Kuznetsov-2013-MSF-v735-p146(Superplasticity-AlCoCuFeNI-HEA)

合集下载

msf基本常用命令

msf基本常用命令

msf基本常用命令MSF基本常用命令Metasploit(简称MSF)是一款功能强大的渗透测试工具,被广泛应用于网络安全领域。

它提供了一系列基本常用命令,帮助渗透测试人员进行攻击和防御。

本文将介绍MSF的一些基本常用命令,帮助读者更好地了解和使用这个工具。

1. 扫描命令MSF提供了多种扫描命令,用于探测目标主机的漏洞和服务。

其中,常用的命令包括:- `db_nmap`:使用Nmap扫描目标主机,并将结果保存到数据库中。

- `db_autopwn`:自动利用数据库中保存的漏洞信息对目标主机进行攻击。

- `db_import`:导入第三方工具(如Nessus)的扫描结果到MSF的数据库中。

2. 渗透命令渗透命令是MSF最核心的功能之一,它可以帮助用户利用已知的漏洞攻击目标主机。

常用的渗透命令包括:- `exploit`:根据目标主机的漏洞信息进行攻击。

- `set`:设置攻击载荷的参数,如目标主机、端口等。

- `show options`:查看当前攻击模块的参数配置。

- `run`:执行攻击模块。

3. 模块命令MSF以模块化的方式组织其功能,用户可以通过加载和使用不同的模块来完成特定的任务。

常用的模块命令包括:- `use`:加载指定的模块。

- `search`:搜索与关键词相关的模块。

- `info`:查看模块的详细信息。

- `reload_all`:重新加载所有模块。

4. 数据库命令MSF内置了一个数据库,用于存储扫描结果、漏洞信息等数据。

用户可以通过数据库命令对这些数据进行管理。

常用的数据库命令包括:- `db_connect`:连接到已存在的数据库。

- `db_create`:创建一个新的数据库。

- `db_destroy`:销毁当前的数据库。

- `db_export`:导出数据库中的数据。

5. 辅助命令除了上述的基本命令,MSF还提供了一些辅助命令,用于辅助渗透测试的工作。

常用的辅助命令包括:- `sessions`:查看当前已建立的会话。

勒索软件攻击者正在寻找新的方法将老旧漏洞武器化

勒索软件攻击者正在寻找新的方法将老旧漏洞武器化

全团队。

将安全置于他们手中,让他们对MFA行动承担更大的责任和目的。

保持简单明了最终,将MFA集成到的物联网应该尽可能地简化。

许多组织使用各种物联网设备,因此每天数百次记下代码和密码不利于正常的工作。

为了减轻这一负担,雇主可以要求像谷歌那样认证应用MFA。

面向未来的MFA物联网以多种方式连接世界,因此保护其完整性对于任何组织或用户的成功都至关重要。

黑客可以获得访问权,篡改操作和数据,但凭借物联网中多因素身份认证的识别能力,人们可以对未来物联网设备的安全性更有信心。

■家修勒索软件攻击者如今正在寻找新的方法,通过将老旧漏洞武器化以利用企业网络安全方面的弱点。

将长期存在的勒索软件攻击工具与最新的人工智能和机器学习技术相结合,一些有组织的犯罪团伙和先进的持续性威胁(APT)团伙在创新方面继续领先于企业。

多家漏洞和网络安全分析机构,包括CSW公司、Ivanti 公司、Cyware公司和Securin公司联合发布的一份新报告揭示了勒索软件在2022年为全球企业带来的巨大损失。

目前被勒索软件团伙利用的漏洞中,76%是在2010-2019年期间首次发现的。

勒索软件成为首席信息安全官的首要关注根据一份名为《从威胁和漏洞管理的角度看勒索软件报告》的2023年聚焦报告,2022年在全球发现了56个与勒索软件威胁相关的新漏洞,使漏洞总数达到344个,与2021年的288个漏洞相比增加了19%。

