线性代数知识点归纳(同济_第五版)

合集下载

考研数学线性代数教材和习题范围(同济五版)

考研数学线性代数教材和习题范围(同济五版)
第五章 相似矩阵及二次型 核心考点: 1 向量的基本概念及斯密特正交公式 2 矩阵的特征值与特征向量的定义、性质及求法 3 相似矩阵的定义与性质 4 矩阵对角化的条件、方法及对称矩阵的对角化 5 二次型的概念、二次型矩阵及化成标准型的方法 习题范围: 习题五: 第 1 题、第 2 题、第 3 题、第 4 题、第 5 题、第 6 题 第 7 题、第 9 题、第 10、11、12、13、14、15、16、17 题 第 19 题、第 20 题、第 21 题、第 22 题、第 23 题、第 24 题、 第 25 题、第 26 题、第 27 题、第 28 题、第 29 题、第 32 题 第 33 题
第四章 向量组的线性相关性 核心考点: 1 表示性问题:线性表示的概念、结论与原理 2 相关性问题:向量组的线性相关与线性无关 3 等价性问题:向量组的等价的条件与本质 4 代表性问题:向量组的秩与向量组的极大无关组 习题范围: 习题四: 第 1 题、第 2 题、第 3 题、第 4 题、第 5 题、第 6 题、第 8 题、
更多最新考研数学资料,可关注新浪微博@易丰老师
第 18 题、第 19 题、第 20 题、第 22 题、第 23、24 题、第 25 题、 第 26 题、第 27 题、第 28 题、
第三章 矩阵的初等变换与线性方程组 核心考点: 1 矩阵的初等变换的原理与初等矩阵 2 矩阵的秩及秩的性质的应用 3 线性方程组解的结构与性质 4 含参数的线性方程组的解法及方程组的公共解讨论 习题范围: 习题三: 第 1 题、第 4 题、第 5、6 题、第 7 题、第 10 题、第 12 题、第 13 题 第 14 题、第 15 题、第 16 题、第 17 题、第 18 题、第 19 题、 第 21 题
《线性代数》教材内容与习题范围浓缩版 同济大学第五版

线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。

则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理线性代数是一门研究向量空间和线性映射的数学学科,是数学中的一个重要分支。

