一元线性回归分析实验报告
实验二-一元线性回归模型的估计、检验、预测和应用-学生实验报告

模型1
Dependent Variable: CS Method: Least Squares Date: 04/06/16 Time: 23:04 Sample: 1978 2005 Included observations: 28
Variable
Coefficient
Std. Error
t-Statistic
Prob.
GDPS C
ቤተ መጻሕፍቲ ባይዱ
0.080296 12.50960
0.001891 15.58605
42.45297 0.802615
0.0000 0.4295
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
GDPS CS
GDPS 1.000000 0.992864
CS 0.992864 1.000000
4 / 20文档可自由编辑
CS
CZ
CS
1.000000
0.997638
CZ
0.997638
1.000000
GDPS SLC
GDPS 1.000000 0.996795
SLC 0.996795 1.000000
Obs F-Statistic
Prob.
26
6.26728
0.0073
6.14373
0.0079
Obs F-Statistic
Prob.
25
3.13450
0.0512
6.34347
0.0040
Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:06 Sample: 1978 2005 Lags: 4
一元线性回归模型研究我国经济水平对消费的影响实验报告

实验报告一、实验内容:利用一元线性回归模型研究我国经济水平对消费的影响1、实验目的:掌握一元线性回归方程的建立和基本的经济检验和统计检验2、实验要求:(1)对原始指标变量数据作价格因子的剔除处理;(2)对回归模型做出经济上的解释;(3)独立完成实验建模和实验报告二、实验报告:中国1978-2006年居民人均消费与经济水平之间的关系1、问题的提出合理的消费可以促进经济的增长,居民的消费在社会经济发展中具有重要的作用。
只有保证居民的消费水平,才能发挥消费对经济的促进作用。
居民的人均消费受很多因素的影响,比如人均国内生产总值,消费者物价指数等等。
如果人均GDP增加,那么居民的可支配收入也会增加,那么居民的消费也会增加。
在这次实验通过运用中国1978-2006年人均消费与人均GDP数据,研究人均消费和经济水平之间的关系。
2、指标选择此次实验选择1978-2006年的人均国内生产总值和居民人均消费,除此之外还有1978-2006年的消费者物价指数作为物价变动的剔除处理。
3、数据来源;实验课上提供的实验数据4、数据处理首先我们必须剔除价格的因素对人均消费和人均GDP的影响,这样才能保证各个时期数据的可行。
在这里我们用1980的CPI作为基期来调整数据。
同时将人均国内生产总值以及居民人均消费都调整成以1980年为基期的数据。
调整过后的人均消费和人均GDP如表人均GDP与人均消费的可比价数据(单位:元)5、数据分析调整后数据输入结果5.1 数据的初步浏览在每一实验前我们都应该对数据进行浏览,从直观的图形上检验是否存在变异数据,如果存在我们需要对它修正或者剔除,以防止它对我们实验结果的准确性产生不好的影响,导致实验结果的错误,影响实验的效果。
5.1.1 对人均消费的观察图2.1 人均消费的趋势从2.1图我们可以看出人均消费是平稳增长的,和现实的经济相符,不存在与经济意义相违背的数据,所以可以保证取得的人均消费的数据的质量是可以满足此次实验的要求。
试验二-一元线性回归模型的估计、检验、预测和应用-学生试验报告

广东财经大学华商学院实验报告实验项目名称 ________________ 实验二一元线性回归模型的估计、检验、预测和应用______________________________ 课程名称 ____________ 计量经济学 _________________ 成绩评定良__________ 实验类型:验证型□"综合型□设计型口实验日期_______________________ 指导教师学生姓名_____________________ 学号 _____________________ 专业班级___________________________________________ 一、实验项目训练方案小组合作:是□ 否^I小组成员:无实验目的:掌握简单相关分析、格兰杰因果关系检验、简单线性回归模型的设定和模型的参数估计、简单线性回归模型的区间估计、假设检验和预测方法,并能利用所建立的模型分析实际问题。
实验场地及仪器、设备和材料:实验室:普通配置的计算机,Eviews软件及常用办公软件(二)相关分析(请对得到的图表进行处理,“相关分析”部分不得超过本页)1 •作散点图分别作上述三组变量之间的散点图(3个散点图),并根据散点图作简单分析,写出各组变量的关系。
散点图:分析:由(1)可知,X, y系数互为正相关关系。
由(2)可知,x, y系数互为正相关关系由由(3)可知,x, y系数互为正相关关系2、计算简单线性相关系数分别计算上述三组变量之间的简单线性相关系数,并根据相关系数作简单分析GDPS SLCGDPS CSGDPS 1.000000 0.992864CS 0.992864 1.000000CS CZCS 1.000000 0.997638CZ 0.997638 1.000000GDPS 1.000000 0.996795SLC 0.996795 1.000000(三)回归分析1 .【模型设定门(请对得到的图表进行处理,“模型设定”部分不得超过本页)(1)作因果关系检验(辅助“模型设定”)分别对上述三组变量作因果关系检验(3组检验结果),并根据因果关系检验的结果,作简单描述及分析。
一元线性回归分析研究实验报告