研究还发现,在264个旧漏洞中,有208个漏洞被公开利用。

美国国家漏洞数据库(NVD)列出了160344个漏洞,其中3.3%(5330个)属于最危险的利用类型———远程代码执行(RCE)和特权升级(PE)。

在5330个武器化漏洞中,344个与217个勒索病毒家族和50个高级持续性威胁(APT)团伙有关,因此非常危险。

智能IT管理和安全软件解决方案提供商Ivanti公司首席产品官Srinivas Mukkamala说:“勒索软件是每个企业最关心的问题,无论是私营部门还是公共部门。

ADLRAN ATLAS 800PLUS 使用手册说明书

ADLRAN ATLAS 800PLUS 使用手册说明书
Change or modifications to this unit not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.
iv
Affidavit Requirements for Connection to Digital Services • An affidavit is required to be given to the telephone company whenever digital terminal equipment
901 Explorer Boulevard P.O. Box 140000
Huntsville, AL 35814-4000 (256) 963-8000
© 2000 ADTRAN, Inc. All Rights Reserved.
Prinns require that in this manual the following information be provided to the customer:
6. This unit contains no user-serviceable parts. 7. The following information may be required when applying to your local telephone company for
leased line facilities.
without encoded analog content and billing protection is used to transmit digital signals containing encoded analog content which are intended for eventual conversion into voiceband analog signals and transmitted on the network. • The affidavit shall affirm that either no encoded analog content or billing information is being transmitted or that the output of the device meets Part 68 encoded analog content or billing protection specifications. • End user/customer will be responsible for filing an affidavit with the local exchange carrier when connecting unprotected customer premise equipment (CPE) to 1.544 Mbps or subrate digital services. • Until such time as subrate digital terminal equipment is registered for voice applications, the affidavit requirement for subrate services is waived.

factorytalk view machine edition 安装指南.pdf说明书

factorytalk view machine edition 安装指南.pdf说明书

章节 1
FactoryTalk View Machine Edition 系统基本信息
什么是 FactoryTalk View Machine Edition? ............................................ 9 FactoryTalk View Machine Edition 软件包................................................................................................... 9 FactoryTalk View 安装 DVD........................................................................................................................ 10 请联系 Rockwell Automation 技术支持 .................................................................................................... 10
无人参与安装或静默安装 .......................................................................................................................16 执行无人参与安装或静默安装 ........................................................................................................19 示例 ........................................................................................................................19

NetSDK编程指导手册(大华)

NetSDK编程指导手册(大华)
前言
目的
欢迎使用 NetSDK(以下简称 SDK)编程指导手册。 SDK 是软件开发者在开发网络硬盘录像机、网络视频服务器、网络摄像机、网络球机和智能设备 等产品监控联网应用时的开发套件。
本文档详细描述了开发包中各个函数的功能、接口以及函数之间的调用关系,并提供了代码示例。
符号约定
在本文档中可能出现下列标志,它们所代表的含义如下。
1.1 概述 .............................................................................................................................................. 1 1.2 环境要求 ....................................................................................................................................... 2 第 2 章 主要功能 ...................................................................................................................................... 3 2.1 SDK 初始化 ................................................................................................................................... 3

网络攻防大赛工具列表(V1.0)

网络攻防大赛工具列表(V1.0)