它的应用范围非常广泛,包括物理学、工程学、计算机科学、经济学等等。

下面是对线性代数的一些重要知识点的归纳整理。

1.向量和向量空间:-向量的定义和性质:向量是有方向和大小的量,可以进行加法和数乘运算。

-向量空间的定义和性质:向量空间是一组向量的集合,满足加法和数乘运算的封闭性、结合律、交换律、零向量存在性等性质。

2.矩阵和矩阵运算:-矩阵的定义和性质:矩阵是一个由数构成的矩形阵列,可以进行加法和数乘运算。

-矩阵的乘法和转置:矩阵可以进行乘法运算,满足结合律和分配律;矩阵的转置是将矩阵的行和列互换得到的新矩阵。

3.线性方程组和矩阵求解:-线性方程组的解的存在性和唯一性:线性方程组的解存在的条件是系数矩阵的秩等于增广矩阵的秩;解的唯一性与线性方程组的自由变量有关。

-矩阵求解线性方程组的方法:高斯消元法、矩阵的逆、克拉默法则等。

4.线性映射和线性变换:-线性映射的定义和性质:线性映射是一种保持向量空间的加法和数乘运算的映射,满足线性性质。

-线性变换的矩阵表示:线性变换可以用矩阵表示,矩阵的列向量是线性变换作用在基向量上的结果。

5.特征值和特征向量:-特征值和特征向量的定义和性质:对于一个线性变换,特征向量是指在这个变换下保持方向不变的向量,特征值是对应特征向量的缩放因子。

-特征值分解:特征值分解是将一个矩阵分解成特征向量和特征值的形式。

6.内积和正交性:-内积的定义和性质:内积是一种度量向量之间夹角的方法,满足对称性、线性性和正定性等性质。

-正交性和正交基:正交向量是指两个向量的内积为零,正交基是一组两两正交的向量。

7.线性相关和线性无关:-线性相关和线性无关的定义和性质:一组向量中,如果存在不全为零的线性组合等于零向量,则称这组向量线性相关;否则称线性无关。

-维数和基:一组线性无关的向量可以作为向量空间的基,基的个数称为向量空间的维数。

线性代数知识点总结

线性代数知识点总结

第一章行列式
知识点1:行列式、逆序数
知识点2:余子式、代数余子式
知识点3:行列式的性质
知识点4:行列式按一行〔列〕展开公式
知识点5:计算行列式的方法
知识点6:克拉默法那么
第二章矩阵
知识点7:矩阵的概念、线性运算及运算律
知识点8:矩阵的乘法运算及运算律
知识点9:计算方阵的幂
知识点10:转置矩阵及运算律
知识点11:伴随矩阵及其性质
知识点12:逆矩阵及运算律
知识点13:矩阵可逆的判断
知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解
知识点16:初等变换的概念及其应用
知识点17:初等方阵的概念
知识点18:初等变换与初等方阵的关系
知识点19:等价矩阵的概念与判断
知识点20:矩阵的子式与最高阶非零子式
知识点21:矩阵的秩的概念与判断
知识点22:矩阵的秩的性质与定理
知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例
第三章向量
知识点25:向量的概念及运算
知识点26:向量的线性组合与线性表示
知识点27:向量组之间的线性表示及等价
知识点28:向量组线性相关与线性无关的概念
知识点29:线性表示与线性相关性的关系
知识点30:线性相关性的判别法
知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系
知识点33:求向量组的最大无关组。

