一元线性回归分析

合集下载

6.2 一元线性回归分析

6.2 一元线性回归分析

6.2.2 一元线性回归分析的原理 2. 最小二乘点估计
根据样本数据 ( xi , yi )(i 1, 2, , n) 计算得到回归 系数的最小二乘点估计 b0 和 b1 之后,定义:
ˆi b0 b1 xi ,称为预测值; y
定义 ei yi y ˆi ,称为残差; 记 RSS= i 1 ei2 ,称为残差平方和;
n i 1 i
n i 1
y n , ( x x ) n , s ( x x )( y y ) n
n, y
n i 1 i
b0 y b1x
(6.2.4)
2
n
i
xy
i 1
i
i
6.2.2 一元线性回归分析的原理 2. 最小二乘点估计
可 以 证 明 (6.2.3) 式 和 (6.2.4) 式 与 1.7.2 小 节 的 (1.7.3)式
6.2.2
一元线性回归分析的原理
6. 一元线性回归模型显著性的F检验
回归模型 y 0 1 x 的显著性检验,就是由 样本数据 ( xi , yi )(i 1, 2, , n) 检验假设: 原假设 H 0 : 1 0 ;备择假设 H1 : 1 0 拒绝原假设 H 0 : 1 0 而采纳备择假设 H1 : 1 0 ,意 味着回归模型是显著的;采纳原假设 H 0 : 1 0 ,意 味着回归模型是不显著的. 在实际应用中,不显著的回归模型是不应该采用 的.
6.2.2 一元线性回归分析的原理 3. 决定系数
定义决定系数为 R2 FSS TSS . R 2 就是由于使 用一元线性回归模型而使误差平方和下降的降幅占 总平方和的比例. 由(6.2.6)式,有 R2 1 RSS TSS , 0 R2 1 所以 R 2 越接近 1, 一元线性回归模型的拟合精确程度 就越高;特别的,当 R 2 1 时,回归直线 y b0 b1x 恰 好经过所有的数据点,残差 ei 都等于 0 (i 1, 2, , n) .

一元线性回归分析

一元线性回归分析

C=α+βy + µ
其中, µ是随机误差项。 是随机误差项。 其中, 是随机误差项 根据该方程, 的值, 根据该方程,每给定一个收入 y 的值,消 并不是唯一确定的, 费C并不是唯一确定的,而是有许多值, 并不是唯一确定的 而是有许多值, 他们的概率分布与µ的概率分布相同 的概率分布相同。 他们的概率分布与 的概率分布相同。 线性回归模型的特征: 线性回归模型的特征: 有随机误差项! 有随机误差项!
21


一、严格地说,只有通过了线性关系的检验,才 严格地说,只有通过了线性关系的检验, 能进行回归参数显著性的检验。 能进行回归参数显著性的检验。 有些教科书在介绍回归参数的检验时没有考虑线 性关系的检验,这是不正确的。 性关系的检验,这是不正确的。因为当变量之间 的关系没有通过线性检验时, 的关系没有通过线性检验时,进行回归参数显著 性的检验是没有意义的。 性的检验是没有意义的。 在一元线性回归分析中, 二、在一元线性回归分析中,即只有一个解释变 量时,这两种检验是统一的。 量时,这两种检验是统一的。但在多元回归分析 这两种检验的意义是不同的。 中,这两种检验的意义是不同的。 为了说明该问题, 为了说明该问题,我们在本章中依然把两种检验 分开论述。 分开论述。
13
为了达到上述目的, 为了达到上述目的,我们直观上会采 用以下准则: 用以下准则: 选择这样的SRF,使得: 选择这样的 ,使得:
残差和∑ ε i = ∑ ( yi − yi )尽可能小! ˆ
但这个直观上的准则是否是一个很好 的准则呢?我们通过以下图示说明: 的准则呢?我们通过以下图示说明:
14
12
ˆx i + ε i yi = α + β ˆ ˆ 即:y i = y i + ε i ˆ ∴ ε i = yi − yi