大赛工具列表(V1.0版)一、扫描工具D.S.T-Scanhscan1.2-cnIPBook(超级网络邻居)IPC扫描器IPLookL-ScanPort2.0NTScanPortReadySuperScan4superscan3S扫描器GUI 版VNC扫描器X-Scan-v3.3啊D网络工具包V2.02 修正版多线程网站后台扫描工具1.3尖刀超级端口扫描器V2.0可视化+cmd S扫描器ASCScanMS06-040_ScanMS05039ScanWebDAVScan中华经典网络军刀NC二、入侵工具JavaScript变形金刚BBsXp 注入程序Discuz!7.X 0day漏洞利用工具ECShop漏洞利用工具FTBBS6.X 0day漏洞利用程序IPC$ 入侵工具Linux Kernel黑客本地提权MySQL 利用工具MySQL Hackermy动力+雷驰注入利用两用工具O-blog 4全自动利用工具phpcms 注入漏洞利用工具PJblog V3.0黑客漏洞利用工具RAR本地提升权限漏洞利用工具菜鸟零号KingCMS上传利用工具动网8.0sql最新漏洞利用工具l动网回收站暴库漏洞利用程序河马MySQL弱口令利用工具黑客上传漏洞利用程序CommUpFile 1.0黑客上传综合利用工具SuperUpFile 1.0局域网入侵工具科讯0DAY利用工具留言本通用入侵程序网络入侵机网蚁web入侵小助手新云Sql版漏洞利用工具新云漏洞攻击程序PeRL版织梦DEDECMS综合漏洞利用工具PHPX-CodeSQLTOOLIIS写权限漏洞DVBBS 漏洞利用工具GetWebshellOblog 4.X Exp漏洞利用工具Oblog 4.X Exp漏洞利用工具phpwind_5X_ExpGui动易Region.asp注入辅助工具Discuz物理路径暴破器DVBBS上传利用工具PHPCMS3.0上传漏洞利用工具DVBBS 漏洞利用工具FTP类漏洞利用工具TELNET类漏洞利用工具HTTP类漏洞利用工具3389类端口利用工具TFTP工具常用小工具集合(包括众多的DOS下使用的小工具,因为数量太多,不在例举工具名)三、远程控制Super远程控制Gh0st yeshack联盟专版Pcshare暗组dart远程控制大白鲨远程控制2010Beta1凤凰ABC黑防鸽子灰鸽子VIP2007纯本地完美破解第二版凌云远控VIP2.7破解版漫游专版灰鸽子2009上兴2010。

常见端口

常见端口

简单不对称文件传输(SAFT)协议 用于 HTTP 的通用安全服务(GSS) 用于协议独立的多址传播(PIM)服务的会合点 互联网安全关联和钥匙管理协议(ISAKMP) 打印机(lpr)假脱机 UNIX 时间协议(utime) 用于互联网协议版本6(IPv6)的选路信息协议 时间守护进程(timed) Netnews 互联网内部对象请求代理协议(IIOP) GNUstep 分布式对象映射器(GDOMAP) 动态主机配置协议(DHCP)版本6客户 动态主机配置协议(DHCP)版本6服务 通过传输控制协议(TCP)的 Appletalk 文件编 实时流播协议(RTSP) Brunhoff 的远程文件系统(RFS) 通过安全套接字层的网络新闻传输协议 whoami 邮件消息提交代理(MSA) 网络外设管理协议(NPMP)本地 / 分布式排队 网络外设管理协议(NPMP)GUI / 分布式排队系 HMMP 指示 / DQS 互联网打印协议(IPP) 通过安全套接字层的轻型目录访问协议 应用程序配置存取协议(ACAP) 用于带有高可用性的群集的心跳服务 Kerberos 版本5(v5)的"kadmin"数据库管理 Kerberos 版本4(v4)服务 Kerberos 验证 Kerberos 口令(kpasswd)服务器 Kerberos v5 从属传播 Kerberos 注册 网络词典 网络电话簿 联机镜像(Omirr)文件镜像服务 rsync 文件传输服务 Berkeley 互联网名称域版本9(BIND 9)远程名 通过安全套接字层的 Telnet(TelnetS) 通过安全套接字层的互联网消息存取协议 通过安全套接字层的互联网中继聊天(IRCS) 通过安全套接字层的邮局协议版本3(POPS3) SOCKS 网络应用程序代理服务 Kerberos 邮局协议(KPOP)