线性代数(同济大学第五版)行列式讲义例题

线性代数(同济大学第五版)行列式讲义例题

线性代数(同济大学第五版)行列式讲义例题线性代数(同济大学第五版)行列式讲义、例题第一章行列式行列式就是研究线性方程组的一个有力工具,本章得出了行列式的定义、性质及其计算方法.§1全排列及其逆序数一、排序及其逆序数定义对于n个不同的元素,可以给它们规定一个次序,并称这规定的次序为标准次序.例如1,2,?,n这n个自然数,一般规定由小到大的次序为标准次序.定义1由n个自然数1,2,?,n共同组成的一个有序数组i1,i2,?,in,称作一个n元全排序,缩写为排序.例如由1,2,3这三个数组成的123,132,213,231,312,321都是3元(全)排列.定义2在一个排序里,如果某一个很大的数码排在在一个较小的数码前面,就说道这两个数码形成一个逆序(反序),在一个排序里发生的逆序总数叫作这个排序的逆序数,用?(i1,i2,?,in)则表示排序i1,i2,?,in的逆序数.根据定义2,可按如下方法计算排列的逆序数:设于一个n级排序i1i2?in中,比it(t?1,2,?,n)小的且位列it前第1页面的数共有ti个,则it的逆序的个数为ti,而该排列中所有数的逆序的个数之和就是这个排序的逆序数.即为n?(i1i2?in)?t1?t2tn??ti.i?1基准1排序排序45321的逆序数.解因为4排在首位,故其逆序数为0;比5大且位列5前面的数有0个,故其OMO序数为0;比3大且位列3前面的数有2个,故其OMO序数为2;比2大且位列2前面的数有3个,故其OMO序数为3;比1大且位列1前面的数有4个,故其OMO序数为4.可知所求排序的逆序数为(45321)002349.定义3逆序数为偶数的排序叫作偶排序,逆序数为奇数的排序叫作奇排序.(i1,i2,,in)=i2前面大于i2的元素个数+i3前面大于i3的元素的个数in前面大于in的元素的个数,比如:(2341)0033,逆序数为3,?(2341)为奇排列.?(4321)?1?2?3?6,逆序数为6,?(4321)为偶排列.定义4把一个排序中某两个数码i和j交换边线,而其余数码不颤抖,就第2页获得一个崭新排序.对一个排序所颁布的这样一个转换叫作一个重新排列.例如排列2341经过元素2,4对换变成排列4321,可记为2341??(2?,4)?4321定理1对换改变排列的奇偶性.证明先证相连重新排列设排列为a1?alabb1?bm对换a与b.a1?albab1?bm当a?b时,经对换后a的逆序数增加1,b的逆序数不变;当a?b时,经对换后a的逆序数不变,b的逆序数减少1.因此对换相邻两个元素,排列改变奇偶性.再证非相连重新排列,现设排序为a1?alab1?bmbc1?cn现来重新排列a与bam次相邻对换1?alab1?bmbc1?cna1?alabb1?bmc1?cnam?1次相邻对换1?alabb1?bmbc1?cna1?albb1?bmac1?cna2m1次相连重新排列1?alab1?bmbc1?cna1?albb1?bmac1?cn因此对换两个元素,排列改变奇偶性.也就是说,只要经过一次重新排列,奇排序变为偶排序,而也时排序变为奇排第3页列.推断奇排序变为标准排序的重新排列次数为奇数,偶排序变为标准排序的重新排列次数为偶数.二、排列及其逆序数性质与定理性质1设i1i2?in和j1j2?jn就是n个数码的任一两个排序,那么总可以通过一系列重新排列由i1i2?in得出结论j1j2?jn.引理1对换的可逆性――即对同一排列连续施行两次同一对换排列还原.所以任意n 元排列i1i2?in可经过一系列对换变为自然排列12?n.而自然排列12?n可经一系列对换变为任意一个n元排列j1j2?jn.事实上,由定理1所述:任一一个n元排序j1j2?jn可以经一系列重新排列变为自然排列12?n,由引理1对换的可逆性,故自然排列可经(同样的)一系列对换变为任一排列.定理2n?2时,n个数码的排序中,奇排序与也时排序的个数成正比,均为n!2个.证明:设n个数的排序中,奇排序存有p个,偶排序存有q个,则p?q?n!,对p个雷排序,颁布同一重新排列,则由定理1获得p个偶排序.(而且就是p个不同的偶排列)因为总共有q个偶排列,所以p?q.同理q?p.第4页所以p?q?n!2.§2行列式的定义开场白三阶行列式的形成规律为:a11a12a13a21a22a23?a11a22a33?a12a23a31?a13a21a32a31a32a33?a13a22a31?a12a21a33? a11a23a32a11a12a13其中:符号aa22a22123是由3个元素aij构成的三行、三列方表,a31a32a33纵排叫行,横排叫列;在上述形式下元素aij的第一个负号叫行负号,第二个负号叫列负号.