.900
.888
.4800
a. 预测变量: ( 常量 ), x
由模型摘要表得到决定系数为 0.9 接近于 1,说明模型地拟合度
较高 .
7. 对回归方程做方差分析 .
ANOVaA
模型
1
回归
平方和 16.682
自由度 1
均方 16.682
F 72.396
显著性 .000 b
残差
1.843
8
.230
总计
18.525
模型
平方和
1
回归
16.682
残差
1.843
总计
18.525
a. 因变量: y b. 预测变量: ( 常量 ), x
ANOVaA
自由度
均方
1
16.682
8
.230
9
F 72.396
显著性
b
.000
由方差分析表可以得到回归标准误差: SSE=1.843
故回归标准误差:
2 = SSE
n 2,
2
=0.48.
许可,并支付报酬 . LDAYtRyKfE
Users may use the contents or services of this article
for personal study, research or appreciation, and other
non-commercial or non-profit purposes, but at the same time,
8. 作回归系数 1 地显著性检验 . 9. 作回归系数地显著性检验 . 10. 对回归方程做残差图并作相应地分析 .
一元线性回归预测实验报告

1、实验过程和结果记录:(1)实验数据(2)人均可支配收入与人均消费性支出散点图(3)数据分析步骤4、(5)最终实验结果2、人均可支配收入为12千元时的人均消费性支出和置信度为95%的预测区间计算步骤: (1)一元线性回归方程为Y=0.72717+0.6741420X(2)将0X =12带入样本回归方程可得0Y 的预测值=0.72717+0.674142*12=8.816874千元(3)0e S =千元 结论:因此,当城镇居民家庭的人均可支配收入为12千元时,人均消费性支出地点预测为8.816874千元;置信度为95%的预测区间为(8.816874-1.96*0.0542千元,8.816874+1.96*0.0542千元) 即(8.71千元,8.92千元)六、实验结果及分析1、实验结果:当城镇居民家庭的人均可支配收入为12千元时,人均消费性支出地点预测为8.816874千元;置信度为95%的预测区间为(8.816874-1.96*0.0542千元,8.816874+1.96*0.0542千元) 即(8.71千元,8.92千元)2、实验分析(1)相关系数:相关系数R 实际上是判定系数的平方根,相关系数R 从另一个角度说明了回归直线的拟合优度。
|R|越接近1,表明回归直线对观测数据的拟合程度就越高。
R=0.999592,接近于1,所以人均可支配收入和人均消费支出相关程度高。
(2)判定系数:该指标测度了回归直线对观测数据的拟合程度。
若所有观测点,落在直线上,残差平方和RSS=0,则R^2=1,拟合是完全的;0≤R^2≦1。
R^2越接近1,表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用X 的变化来解释Y 值的部分就越多,回归直线的拟合度就越好;反之,R^2越接近0,回归直线的拟合度就越差。
所以,判定系数R^2=0.999185,表示所观测到的我国城镇居民家庭人均消费支出的值与其均值的偏差平方和中有99.92%可以通过人均可支配收入来解释。
一元线性回归分析报告