KFD2-UFC-Ex1.D频率转换器的中文名称说明书

KFD2-UFC-Ex1.D频率转换器的中文名称说明书

Frequency Converter with Trip ValuesKFD2-UFC-Ex1.D<1-channel isolated barrier<24 V DC supply (Power Rail)<Input for NAMUR sensors or dry contacts<Input frequency 1 mHz ... 5 kHz<Current output 0/4 mA ... 20 mA<Relay contact and transistor output<Start-up override<Line fault detection (LFD)<Up to SIL 2 acc. to IEC 61508/IEC 61511This isolated barrier is used for intrinsic safety applications.The device is a universal frequency converter that changes a digital input signal into a proportional free adjustable 0/4 mA ... 20 mA analog output signal and functions as a switch amplifier and a trip alarm.The functions of the switch outputs (2 relay outputs and 1 potential free transistor output) are easily adjustable [trip value display (min/max alarm), serially switched output, pulse divider output, error signal output].The device is easily configured by the use of keypad or with the PACTware configuration software.A fault is signalized by LEDs acc. to NAMUR NE44 and a separate collective error message output.For additional information, refer to the manual and .Zone 2Div. 23-1+161718101112III20-III13+14-8+7-IV24 V DC23+24-edate:221-11-25Dateofissue:221-11-25Filename:231194_eng.pdfe d a t e : 2021-11-25 D a t e of i s s u e : 2021-11-25 F i l e n a m e : 231194_e ng .p d fe d a t e : 2021-11-25 D a t e of i s s u e : 2021-11-25 F i l e n a m e : 231194_e ng .p d fe d a t e : 2021-11-25 D a t e of i s s u e : 2021-11-25 F i l e n a m e : 231194_e ng .p d fAccessoriese d a t e : 2021-11-25 D a t e of i s s u e : 2021-11-25 F i l e n a m e : 231194_e ng .p d fe d a t e : 2021-11-25 D a t e of i s s u e : 2021-11-25 F i l e n a m e : 231194_e ng .p d fKFD2-UFC-Ex1.DFrequency Converter with Trip Values Maximum Switching Power of Output ContactsResistive load DC Resistive load AC1max. 105 switching cycles0.110.220.330.440.5I (A)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Superplasticity of AlCoCrCuFeNi High Entropy AlloyA. V. Kuznetsov1, a, D.G. Shaysultanov1, b, N.D. Stepanov1, c,G.A. Salishchev 1, d, O.N. Senkov2, e1 Laboratory of Bulk Nanostructured Materials, Belgorod State University, 85 Pobeda St., Belgorod308015, Russia2 UES, Inc., 4401 Dayton-Xenia Rd., Dayton, OH 45432, USAa kuznetsov@.ru,b shaysultanov@.ru,c stepanov@.ru,d salishchev@.ru,e oleg.senkov@Keywords: High entropy alloy, multi-directional forging, microstructure, superplasticity. Abstract.An AlCoCrCuFeNi high entropy alloy was hot worked by multi-directional isothermal forging at 950°C to produce an equiaxed fine-grain structure with the average grain/particle size of ~1.5 µm. The forged alloy exhibited superplastic behavior in the temperature range of 800-1000°C. For example, during deformation at a strain rate of 10-3s-1, tensile ductility increased from 400% to 860% when the temperature increased from 800°C to 1000°C. An increase in strain rate from 10-4 to 10-2 s-1 at T = 1000°C did not affect tensile ductility and elongation to failure was about 800%. The strain rate sensitivity of the flow stress was rather high, m = 0.6, which is typical to the superplastic behavior. The equiaxed morphology of grains and particles retained after the superplastic deformation, although some grain/particle growth was observed.Introduction.A new class of promising structural metallic materials, so called high entropy alloys (HEAs), has been developed during last decade [1-9]. These alloys typically contain from 5 to 13 principal elements in approximately equimolar concentrations [1]. A high entropy of formation of disordered solid solutions slows down formation of intermetallic phases in these alloys, and the alloys are thought to mainly consist of disordered solid solutions [1,4,5].Some of the properties expected from this class of alloys, such as high hardness, high strength, high wear and creep