从形式来看,三阶行列式就是上述特定符号则表示的一个数,这个数由一些项的和而得:1)项的构成:由取自不同的行又于不同的列上的元素的乘积;2)项数:三阶行列式就是3!=6项的代数和;3)项的符号:每项的一般形式可以写成a1j1a2j2a3j3时,即行标为自第5页然排序时,该项的符号为(?1)?(j1j2j3),即为由列标排序j1j2j3的奇偶性然定.一、n阶行列式的定义定义5n阶行列式定义为a11a12?a1na?a21a22?a2nj1j2?jn)??(i1i2?in)(?1)?(ai1j1ai2j2?ainjni1i2?inaj 1j2?jnn1an2?anna11a12?a1n用符号a21a22?a2n2表示由n个数aij所组成的n阶行列an1an2?ann式,直和为a或d,这就是一个数,其中i1i2?in和j1j2?jn都是n级排列,?表示对所有的n级排列于议和.由定义可以看出,n阶行列式的值等于所有取自不同的行、不同的列上的n个元素的乘积ai1j1ai2j2?ainjn的代数和,共有n!项,每一项前面的符号由排序i1i2?in和j1j2?jn的逆序数?(i1i2?in)+?(j1j2?jn)同意.第6页另外行列式的还可以定义为a11a12?a1na?a21a22?a2n(?1)?(j1j2?jn)a1j1a2j2?anjnan1an2?ann或a11a12?a1na?a21a22?a2n(?1)?(i1i2?in)ai11ai22?ainnan1an2?ann以上两个定义式分别以行列的排序为标准序列,其每一项前面的符号存有j1j2?jn和i1i2?in的逆序数同意.例2在四阶行列式中,a21a32a14a43应带什么符号?求解1)按行列式定义5排序,因为a21a32a14a43?a14a21a32a43,而4123的逆序数为?(4123)?0?1?1?1?3,所以a21a32a14a43的前面应当拎负号.2)按行列式定义5计算,因为a21a32a14a43行指标排序的逆序数为?(2314)?0?0?2?0?2,第7页列指标排列的逆序数为?(1243)?0?0?0?1?1.所以a21a32a14a43的前面应带负号.a11a1200基准3排序行列式a210a2300a.3200000a44分析按行列式定义,每一项都就是源自相同行相同列于的4个元素的乘积,共计4!项.但此行列式中存有很多零元素,因此有的项为零,故只需找到C99mg零元素的项,何不设立各个字母则表示的都不为零元素.于是在第一行中只有两个非零元素a11和a12.当第一行挑a11时,第二行就可以挑a23(a21与a11同列,故无法挑),第三行就可以挑a32,第四行就可以挑a44,即a11a23a32a44就是其中的一项.另外,当第一行挑a12时,第二行可以挑a21和a23,但当第二行取a23,第三行只能取零元素,故第二行只可以取a21,第三行取a33,第四Charlieua44,即为另一非零项为a12a21a33a44.解d?(?1)?(1324)a?(2134)11a23a32a44?(?1)a12a21a33a44??a11a23a32a44?a12a21a33a44第8页例4证明n行列式a110?0a11a12?a1n(1)a21a22?00a22?a2na11a22?ann,an1an2?ann00?anna1n(2)a2,n?1an(n?1)2n(?1)2a1na2,n?1?an1an1?an,n?1anna110?0a11a12?a1n证(1)记da22?0a22?a2n1?a21d02?an1an2?ann00?ann由于当j?i时,aij?0,故d1中可能不为0的元素aipi,其下标应有pi?i,即p1?1,p2?2,?,pn?n.在所有排列p1p2?pn中,能满足上述关系的排列只有一个自然排列12?n,所以d?1中可能将不为0的项只有一项(?1)a11a22?ann,此项的符号(?1)??(?1)0?1,所以第9页d1?a11a22?ann.由于当j?i时,aij?0,故d2中可能不为0的元素aipi,其下标应有pi?i,即p1?1,p2?2,?,pn?n.在所有排序p1p2?pn中,能够满足用户上述关系的排序只有一个自然排在列12?n,所以d?2中可能不为0的项只有一项(?1)a11a22?ann,此项的符号(?1)??(?1)0?1,所以d2?a11a22?ann得证.a1n(2)根据行列式定义a2,n?1a2nt(?1)a1na2,n?1?an1an1?an,n?1ann其中t为排序n(n?1)?21的逆序数,故t?0?1?2n?n(n?1)2证毕.二、子式、余子式与代数余子式第10页。