实验报告金融系金融学专业级班实验人:实验地点:实验日期:实验题目:进行相应的分析,揭示某地区住宅建筑面积与建造单位成本间的关系实验目的:掌握最小二乘法的基本方法,熟练运用Eviews软件的一元线性回归的操作,并能够对结果进行相应的分析。
实验内容:实验采用了建筑地编号为1号至12号的数据,通过模型设计、估计参数、检验统计量、回归预测四个步骤对数据进行相关分析。
实验步骤:一、模型设定1.建立工作文件。
双击eviews,点击File/New/Workfile,在出现的对话框中选择数据频率,因为该例题中为截面数据,所以选择unstructured/undated,在observations中设定变量个数,这里输入12。
图12.输入数据。
在eviews 命令框中输入data X Y,回车出现group窗口数据编辑框,在对应的X,Y下输入数据,这里我们可以直接将excel中被蓝笔选中的部分用cirl+c复制,在窗口数据编辑框中1所对应的框中用cirl+v粘贴数据。
图23.作X与Y的相关图形。
为了初步分析建筑面积(X)与建造单位成本(Y)的关系,可以作以X为横坐标、以Y为纵坐标的散点图。
方法是同时选中工作文件中的对象X和Y,双击得X和Y的数据表,点View/Graph/scatter,在File lines中选择Regressions line/ok(其中Regressions line为趋势线)。
得到如图3所示的散点图。
图3 散点图从散点图可以看出建造单位成本随着建筑面积的增加而降低,近似于线性关系,为分析建造单位成本随建筑面积变动的数量规律性,可以考虑建立如下的简单线性回归模型:二、估计参数假定所建模型及其中的随机扰动项满足各项古典假定,可以用OLS法估计其参数。
Eviews软件估计参数的方法如下:在eviews命令框中键入LS Y C X,按回车,即出现回归结果。
Eviews的回归结果如图4所示。
图4 回归结果可用规范的形式将参数估计和检验结果写为:(19.2645)(4.8098)t=(95.7969)(-13.3443)0.9468 F=178.0715 n=12若要显示回归结果的图形,在equation框中,点击resids,即出现剩余项、实际值、拟合值的图形,如图5所示。
线性回归分析实验报告

线性回归分析实验报告线性回归分析实验报告引言线性回归分析是一种常用的统计方法,用于研究因变量与一个或多个自变量之间的关系。
本实验旨在通过线性回归分析方法,探究自变量与因变量之间的线性关系,并通过实验数据进行验证。
实验设计本实验采用了一组实验数据,其中自变量为X,因变量为Y。
通过对这组数据进行线性回归分析,我们将得到回归方程,从而可以预测因变量Y在给定自变量X的情况下的取值。
数据收集与处理首先,我们收集了一组与自变量X和因变量Y相关的数据。
这些数据可以是实际观测得到的,也可以是通过实验或调查获得的。
然后,我们对这组数据进行了处理,包括数据清洗、异常值处理等,以确保数据的准确性和可靠性。
线性回归模型在进行线性回归分析之前,我们需要确定一个线性回归模型。
线性回归模型的一般形式为Y = β0 + β1X + ε,其中Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
回归系数β0和β1可以通过最小二乘法进行估计,最小化实际观测值与模型预测值之间的误差平方和。
模型拟合与评估通过最小二乘法估计回归系数后,我们将得到一个拟合的线性回归模型。
为了评估模型的拟合程度,我们可以计算回归方程的决定系数R²。
决定系数反映了自变量对因变量的解释程度,取值范围为0到1,越接近1表示模型的拟合程度越好。
实验结果与讨论根据我们的实验数据,进行线性回归分析后得到的回归方程为Y = 2.5 + 0.8X。
通过计算决定系数R²,我们得到了0.85的值,说明该模型能够解释因变量85%的变异程度。
这表明自变量X对因变量Y的影响较大,且呈现出较强的线性关系。
进一步分析除了计算决定系数R²之外,我们还可以对回归模型进行其他分析,例如残差分析、假设检验等。
残差分析可以用来检验模型的假设是否成立,以及检测是否存在模型中未考虑的其他因素。
假设检验可以用来验证回归系数是否显著不为零,从而判断自变量对因变量的影响是否存在。
实验报告作业一元线性回归模型的估计