resistance, high temperature stability, and low thermal conductivity make them attractive for use in different applications [1,6,7]. Unfortunately, low ductility in the as-cast condition limits formability of many HEAs. One of the methods to improve formability is grain refinement [10]. Conventional grain refinement methods, which include cold rolling with subsequent recrystallization annealing, cannot be applied to HEAs with low ductility. One of the advanced methods of refining cast microstructure and improving properties is multi-directional forging [11,12]. Recently this method was successfully applied to refine the grain structure of a cast AlCoCrCuFeNi alloy [11].In this work, microstructure and elevated temperature tensile properties of the hot forged high entropy AlCoCrCuFeNi alloy are reported. The effects of temperature and strain rate on tensile ductility, flow stress and strain rate sensitivity were studied. The AlCoCrCuFeNi alloy was chosen as a material of investigation because it has the most extensive database among all other reported HEAs [1, 13-16].Materials and methods.An ingot of the AlCoCrCuFeNi alloy, with the composition shown in Table 1, was produced by induction melting of pure elements. The ingot was then electro-slag re-melted and cast into a water-cooled copper mold. Melting and casting was performed under an inert atmosphere of high-purity argon.Table 1. Chemical composition of the studied alloy.Al Cr Cu Ni Fe Co At. % 16.16±0.63 15.86±0.05 17.42±0.01 16.65±0.23 15.96±0.15 17.07±0.19 Wt. % 8.20±0.40 15.65±0.05 20.95±0.05 18.55±0.25 17.80±0.10 18.10±0.20The cast ingot was trimmed by cutting out about 10 mm thick pieces from the top and bottom of the ingot, and a blanket of 40 mm in diameter and 35 mm in length was machined from the remaining part of the ingot. The blank was homogenized at 960°C for 50 hours and hot forged in three orthogonal directions (so called “a-b-c forging” [9,10]) at 950°C. Forging was performed using a DEVR 4000 hydraulic press (the maximum force of 0.4 MN) equipped with isothermal stamping tool. The ram speed was 1mm/s and the total true strain achieved during forging was ~ 1000%. Uniaxial tensile tests were conducted using an Instron 5882 testing machine equipped with a furnace for heating up to 1200°C. Tensile specimens were heated to a testing temperature with a heating rate of ~15°/min, equilibrated at the temperature for ~15 minutes and tension tested with a crosshead speed of 0.016 mm/s, which corresponded to the initial strain rate of 10-3 s-1. The gauge length of the specimens was 16 mm and the gauge cross-section was 3×1.5 mm2. Several specimens were tested at different strain rates in the range of 10-5- 10-1 s-1. The microstructures of polished cross-sections of the deformed and non-deformed specimens were studied using scanning electron microscopes (SEM) Quanta 200 3D and Quanta 600 equipped with backscattered electron detectors,energy- dispersive spectrometers (EDS) and electronbackscattereddiffraction(EBSD)detectors. Standard linear interception method was used to determine size of grains/particles.Results and discussion.Microstructure after multi-directional isothermal deformation.The microstructuresof the alloy in the as-cast condition and after multi-directional isothermal forging at 950°C are shown in Figs. 1a and 1b, respectively. In as-cast condition, the alloy exhibits typical dendritic structure (fig. 1a) with the average dendrite size of about 50 µm. According to the EBSD analysis, the cast microstructure consists of the matrix with the BCC crystal structure (dark areas, the volume fraction is about 53%) and elongated particles with the FCC crystal structure (light areas, the volume fraction is about 47%). The FCC particles located at grain boundaries (i.e. interdendrite areas) are larger and brighter than the grey particles located