线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。

线性代数知识点全归纳

线性代数知识点全归纳

线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2.代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4.设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90o,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-g⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6.对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7.证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2.对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12s A A A A =L ;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭O; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1.一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :; 2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=; 1. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;2. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;3. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑L L ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m nn n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nm n mm m m rnr r n n n n nnn n r C C C C C CrC nC ;③、利用特征值和相似对角化: 4. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=5. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;6. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 7. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;8. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ); ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置) 11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s αααL 线性相关⇔存在一组不全为0的数12,,,s k k k L ,使得11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0ss x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-L 线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a L11b a =;1222111[,][,]b a b a b b b =-g L L L 121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B :,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心;必然事件随便用,选择先试不可能。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结第一章 行列式一要点1、二阶、三阶行列式2、全排列和逆序数;奇偶排列可以不介绍对换及有关定理;n 阶行列式的定义3、行列式的性质4、n 阶行列式ij a D =;元素ij a 的余子式和代数余子式;行列式按行列展开定理5、克莱姆法则二基本要求1、理解n 阶行列式的定义2、掌握n 阶行列式的性质3、会用定义判定行列式中项的符号4、理解和掌握行列式按行列展开的计算方法;即+11j i A a +22j i A a ⎩⎨⎧≠==+j i j i D A a jn in 0 +j i A a 1122i j a A +⎩⎨⎧≠==+j i j i D A a nj ni0 5、会用行列式的性质简化行列式的计算;并掌握几个基本方法:归化为上三角或下三角行列式;各行列元素之和等于同一个常数的行列式;利用展开式计算6、掌握应用克莱姆法则的条件及结论会用克莱姆法则解低阶的线性方程组7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件第二章 矩阵一要点1、矩阵的概念n m ⨯矩阵n m ij a A ⨯=)(是一个矩阵表..当n m =时;称A 为n 阶矩阵;此时由A 的元素按原来排列的形式构成的n 阶行列式;称为矩阵A 的行列式;记为A .注:矩阵和行列式是两个完全不同的两个概念..2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法1矩阵的乘法不满足交换律和消去律;两个非零矩阵相乘可能是零矩阵..如果两矩阵A 与B 相乘;有BA AB =;则称矩阵A 与B 可换..注:矩阵乘积不一定符合交换2方阵的幂:对于n 阶矩阵A 及自然数k ;个k k A A A A ⋅⋅= 规定I A =0;其中I 为单位阵 .3 设多项式函数k k k k a a a a ++++=--λλλλϕ1110)( ;A 为方阵;矩阵A 的多项式I a A a A a A a A k k k k ++++=--1110)( ϕ;其中I 为单位阵..4n 阶矩阵A 和B ;则B A AB =.5n 阶矩阵A ;则A A nλλ=4、分块矩阵及其运算5、逆矩阵:可逆矩阵若矩阵A 可逆;则其逆矩阵是唯一的;矩阵A 的伴随矩阵记为*A ; E A A A AA ==**矩阵可逆的充要条件;逆矩阵的性质..6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵..7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩8、矩阵的等价二要求1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等2、了解几种特殊的矩阵及其性质3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时;会用伴随矩阵求逆矩阵5、了解分块矩阵及其运算的方法1在对矩阵的分法符合分块矩阵运算规则的条件下;其分块矩阵的运算在形式上与不分块矩阵的运算是一致的..2特殊分法的分块矩阵的乘法;例如n m A ⨯;l n B ⨯;将矩阵B 分块为) (21l b b b B =;其中j b l j 2, ,1=是矩阵B 的第j 列;则=AB ) (21l b b b A ) (21l Ab Ab Ab =又如将n 阶矩阵P 分块为) (21n p p p P =;其中j p n j 2, ,1=是矩阵P 的第j 列.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n P λλλ 0 0 00 0 00 0 0 21 ) (21n p p p = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ 0 0 00 0 00 0 0 21) (2211n n p p p λλλ = 3设对角分块矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=SS A A A A 2211 ;),2,1(s P A PP =均为方阵; A 可逆的充要条件是PP A 均可逆;s P ,2,1=;且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----11221111 ss A A A A6、理解和掌握矩阵的初等变换和初等矩阵及其有关理论;掌握矩阵的初等变换;化矩阵为行最简形;会用初等变换求矩阵的秩、求逆矩阵7、理解矩阵的秩的概念以及初等变换不改变矩阵的秩等有关理论8、若矩阵A 经过有限次初等变换得到矩阵B ;则称矩阵A 和矩阵B 等价;记为B A ≅. n m ⨯矩阵A 和B 等价当且仅当)()(B r A r =;在等价意义下的标准型:若r A r =)(;则r D A ≅;⎥⎦⎤⎢⎣⎡=000 r r I D ;r I 为r 阶单位矩阵.. 