化肥量 x
PPT课件
4
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
1、相关关系的定义:
自变量取值一定时,因变量的取值带有一定 随机性的两个变量之间的关系叫做相关关系。
探索:水稻产量y与施肥量x之间大致有何规
律?
PPT课件
6
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
施化肥量x 15 20 25 30 35 40 45
水稻产量y 330 345 365 405
y
500 水稻产量
450
· ··
400
·
350 · · ·
300
445 450 455 散点图
到如下所示的一组数据:
施化肥量x 15 20 25 30 35 40 45
水稻产量y 330 345 PP3T课65件 405 445 450 4553
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
施化肥量x 15 20 25 30 35 40 45
水稻产量y 330 345 365 405
注 1):相关关系是一种不确定性关系; 2): 对具有相关关系的两个变量进行统计 分析的方法叫回归分析。
PPT课件
5
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
现实生活中存在着大量的相关关系。 如:人的身高与年龄; 产品的成本与生产数量; 商品的销售额与广告费; 家庭的支出与收入。等等
yi
n
n
(2)求 xi2 , xi yi. n
n
i 1
i 1
y (xi x)(yi y)
xi
nxy
i
b i1 n
(3)代入公式
(xi x)2
i1

i1 n
xi2

2
nx
,
i1
^
a y bx,......(1)
(4)写出直线方程为y^=bx+a,即为所求的回归直线方程。
PPT课件
12
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
应用:利用回归直线方程对总体进行线性相关性的检验
例1、炼钢是一个氧化降碳的过程,钢水含碳量的多少
直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼
时间的关系。如果已测得炉料熔化完毕时,钢水的含碳 量x与冶炼时间y(从炉料熔化完毕到出刚的时间)的一 列数据,如下表所示:
aˆ y bˆx
PPT课件
10
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
2.求回归直线的方法——最小二乘法:
yˆ bˆx aˆ
n
n
bˆ =
i=1(xi -x)(yi -y)
n i=1(xi
-x)2
=
i=1
xi
yi
-n
xy
i=n1xi2-nx 2
课题:选修2-3 8.5 回归分析案例
解:(1)列出下表,并计算
再冷的石头,坐上三年也会暖 !
i
1
2
3
4
5
6
7
8
9
10
xi 104 180 190 177 147 134 150 191 204 121
yi 100 200 210 185 155 135 170 205 235 125
x(0.01%) 104 180 190 177 147 134 150 191 204 121
y(min)
100 200 210 185 155 135 170 205 235 125
(1)y与x是否具有线性相关关系;
(2)如果具有线性相关关系,求回归直线方程;
(3)预测当钢水含碳量为1P6P0T课个件0.01%时,应冶炼多少13分钟?
2
课题:选修2-3 8.5 回归分析案例
复习 变量之间的两种关系
再冷的石头,坐上三年也会暖 !
问题1:正方形的面积y与正方形的边长x之间
的函数关系是
y = x2
确定性关系
问题2:某水田水稻产量y与施肥量x之间是否
有一个确定性的关系? 例如:在 7 块并排、形状大小相同的试验田上
进行施肥量对水稻产量影响的试验,得
300
施化肥量
10 20 30 40 50
x案例
再冷的石头,坐上三年也会暖 !
对于一组具有线性相关关系的数据 (x1, y1), (x2 , y2 ),..., (xn , yn ),
我们知道其回归方程的截距和斜率的最小二乘估计公式分别为:
^
^
a y b x,......(1)
再冷的石头,坐上三年也会暖 !
1、回归直线方程
1、所求直线方程叫做回归直线方程;
相应的直线叫做回归直线。
2、对两个变量进行的线性分析叫做线性回归分析。
n
n
y bˆ
(xi
i1 n
x)( yi (xi x)2
y)

xi
i1
n
xi2
nx y
i
,
2
nx
i1
i1
,
aˆ=y-bˆ x.
其中x=
1 n
n xi i=1
,y=
1 n
n yi. i=1
(x , y) 称为样本点的中心。
PPT课件
11
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
4、求回归直线方程的步骤:
(1)求x

1 n
n i 1
xi , y

1 n
n i 1
施化肥量
10 20 30 40 50
x
发现:图中各点,大致分布在某条直线附近。
探索2:在这些点附近可画直线不止一条,哪条直
线最能代表x与y之间的PP关T课系件 呢?
7
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
y 水稻产量
500
450
· ·· y x
400
·
350 ···
相关文档
最新文档