inside the BCC matrix grains (i.e. inside the dendrites).a bFigure 1 – Microstructure of AlCoCrCuFeNi alloy in as-cast condition (а) and after multi-directional isothermal forging at 950°С (b).After multi-directional isothermal forging, the alloy has a fully recrystallized duplex structure (Fig 1b). Fine nearly equiaxed FCC-type particles are homogeneously distributed and mixed with the refined equiaxed grains of the BCC matrix. The volume fraction of the BCC matrixis ~60%, and the volume fraction of FCC particles is ~40%. The microstructure is characterized by the lognormal size distribution of grains/particles. The average grain/particle size is determined to be 1.5±0.9 µm. The high value of the standard deviation (s=0.9 µm) is due to large variations of the grain/particle sizes (from 0.2 to 6.1 µm) in the microstructure.Mechanical properties after multi-directional isothermal forging.The stress-strain curves obtained during tensile testing are shown in Fig. 2: at different temperatures and a constant strain rate έ = 10-3s-1(Fig. 2a) and at different strain rates and a constant temperature 1000°C (Fig. 2b). The values of the yield strength, σ0.2, ultimate tensileFigure 2 – Tensile stress-strain curves of the hot forged AlCoCrCuFeNi alloy obtained at (a) different testing temperatures (έ=10-3 c-1) and (b) different strain rates (Т=1000°С).Table 2. Tensile properties of the hot forged AlCoCrCuFeNi alloyT, °C 700 800 900 1000έ, s-110-310-310-310-410-310-210-1σ0.2, MPa 63 22 14 1 4 15.5 57σu, MPa 91 26 18 1.3 5 16 67 δ,% 63 604 405 753 864 858 442m - - - 0.59 0.51 0.62 - During tension testing at 700°C, plastic yielding occurs at 63 MPa and then the flow stress continuously increases, reaches a maximum value, σu = 91 MPa, at the strain of 10% and gradually decreases with further deformation due to strain localization and necking. At higher temperatures, from 800°C up to 1000°C, the stress-strain curves appear to be typical for superplastic behavior, with a prolonged steady-state flow stage. An increase in the testing temperature results in a significant increase in elongation and a decrease in flow stress. For example, at 700°C failure occurs at δ=63%, while at 1000°С δ reaches 864%. Both σ0.2 and σu decrease respectively from 63 MPa to 4 MPa and from 91 MPa to 5 MPa when the temperature increases from700°C to 1000°C (Fig. 2a and Table 2). Elongation to failure remains almost constant at strain rates in the range of 10-4-10-2 s-1 during testing at 1000°C. However, the flow stress increases with an increase in the strain rate: σ0.2 increases from 1 to 15.5 MPa, and σu increases from 1.3 to 16 MPa respectively. The plastic flow at these strain rates is characterized by very high strain rate sensitivity values, m = 0.51-0.62. With a further increase in strain rate from 10-2 to 10-1 s-1, elongation decreases to 442%, σ0.2 increases to 57 MPa, and σu increases to 67 MPa (Table 2). It should be noted that even at such a high strain rate the alloy still shows superplastic behavior. No signs of necking were found on tested specimens despite very high elongation values (Fig. 3).Figure 3 – Photographs of a non-deformed sample and tensile samples after deformation at 1000°Cand different strain rates.Evolution of microstructure during tensile testing.After tensile testing of the forged alloy at έ=10-3 s -1 in the temperature range of 700°С-1000°С, a noticeable increase in the grain/particle size occurs, especially at T = 900°C and 1000°C, however, the equiaxed morphology of grains and particles retains (see Fig. 4 and Table 3). For example, the average grain/particle size in the head (non-deformed part) of the samples increases from 1.5 µm (after forging) to 2.5 µm and 2.8 µm after tensile testing at 900°C and 1000°C, respectively. The grain/particle size in the heavily deformed region is slightly smaller (~2.2 µm