因此n 阶矩阵A 可逆的充要条件为n I A ≅..第三章 线性方程组一要点1、n 维向量;向量的线性运算及其有关运算律记所有n 维向量的集合为n R ;n R 中定义了n 维向量的线性运算;则称nR 为 n 维向量空间..2、向量间的线性关系1线性组合与线性表示;线性表示的判定2线性相关与线性无关;向量组的线性相关与无关的判定3、向量组的等价;向量组的秩;向量组的极大无关组及其求法;向量组的秩及其求法 1设有两个向量组,1α,2αs α )(A,1β,2βt β )(B向量组)(A 和)(B 可以相互表示;称向量组)(A 和)(B 等价..向量组的等价具有传递性..2一个向量组的极大无关组不是惟一的;但其所含向量的个数相同;那么这个相同的个数定义为向量组的秩..4、矩阵的秩与向量组的秩的关系5、线性方程组的求解1线性方程组的消元解法2线性方程组解的存在性和唯一性的判定3线性方程组解的结构4齐次线性方程的基础解系与全部解的求法5非齐次方程组解的求法二要求1、理解n 维向量的概念;掌握向量的线性运算及有关的运算律2、掌握向量的线性组合、线性表示、线性相关、线性无关等概念3、掌握线性表示、线性相关、线性无关的有关定理4、理解并掌握向量组的等价极大无关组、向量组的秩等概念;及极大无关组、向量组秩的求法5、掌握线性方程组的矩阵形式、向量形式的表示方法6、会用消元法解线性方程组7、理解并掌握齐次方程组有非零解的充分条件及其判别方法8、理解并掌握齐次方程组的基础解系、全部解的概念及其求法9、理解非齐次方程组与其导出组解的关系;掌握非齐次方程组的求解方法第四章 矩阵的特征值与特征向量一要点1、矩阵的特征值与特征向量的定义;特征方程、特征值与特征向量的求法与性质2、相似矩阵的定义、性质;矩阵可对角化的条件3、实对称矩阵的特征值和特征向量向量内积的定义及其性质;正交向量组;施密特正交化方法;正交矩阵;实对称矩阵的特征值与特征向量的性质;实对称矩阵的对角化二要求1、理解矩阵的特征值、特征向量的概念及有关性质2、掌握特征值与特征向量的求法3、理解并掌握相似矩阵的概念与性质4、掌握判断矩阵与对角矩阵相似的条件及对角化的方法5、会将实对称矩阵正交相似变换化为对角矩阵..第五章二次型一要点1、二次型与对称矩阵:二次型的定义;二次型与对称矩阵的对应关系2、二次型与对称矩阵的标准形配方法;初等变换法;正交变换法;合同矩阵;二次型及对称矩阵的标准形与规范形 3、二次型与对称矩阵的有定性二次型与对称矩阵的正定、负定、半正定、半负定二要求1、理解并掌握二次型的定义及其矩阵的表示方法..2、会用三种非退化线性替换:即配方法、初等变换法、正交变换法化二次型为标准形及规范型3、掌握二次型的正定、负定、半正定、半负定的定义;会判定二次型的正定性..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数复习要点第一部分行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算行列式的定义1.行列式的计算:①(定义法)1212121112121222()1212()nnnnn j j jn j j njj j jn n nna a aa a aD a a aa a aτ==-∑1②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.1122,,0,.i j i j in jnA i ja A a A a Ai j⎧=⎪++=⎨≠⎪⎩③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.11221122***0**0*00nnnnbbA b b bb==④ 若A B 与都是方阵(不必同阶),则==()mn A O A A OA B O B O B B O A AAB B O B O*==**=-1例 计算2-100-1300001100-25解2-100-130000110-25=2-1115735-13-25⋅=⨯= ⑤ 关于副对角线:(1)211212112111()n n nnn n n n n n n a O a a a a a a a O a O---*==-1⑥ 范德蒙德行列式:()1222212111112nijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111例 计算行列式⑦ a b -型公式:1[(1)]()n a b b b b a bba nb a b bb ab b b ba-=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算.⑩(数学归纳法)2. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;3. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值.4. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-第二部分 矩阵1. 矩阵的运算性质2. 矩阵求逆3. 矩阵的秩的性质4. 矩阵方程的求解1. 矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭称为m n ⨯矩阵. 记作:()ijm nA a ⨯=或m n A ⨯同型矩阵:两个矩阵的行数相等、列数也相等. 矩阵相等: 两个矩阵同型,且对应元素相等. 矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数λ与矩阵A 的乘积记作A λ 或A λ,规定为()ij A a λλ=.c. 矩阵与矩阵相乘:设()ij m s A a ⨯=, ()ij s n B b ⨯=,则()ij m n C AB c ⨯==, 其中12121122(,,,)j j ij i i is i j i j is sj sj b b c a a a a b a b a b b ⎛⎫ ⎪ ⎪==+++ ⎪ ⎪ ⎪⎝⎭注:矩阵乘法不满足:交换律、消去律, 即公式00AB BAAB A ==⇒=或B=0不成立.a. 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭b. 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量;11112111111211221222221222221212000000n n n n m m m mn m m m m m mn a b b b a b a b a b ab b b a b a b a b B a b b b a b a b a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦c. 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量.11121111121212122221212222121122000000n m n n m n m m mn m m m m mn b b b a a b a b a b b b b a a b a b a b B b b b a a b a b a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. ④ 方阵的幂的性质:mnm nA A A+=, ()()m n mnA A =⑤ 矩阵的转置:把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作TA . a. 对称矩阵和反对称矩阵: A 是对称矩阵TA A =.A 是反对称矩阵T A A =-.b. 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑥ 伴随矩阵: ()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A-=, 11AA --=.分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B BB A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭2. 逆矩阵的求法 方阵A 可逆 0A ≠.