一元回归分析

一元回归分析

一元回归分析1. 简介回归分析是统计学中重要的分析方法之一,用于研究变量之间的关系。

在回归分析中,一元回归是指只涉及一个自变量和一个因变量的分析。

一元回归分析的目的是建立一个数学模型,描述自变量对因变量的影响关系,并通过拟合数据来确定模型的参数。

通过一元回归分析,我们可以研究自变量和因变量之间的线性关系,预测因变量的值,并进行因变量的控制。

2. 原理2.1 线性回归模型一元线性回归模型假设自变量和因变量之间存在线性关系,可以用以下方程来表示:Y = β0 + β1 * X + ε其中,Y 表示因变量,X 表示自变量,β0 和β1 分别表示模型的截距和斜率,ε 表示误差项。

2.2 最小二乘法拟合回归模型的常用方法是最小二乘法。

最小二乘法的目标是通过最小化残差平方和来确定模型的参数。

残差是指观测值与模型预测值之间的差异。

最小二乘法通过计算观测值与回归线之间的垂直距离来确定参数值,使得这些距离的平方和最小化。

3. 回归分析步骤一元回归分析通常包括以下步骤:3.1 数据收集收集与研究问题相关的数据。

数据包括自变量和因变量的观测值。

3.2 模型设定根据问题和数据,选择适当的回归模型。

对于一元回归分析,选择一元线性回归模型。

3.3 模型估计利用最小二乘法估计模型的参数值。

最小二乘法将通过最小化残差平方和来确定参数值。

3.4 模型诊断对拟合的模型进行诊断,检查模型是否满足回归假设。

常见的诊断方法包括检查残差的正态分布性、检查残差与自变量的关系等。

3.5 结果解释解释模型的结果,包括参数估计值、模型拟合程度、因变量的预测等。

3.6 模型应用利用拟合的模型进行预测、推断或决策。

4. 注意事项在进行一元回归分析时,需要注意以下几点:•数据的收集应当尽可能准确和全面,以确保分析的可靠性;•模型的设定应当符合问题的实际情况,并选择合适的函数形式;•模型诊断是确定模型是否可靠的重要步骤,需要进行多种检验;•需要注意回归分析的局限性,不能因为有了一元回归模型就能解释所有的问题。

第15讲 一元线性回归分析

第15讲 一元线性回归分析

n
i 1
2
2 2 ˆ ˆ 2b yi y xi x b xi x i 1 i 1
i 1
n
i 1
n
ˆS /S ˆ b ˆ2 S S bS ˆ . b S yy 2bS xy xx xy xx yy xy
例2 求例1中误差方差的无偏估计。
采用最小二乘法估计参数a和b,并不需要事先知道Y与x之间 一定具有相关关系,即使是平面图上一堆完全杂乱无章的散 点,也可以用公式求出回归方程。因此μ(x)是否为x的线性函 数,一要根据专业知识和实践来判断,二要根据实际观察得 到的数据用假设检验方法来判断。
即要检验假设 H0 : b 0, H1 : b 0, 若原假设被拒绝,说明回归效果是显著的,否则, 若接受原假设,说明Y与x不是线性关系,回归方程 无意义。回归效果不显著的原因可能有以下几种:
将每对观察值( xi , yi )在直角坐标系中描出它相应的点 (称为散点图),可以粗略看出 ( x)的形式。
基本思想
(x, Y)
回归分析 回归方程
采集样本信息 ( xi, yi )
散点图
回归方程参数估计、显著性检验
对现实进行预测与控制
一元回归分析:只有一个自变量的回归分析 多元回归分析:多于一个自变量的回归分析

x1 x2 x3
xi
xn
整理得 na ( xi )b yi ,
( xi )a ( xi )b xi yi .——正规方程组
2 i 1 i 1 i 1
n
i 1
n
i 1
n
na ( xi )b yi ,
i 1 i 1
n
n