at 900°C and 2.6 µm at 1000°C) than in the non-deformed region, which is probably an evidence of deformation-induced particle refinement.a bс dFigure 4 – Microstructure of the AlCoCrCuFeNi alloy after tensile testing tofracture at Т=1000°C and different strain rates: (a,b) 10-4 s -1; (c,d) 10-1 s -1; (a, c) non-deformed (sample head) and (b, d)deformed regions.A decrease in the strain rate from 10-1 to 10-4 s-1 at T = 1000°С leads to a more pronouncedgrain/particle growth in the non-deformed region, which seems to indicate static recrystallization.For example, after deformation at έ=10-1 s-1 the average grain/particle size is 2.2 µm, while afterdeformation at έ=10-4 s-1 this value increases to 4.4 µm. (Table 3, Fig. 4). In the deformed regionthe microstructure is refined, apparently due to dynamic recrystallization, and the average size of the structural elements is 1.4 µm and 2.7 µm at ε = 10-1and 10-4s-1, respectively. Intergranular porosity forms during deformation (Table 4). The volume fraction of pores is ~10.5%, 12.5% and7.9% after tension testing with έ=10-3 s-1 at 800ºC, 900°C, and 1000ºC, respectively. Pores almostdo not form during tensile testing at 1000°C with έ=10-4s-1(their volume fraction is ~0.1%).However, an increase in the strain rate to 10-1 s-1 increases the volume fraction of pores to ~12.9%.Table 3. The average grain/particle size and standard deviation (µm) in the multi-directionally forged AlCoCrCuFeNi alloy after tensile testing to fracture at given temperatures and strain rates. T, °C 700 800 900 1000έ, s-110-310-310-310-410-310-210-1 Porosity, (%) 10.5 10.8 12.5 0.1 7.9 11.4 12.9 Sample head 1.6±0.9 1.9±1.0 2.5±1.3 4.4±2.0 2.8±1.3 2.1±1.0 2.2±1.4 Gauge-neck 1.5±0.8 1.6±0.9 2.2±1.1 2.7±1.4 2.6±1.4 1.9±0.9 1.4±0.7 Table 4. Volume fraction of pores in the multi-directionally forged AlCoCrCuFeNi alloy after tensile testing to fracture at given temperatures and strain rates..T, °C 700 800 900 1000έ, s-110-310-310-310-410-310-210-1Porosity, (%) 10.5 10.8 12.5 0.1 7.9 11.4 12.9DiscussionApplication of multi-directional isothermal hot forging promoted high deformability of the AlCoCrCuFeNi high entropy alloy, which had low ductility in as-cast condition. A fine-grained duplex structure consisting of a mixture of BCC and FCC particles was formed after hot forging due to fragmentation of the initial dendritic structure and dynamic recrystallization. After hot forging, the average grain/particle size was ~1.5 µm and the volume fractions of the BCC and FCC phases were 60 and 40% respectively. The hot deformation was found to be an effective way to achieve high superplastic properties at the temperature range of 800-1000°С and the strain rate range of 10-4-10-1 s-1.Multistep isothermal forging significantly increases density of grain and interphase boundaries, which are known to become softer than the grain interiors at elevated temperatures [17].A noticeable increase in the tensile ductility and a decrease in the flow stress at temperatures higher than 700°C are likely related to diffusion-controlled grain boundary sliding (GBS). The GBS is more developed in a finer-grained microstructure. Dynamic recovery is also enhanced in fine-grained materials due to annihilation of dislocations at moving grain boundaries. Moreover, the plastic deformation controlled by GBS is characterized by a high strain rate sensitivity of the flow stress, which impedes necking and promotes superplastic deformation [16]. Prolonged stages of steady-state flow, observed during testing in the temperature range of 800-1000°С, are result of the superplastic behavior. In spite of very high plastic strains, grains and particles remained equiaxed and their growth is limited in the deformed region. It is likely that the extensive GBS accommodated by dynamic recovery and dynamic recrystallization [18] is responsible for