①伴随矩阵法 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号② 初等变换法 1()()A E E A -−−−−→初等行变换例 求122212221⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的逆矩阵. 解32322121232313213219221210203312210012210021212010036210012033221001033011009221122100999212010999221001999r r r r r r r r r r r r r r ------+⎡⎤--⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-→---→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦-⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦1122999122212,212999221221999-⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎢⎥⎣⎦所以③ 分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B B A---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭ 1111A O A O C B B CA B ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭④1231111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 3211111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤ 配方法或者待定系数法 (逆矩阵的定义1AB BA E A B -==⇒=)例 设方阵A 满足矩阵方程220E --=A A , 证明A 及2E +A 都可逆, 并求1-A 及()12E -+A . 解 由220E --=A A 得()12E E -=A A , 故A 可逆, 且()112E -=-A A . 由220E --=A A 也可得(2)(3)4E E E +-=-A A 或1(2)(3)4E E E ⎡⎤+--=⎢⎥⎣⎦A A , 故2E +A 可逆, 且()12E -+A 1(3)4E =--A .3. 行阶梯形矩阵 可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖 线后面的第一个元素非零. 当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时, 称为行最简形矩阵4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换初等变换初等矩阵 初等矩阵的逆 初等矩阵的行列式↔i j r r (↔i j c c )(,)E i j 1(,)(,)E i j E i j -=(,)E i j =-1⨯i r k (⨯i c k ) (())E i k11[()][()]k E i k E i -= [()]E i k k = +⨯i j r r k (+⨯i j c c k )(,())E i j k1[,()][,()]E i j k E i j k -=-[,()]E i j k =1☻矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ;对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .注意: 初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.5. 矩阵的秩 关于A 矩阵秩的描述:①、()=r A r ,A 中有r 阶子式不为0,1+r 阶子式 (存在的话) 全部为0; ②、()<r A r ,A 的r 阶子式全部为0; ③、()≥r A r ,A 中存在r 阶子式不为0; ☻矩阵的秩的性质:① ()A O r A ≠⇔≥1; ()0A O r A =⇔=;0≤()m n r A ⨯≤min(,)m n② ()()()T Tr A r A r A A ==③ ()()r kA r A k =≠ 其中0④ ()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤ ()r AB ≤{}min (),()r A r B⑥ 若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===; 即:可逆矩阵不影响矩阵的秩.⑦ 若()()()m n Ax r AB r B r A n AB O B O A AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧ ()rrE O E O r A r A A OO OO ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型. ⑨ ()r A B ±≤()()r A r B +, {}max (),()r A r B ≤(,)r A B ≤()()r A r B +⑩ ()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭, ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭☻求矩阵的秩:定义法和行阶梯形阵方法6 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→初等行变换(I)的解法:构造()() A E B X ⎛⎫⎛⎫ ⎪ ⎪−−−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等列变换(II)的解法:构造T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得第三部分 线性方程组1. 向量组的线性表示2. 向量组的线性相关性3. 向量组的秩4. 向量空间5.线性方程组的解的判定6. 线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系) (2)非齐次线性方程组的解的结构(通解) 1.线性表示:对于给定向量组12,,,,n βααα,若存在一组数12,,,n k k k 使得1122n n k k k βααα=+++,则称β是12,,,n ααα的线性组合,或称称β可由12,,,n ααα的线性表示.线性表示的判别定理:β可由12,,,n ααα的线性表示由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩有解②、1112111212222212⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭n n m m mn m m a a a x b a a a x b Ax a a a x b β③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)2. 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b bb c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i i A c β= ,(,,)i s =1,2⇔i β为i Ax c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,A 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔111122*********22211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩3.线性相关性判别方法:法1法2法3推论♣线性相关性判别法(归纳)♣ 线性相关性的性质① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一.4. 最大无关组相关知识向量组的秩 向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r ααα矩阵等价 A 经过有限次初等变换化为B .向量组等价 12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅ ① 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.