一元线性回归分析

一元线性回归分析

一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。

本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。

1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。

通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。

1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。

2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。

2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。

- 独立性假设:每个观测值之间相互独立。

- 正态性假设:误差项ε服从正态分布。

- 同方差性假设:每个自变量取值下的误差项具有相同的方差。

3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。

3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。

根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。

3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。

通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。

3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。

常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。

4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。

一元线性回归分析

一元线性回归分析

S xx xi2 nx 2 218500 10 1452 8250 S xy xi yi nx y 101570 10 145 67.3
i 1
3985 ˆ S xy 3985 0.483 b S xx 8250 ˆ ˆ a y xb 67.3 145 0.483 2.735
这里45.394>2.306,即|t|值在H0的拒绝域内,故 拒绝H0 ,说明回归效果是显著的。 b的置信度为0.95(=0.05)的置信区间为 0.934 0.934 (b, b ) 0.483 2.306 , 0.483 2.306 8250 8250
i 1 n 2 n
2
ˆ ˆ yi y yi yi
i 1 i 1
2
S回 Qe
18
线性回归的方差分析
回归平方和
残差平方和
ˆ S回 yi y
i 1 n
n
2
ˆ Qe yi yi
i 1
2
Syy自由度为n-1, Qe自由度为n-2, S回自由度为1
平方和 1924.6 7.5 1932.1
自由度
均方
F比
回归 残差 总和
1 8 9
1924.6 0.94
2047.4
30
对=0.01,查出F0.01(1,8)=11.26 因为2047.3 >>11.26,所以回归效果是 非常显著的。
六、利用回归方程进行预报(预测) 回归问题中Y是随机变量,x是普通 变量。回归方程 y a bx 是Y对x的依赖 ˆ ˆ ˆ 关系的一个估计。对给定的x值,用回归 方程确定Y的值,叫预报。

第三节 一元线性回

第三节 一元线性回
• (1)提出假设: H 0 : β1 = 0; H1 : β1 ≠ 0 • (2)确定显著性水平 α 。 • 根据自由度和给定的显著性水平,查t分布表的理 论临界值 tα / 2 (n − 2) 。 • (3)计算回归系数的t值。 • (4)决策。 • t ˆ > tα / 2 (n − 2) 则拒绝 H 0 ,接受 H1,
1
1、回归系数的显著性检验
• 估计量 S 2 来代替。 ˆ • 但样本为小样本时,回归系数估计量 β1 的标准 化变换值服从t分布,即:
σ 2 是未知的,要用其无偏 一般来说,总体方差
tβˆ =
1
ˆ β1 − β1 Sβˆ
1
~ t (n − 2)
• 式中n为样本容量,n-2为自由度。 •
回归系数显著性检验步骤:
(二)一元线性回归分析的特点 二 一元线性回归分析的特点
• 1、在两个变量之间,必须根据研究目的具体确定哪个 是自变量,哪个是因变量。相关分析不必确定两个变量中 哪个是自变量,哪个是因变量。 2、计算相关系数时,要求相关的两个变量都是随机的; 但是,在回归分析中因变量是随机的,而自变量不是随机 的变量。 3、在没有明显的因果关系的两个变量与y之间,可以 3 y 求得两个回归方程。 4、回归方程的主要作用在于:给出自变量的数值来估 计因变量的可能值。一个回归方程只能做出一种推算,推 算的结果表明变量之间的具体的变动关系。 5、直线回归方程中,自变量的系数称回归系数。回归 系数的符号为正,表示正相关;为负则表示负相关。
ˆ β1 =
n∑ xi yi − ∑ xi ∑ yi n∑ x − (∑ xi )
2 i 2
ˆ ˆ β 0 = yi − β1 xi
(一)参数 β 0 , β 1 的最小二乘估计

一元线性回归分析研究实验报告

一元线性回归分析研究实验报告

一元线性回归分析研究实验报告一元线性回归分析研究实验报告一、引言一元线性回归分析是一种基本的统计学方法,用于研究一个因变量和一个自变量之间的线性关系。

本实验旨在通过一元线性回归模型,探讨两个变量之间的关系,并对所得数据进行统计分析和解读。

二、实验目的本实验的主要目的是:1.学习和掌握一元线性回归分析的基本原理和方法;2.分析两个变量之间的线性关系;3.对所得数据进行统计推断,为后续研究提供参考。

三、实验原理一元线性回归分析是一种基于最小二乘法的统计方法,通过拟合一条直线来描述两个变量之间的线性关系。

该直线通过使实际数据点和拟合直线之间的残差平方和最小化来获得。

在数学模型中,假设因变量y和自变量x之间的关系可以用一条直线表示,即y = β0 + β1x + ε。

其中,β0和β1是模型的参数,ε是误差项。

四、实验步骤1.数据收集:收集包含两个变量的数据集,确保数据的准确性和可靠性;2.数据预处理:对数据进行清洗、整理和标准化;3.绘制散点图:通过散点图观察两个变量之间的趋势和关系;4.模型建立:使用最小二乘法拟合一元线性回归模型,计算模型的参数;5.模型评估:通过统计指标(如R2、p值等)对模型进行评估;6.误差分析:分析误差项ε,了解模型的可靠性和预测能力;7.结果解释:根据统计指标和误差分析结果,对所得数据进行解释和解读。