equiaxed morphology of grains and particles after superplastic deformation of the HEA. The GBS also causesaccumulation of inter-granular porosity. It is interesting to note a considerable decrease in the volume fraction of pores, from 12.9% to 0.1%, with a decrease in the strain rate from 10-1 s-1 to 10-4 s-1during deformation at 1000ºC. Such behavior indicates that the rates of dislocation- and diffusion-driven recovery processes are not yet sufficient to accommodate the GBS at high strain rates, even at 1000ºC, but these recovery processes become efficient at low strain rates. This result seems to be in good agreement with the known fact that the high entropy alloys have lower diffusivity of the alloying elements relative to conventional alloys [6,7,9,19]. However, a detailed analysis of the mechanism of superplastic deformation of the AlCoCrCuFeNi high entropy alloy requires additional investigations.Conclusions.1. A fine equiaxed duplex structure with an average grain/particle size of ~1.5 µm was formed in the AlCoCrCuFeNi high entropy alloy after hot multi-directional forging.2. The forged alloy exhibited superplastic behavior in the temperature range of 800-1000°C and at έ=10-3s-1. Elongation to failure approached 604% at 800°C, decreased to 405% at 900°C and increased again to 860% at 1000°C. The absence of necking was an indirect indication of high strain rate sensitivity of the flow stress over the mentioned temperature range.3. The superplastic behavior was also observed over a wide strain rate range at 1000ºC. At the strain rates from 10-4 to 10-2 s-1 the elongation to failure was in the range of 753-864%, while the ultimate tensile stress increased from 1.3 MPa (at έ=10-4s-1) to 16 MPa (at έ=10-2s-1). The strain rate sensitivity m was in the range of 0.51-0.62. An increase in the strain rate to 10-1 s-1 led to a decrease in the elongation to 442% and an increase in the tensile stress to 67 MPa. Acknowledgements.This work was supported by Russian Ministry of Science and Education under grant №02.740.11.0510.References[1] J.-W.Yeh, S.-K. Chen, S.-J. Lin, J.-Y.Gan, et al.: Adv. Eng. Mater. Vol. 6 (5) (2004), p. 299[2] J.-W. Yeh: Ann. Chim: Sci. Mater. Vol. 31 (2006), p 633[3] J.-W. Yeh, Y.-L. Chen, S.-J. Lin, S.-K. Chen: Mater. Sci. Forum Vol. 560 (2007), p. 1[4] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle: Intermetallics Vol. 19 (2011), p. 698[5] O.N. Senkov, J.M.Scott, S.V.Senkova, et al.: J. Alloys Comp. Vol. 509 (2011), p. 6043[6] C.-W. Tsai, Y.-L. Chen, M.-H. Tsai, et al.: J. Alloys Comp. Vol. 486 (2009), p.427[7] O.N. Senkov, G.B. Wilks, D.B. Miracle, et al.:Intermetallics 18 (2010), p. 1758[8] O.N. Senkov and C.F. Woodward: Mater. Sci. Eng. A Vol. 529 (2011), p. 311.[9] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward: J. Mater. Sci. 47 (2012), p. 4062.[10] R.M. Imayev, G.A. Salishchev, O.N. Senkov, et al.: Mater. Sci. Eng. A Vol. 300 (2001), p. 263.[11] G.A. Salishchev, R.I. Imayev, O.N. Senkov, and F.H. Froes: JOM Vol. 52 (12) (2000), p. 46[12] S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, et al.: Scripta Mater. Vol. 51 (2004), p. 1147[13] A.V. Kuznetsov, D.G. Shaysultanov, et al.: Mater. Sci. Eng. A Vol. 533 (2012), p. 107[14] C.J. Tong, M.R. Chen, S.K. Chen, et al.: Metall. Mater. Trans. A Vol. 36A (2005), p.1263[15] C.J. Tong, Y.L. Chen, S.K. Chen, et al.: Metall. Mater. Trans. A Vol. 36A (2005), p.881[16] F.J. Wang, Y. Zhang, G.L. Chen, H.A. Davies, Int. J. Mod. Phys. B Vol. 6-7 (2009), p. 1254[17] V.M. Imayev, R.M. Imayev, G.A. Salishchev, Intermetallics Vol. 8 (2000), p. 1.[18] T.G. Nieh, J. Wadsworth and O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridhe Solid State Science Series), University Press, Cambridge, UK, 1997.[19] K.B. Jang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Fang, et al.: J. Alloys Comp. Vol. (2010), p. 295.。

相关文档
最新文档