实验实训报告课程名称:计量经济学实验开课学期: 2012-2013学年第二学期开课系(部):经济系开课实验(训)室:数量经济分析实验室学生姓名:汪翠专业班级: 10级证券二班学号: 20093210516 重庆工商大学融智学院教务处制实验题目实验概述【实验(训)目的及要求】目的:熟悉EViews软件基本功能;掌握一元线性回归模型的估计、检验。
要求:熟悉EViews软件基本使用功能;掌握描述统计和一元线性回归分析基本内容。
【实验(训)原理】当一元线性回归模型在满足线性模型古典假设的前提下,最小二乘估计结果具有线性性、无偏性、有效性等性质,在此基础上对估计所得的模型进行经济意义检验及统计检验(可决系数检验、参数显著性检验)。
实验内容【实验(训)方案设计】(一)要求完成的实验内容1、创建工作文件和导入数据;2、完成变量的描述性统计;3、作一元线性回归估计;4、统计检验;(二)具体操作程序1、Eviews软件基本使用功能(1)启动软件包(2)创建工作文件和导入数据(3)输入和编辑数据(4)由组的观察查看组内序列的数据特征(5)保存研究成果(工作文件)2、一元回归模型的参数估计和统计检验(1)加载工作文件,或录入数据(2)选择方程:选择方程估计方法,选择回归分析的样本范围(3)线性回归估计(4)统计检验:可决系数分析;参数显著性分析;【实验(训)过程】(实验(训)步骤、记录、数据、分析)1、根据实验数据的相关信息建立Workfile;在菜单中依次点击File\New\Workfile,在出现的对话框“Workfile range”中选择数据频率。
因为本例分析中国2007各地区税收Y对国内生产总值GDP的影响。
因此,在数据频率选项中选择“Unstructured/Undated”选项。
在“observations”输入“31”。
2、导入数据;在菜单栏中选择“Quick\Empty Group”,将Y及X的数据从Excel导入,并将这两个序列的名称分别改为“Y”、“GDP 或者在EViews命令窗口中直接输入“data Y GDP弹出的编辑框中将这两个变量的时间数列数据从Excel中复制过来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. . .
一元线性回归在公司加班制度中的应用
院(系):
专业班级:
学号姓名:
指导老师:
成绩:
完成时间:
一元线性回归在公司加班制度中的应用
一、实验目的
掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验
二、实验环境
SPSS21.0 windows10.0
三、实验题目
一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。
经10周时间,收集了每周加班数据和签发的新保单数目,x为每周签发的新保单数目,y为每周加班时间(小时),数据如表所示
2.x与y之间大致呈线性关系?
3.用最小二乘法估计求出回归方程。
4.求出回归标准误差σ∧。
5.给出0β∧与1β∧的置信度95%的区间估计。
6.计算x与y的决定系数。
7.对回归方程作方差分析。
8.作回归系数1β∧的显著性检验。
9.作回归系数的显著性检验。
10.对回归方程做残差图并作相应的分析。
x=,需要的加班时间是多少?
11.该公司预测下一周签发新保单01000
12.给出0y的置信度为95%的精确预测区间。
E y的置信度为95%的区间估计。
13.给出()0
四、实验过程及分析
1.画散点图
如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。
2.最小二乘估计求回归方程
用SPSS 求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下:
0.1180.004y x =+
3.求回归标准误差σ∧
ANOVA a
模型 平方和 自由度
均方 F 显著性
1
回归 16.682 1 16.682 72.396
.000b
残差 1.843 8 .230
总计
18.525
9
a. 因变量:y
b. 预测变量:(常量), x
由方差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差:
2=
2SSE
n σ∧-,2σ∧=0.48。
4.给出回归系数的置信度为95%的置信区间估计。
由回归系数显著性检验表可以看出,当置信度为95%时:
0β∧
的预测区间为[-0.701,0.937], 1β∧
的预测区间为[0.003,0.005].0β∧
的
置信区间包含0,表示0β∧
不拒绝为0的原假设。
6.计算x 与y 的决定系数。
由模型摘要表得到决定系数为0.9接近于1,说明模型的拟合度较高。
7.对回归方程做方差分析。
ANOVA a
模型 平方和 自由度
均方 F 显著性
1
回归 16.682 1 16.682 72.396
.000b
残差 1.843 8 .230
总计
18.525
9
a. 因变量:y
b. 预测变量:(常量), x
由方差分析表可知:F 值=72.396>5.32(当121,8n n ==时,查表得出对应值为5.32),显著性约为0,所以拒绝原假设,说明回归方程显著。
8.做相关系数的显著性检验。
模型摘要
模型
R
R 方
调整后 R 方
标准估算的误差
1 .949a.900 .888 .4800
a. 预测变量:(常量), x
由模型摘要可知相关系数达到0.949,说明与
x y显著线性相关。
9.对回归方程做残差图并做相应分析。
从残差图上看出残差是围绕e=0上下波动的,满足模型的基本假设。
x ,需要的加班时间是多少?
10.该公司预测下一周签发新保单01000
由预测可知公司预计下一周签发新保单
01000
x=时,
0.1180.00359*1000 3.7032
y=+=
五、实验总结
在统计学实验学习中,通过实验操作可使我们加深对理论知识的理解,学习和掌握统计学的基本方法,并能进一步熟悉和掌握spss 的操作方法,培养我们分析和解决实际问题的基本技能,提高我们的综合素质。