五、实验结果假设我们收集到的数据集如下:经过数据预处理和散点图绘制,我们发现因变量y和自变量x之间存在明显的线性关系。

以下是使用最小二乘法拟合的回归模型:y = 1.2 + 0.8x模型的R2值为0.91,说明该模型能够解释因变量y的91%的变异。

此外,p 值小于0.05,说明我们可以在95%的置信水平下认为该模型是显著的。

误差项ε的方差为0.4,说明模型的预测误差为0.4。

这表明模型具有一定的可靠性和预测能力。

六、实验总结通过本实验,我们掌握了一元线性回归分析的基本原理和方法,并对两个变量之间的关系进行了探讨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(ˆ0 t (n 2) Sˆ0 )
2
1的置信水平为1-区间估计为
(ˆ1 t (n 2) Sˆ1 )
2
回归分析的Excel实现
“工具”->“数据分析”->“回归”
ˆ0
S ˆ0
ˆ1
S ˆ1
(ˆ0 t (n 2) Sˆ0 )
2
(ˆ1 t (n 2) Sˆ1 )

0
n

2 t1 Xt (Yt ˆ0 ˆ1 Xt ) 0


nˆ0

n
ˆ1
t 1
Xt
n
Yt
t 1
n
n
n


ˆ0
t 1
Xt
ˆ1
t 1
X
2 t

t 1
X tYt
n
n
n
n
n XtYt Xt Yt
( X t X )(Yt Y )
Yˆt ˆ0 ˆ1 Xt
残差平方和:
n
n
n
Q et2 (Yt Yˆt )2 (Yt ˆ0 ˆ1Xt )2
t 1
t 1
t 1
Q

ˆ0
Q
ˆ1

0 0

2
n t 1
(Yt

ˆ0

ˆ1 X t
)
907717
Xt×Yt 440 720 720 1312 8170 2112 2100 2832
11154 6678 2739 4496 2240 1323 1890 600
49526
n
n
n
n XtYt Xt Yt
ˆ1
t 1
t 1
t 1
n
n
X
2 t


n
2 Xt
t 1
n
(Yˆt Y )2 :回归平方和,记为SSR;
t 1
n
n
(Yt Yˆt )2 : 残差平法和,即 et2,记为SSE;
t 1
t 1
SST SSR SSE
决定系数 r2 SSR 1 SSE
SST
SST
修正自由度的决定系数R2 1 SSE / (n 2) SST / (n 1)
均方差 SSR/1 SSE/n-2
F
SSR / 1 SSE / n 2
可以证明:SSR
2
~

2 (1),
SSE
2
~
2(n 2)
所以 F SSR / 1 ~ F (1,n 2) SSE / n 2
H0 :回归方程不显著, H1 :回归方程显著 如果回归方程显著,意味着SSE应该比较小,所以F 值应该比较大,所以当F F (1,n 2)时,拒绝原假
(2) Cov(utus ) 0, (t, s 1,2,3,L , n; t s)
由上知:
E(Yt )
Yt
。 ut


。。
X
参数0和1的点估计
X1 X2 …… X t …… X n Y1 Y2 …… Yt …… Yn
最小二乘法: 通过使得残差平方和 (各样本点与拟合直 线的纵向距离的平方 和)为最小来估计回 归系数的一种方法。
其中:Sef S
1 1 n
( X f X )2
n
( Xt X )2
t 1
Yf的置信水平为1-的置信区间为(Yˆf t (n - 2) Sef )
2
续例:假定一种新型点心中含有10克脂肪,利用样本 的回归方程和相关数据,计算置信度为95%的热量的 预测区间.
预测值为:Yˆf 36.0725 15.2584Xt 188.6565 置信度:1- =95% 0.05
由回归系数的期望与方差,有
E(e f ) 0


Var(e f

) 21

1 n
( X f X )2
n
( Xt X )2
t 1

区间预测: 在标准假设条件下,e f ~ N (0, Var(e f ))
可以证明:Yf Yˆf ~ t(n 2) Se f
t 1
参数0和1的区间估计
根据误差项的基本标准假定
(1) ut ~ N (0, 2 ), (t 1,2,3,L n) E(ut ) 0, Var(ut ) 2.
(2) Cov(utus ) 0, (t, s 1,2,3,L , n; t s)
可以证明
ˆ0
~
N
(
设,认为回归方程显著(为显著性水平)。
P值是由检验统计量的样本观察值得出的原假设可被 拒绝的最小显著性水平。 P值越小(P值小于显著性水平α),越拒绝原假设。
回归方程的显著性检验过程
(1) H0 :回归方程不显著, H1 :回归方程显著
(2) 给定显著性水平 .
(3)检验统计量 F SSR / 1 ~ F (1,n 2) SSE / n 2
et Yt Yˆt称为残差,与总体的误差项ut对应,n为样 本的容量。
样本回归函数与总体回归函数区别
1、总体回归线是未知的,只有一条。样本回归线是根据样本数 据拟合的,每抽取一组样本,便可以拟合一条样本回归线。
2、总体回归函数中的β0和β1是未知的参数,表现为常数。而样
本回归函数中的 ˆ0和是ˆ1 随机变量,其具体数值随所抽取
3461
Xt平方 16 36 36 64 361 121 144 144 676 441 121 256 196 81 81 25
2799
Yt平方 12100 14400 14400 26896 184900 36864 30625 55696 184041 101124 62001 78961 25600 21609 44100 14400
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. (Yt Y ) (Yˆt Y ) (Yt Yˆt )
n
n
n
(Yt Y )2 (Yˆt Y )2 (Yt Yˆ )2
t 1
t 1
t 1
n
(Yt Y )2 : 总离差平方和,记为SST;
S 44.0632
Sef S
1 1 n
( X f X )2
n
45.543
( Xt X )2
t 1
所求置信区间为:(188.6565 97.6806)
回归分析的SPSS实现
“Analyze->Regression->Linear”
t 1
t 1
最小二乘估计的性质
E(ˆ0 ) 0 , E(ˆ1) 1, 即ˆ0和ˆ1分别为0和1的无偏估计


Var(ˆ0 )


2
ˆ0

2

1 n


X
n
(X t
2

X
)2


t 1

Var ( ˆ1 )


2
ˆ1

2
n
(Xt X )2
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
一元线性回归模型
(一)总体回归函数
Yt=0+1 X t+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(二)样本回归函数
Yˆt ˆ0 ˆ1 Xt (t 1, 2, 3,L , n)
et2
S 2 t1 n2
E(S2 ) 2. 即S2是 2的无偏估计
利用最小二乘法计算出的ˆ0和ˆ1,可以得到残差平方
和的另一个计算公式:
n
n
n
n
n
et2 (Yt Yˆt )2 Yt2 ˆ0 Yt ˆ1 XtYt
t 1
t 1
t 1
的样本观测值不同而变动。
3、总体回归函数中的ut是Yt与未知的总体回归线之间的纵向距 离,它是不可直接观测的。而样本回归函数中的et 是Yt与
样本回归线之间的纵向距离,当根据样本观测值拟合出样本
回归线之后,可以计算出et 的具体数值。
误差项的基本标准假定
(1) ut ~ N (0, 2 ), (t 1,2,3,L n) E(ut ) 0, Var(ut ) 2 .
(4) 拒绝域F F (1, n 2) (5) 判断是否拒绝原假设
也可以用P值检验
参数的显著性检验
(1) 提出假设:H0 : 1 0, H1 : 1 0 (2) 给定显著性水平 . (3)检验统计量t= ˆ1 0 ~ t(n 2)
Sˆ1 (4) 拒绝域|t| t (n 2)

(n

2)
S2 ˆ0
2 ˆ0
:
2(n 2)
S 2 ˆ1

S2
n
(Xt X )2
t 1

(n

2)
S2 ˆ1
2 ˆ1
:
2(n 2)
所以根据t分布的定义,有
ˆ0 0 ~ t(n 2), ˆ1 1 ~ t(n 2)
Sˆ0
Sˆ1
相关文档
最新文档