② 矩阵的初等变换不改变矩阵的秩,且不改变行(列)向量间的线性关系③ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .④ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑤ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑥ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑦ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑧ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关; 5. 线性方程组理论线性方程组的矩阵式Ax β= 向量式 1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭1(1)解得判别定理(2)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k kk k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪+++=⇔+++=⎪⎪+++=⇔+++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解(3) 判断12,,,s ηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.(4) 求非齐次线性方程组Ax = b 的通解的步骤12112(1()(2)()()(3)(4)10,,...,(5)A b r A b r A r n n r Ax b Ax Ax b x k k ααααααα==<-====++0n-r 0) 将增广矩阵通过初等行变换化为;当时,把不是首非零元所在列对 应的个变量作为自由元;令所有自由元为零,求得的一个;不计最后一列,分别令一个自由元为,其余自由元 为零,得到的{};写出非齐次线性方程组的阶梯形矩阵特解基础 解系 通解 212...,,...,n r n rn r k k k k α---++其中为任意常数.例 求下述方程组的解123451234523457,3232,22623x x x x x x x x x x x x x x ++++=⎧⎪+++-=-⎨⎪+++=⎩解 19100222111117123(,)3121320113220212623001000A A b ⎛⎫-- ⎪⎛⎫ ⎪⎪ ⎪==--−−→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭, 由于()()25r A r A ==<,知线性方程组有无穷多解.原方程组等价于方程组1354234519222123322x x x x x x x x ⎧=----⎪⎪⎨⎪=---+⎪⎩,令3451000,1,0.001x x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭求得等价方程组对应的奇次方程组的基础解系 12312021213,,.100010001ξξξ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭求特解: 令3450x x x ===,得12923,.22x x =-=故特解为92232.000η*-⎛⎫⎪- ⎪ ⎪= ⎪⎪ ⎪⎝⎭所以方程组的通解为 1231202921213232100000000010x k k k --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(123,,k k k 为任意常数).(5)其他性质一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,s ξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同)⇔()()A r r A r B B ⎛⎫==⎪⎝⎭, 且有结果: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P ); 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ).第四部分 方阵的特征值及特征向量1. 施密特正交化过程2. 特征值、特征向量的性质及计算3. 矩阵的相似对角化,尤其是对称阵的相似对角化1. 标准正交基 n 个n 维线性无关的向量,两两正交,每个向量长度为1. 向量()12,,,Tn a a a α=与()12,,,Tn b b b β=的内积 11221(,)ni i n n i a b a b a b a b αβ===+++∑αβ与正交 (,)0αβ=. 记为:αβ⊥ ④ 向量()12,,,Tn a a a α=的长度 2222121(,)ni n i a a a a ααα====+++∑⑤ α是单位向量(,)1ααα==. 即长度为1的向量.2. 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 线性性:1212(,)(,)(,)ααβαβαβ+=+ (,)(,)k k αβαβ=3. 设A 是一个n 阶方阵, 若存在数λ和n 维非零列向量x , 使得 Ax x λ=,则称λ是方阵A 的一个特征值,x 为方阵A 的对应于特征值λ的一个特征向量. A 的特征矩阵0E A λ-=(或0A E λ-=).A 的特征多项式 ()E A λϕλ-=(或()A E λϕλ-=).④ ()ϕλ是矩阵A 的特征多项式⇒()A O ϕ= ⑤ 12n A λλλ= 1ni A λ=∑tr ,A tr 称为矩阵A 的迹.⑥ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.⑦ 若0A =,则λ=0为A 的特征值,且Ax ο=的基础解系即为属于λ=0的线性无关的特征向量.⑧ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr , 23n λλλ====0.○()12,,,Tn a a a 为A 各行的公比,()12,,,n b b b 为A 各列的公比.⑨ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:① 若A 满足()f A O =⇒A 的任何一个特征值必满足()i f λ=0 ②()f A 的全部特征值为12(),(),,()n f f f λλλ;12()()()()n f A f f f λλλ=.⑩ A 与TA 有相同的特征值,但特征向量不一定相同. 4. 特征值与特征向量的求法(1) 写出矩阵A 的特征方程0A E λ-=,求出特征值i λ. (2) 根据()0i A E x λ-=得到 A 对应于特征值i λ的特征向量. 设()0i A E x λ-=的基础解系为 12,,,in r ξξξ- 其中()i i r r A E λ=-.则A 对应于特征值i λ的全部特征向量为1122,i i n r n r k k k ξξξ--+++其中12,,,i n r k k k -为任意不全为零的数.例 求211020413A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭的特征值和全部特征向量.解 第一步:写出矩阵A 的特征方程,求出特征值.221121020(2)(2)(1)043413A E λλλλλλλλλ-----=-=-=--+=---- 解得特征值为1231, 2.λλλ=-==第二步:对每个特征值λ代数齐次线性方程组()0A E x λ-=,求其非零解,即对应于特征值λ的全部特征向量. 当1λ=- 时,齐次线性方程组为()0A E x +=,系数矩阵111101030010414000A E --⎛⎫⎛⎫⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭得基础解系:1101P ⎛⎫⎪= ⎪ ⎪⎝⎭,故对应于特征值1λ=-的全部特征向量为11(0)k Pk ≠. 当2λ= 时,齐次线性方程组为(2)0A E x -=,系数矩阵4114112000000411000A E ---⎛⎫⎛⎫ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭得基础解系:2011P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,3104P ⎛⎫⎪= ⎪ ⎪⎝⎭.故对应于特征值2λ=的全部特征向量为 2233k P k P +, 其中23,k k 不全为零. 5. A 与B 相似 1P AP B -= (P 为可逆矩阵) A 与B 正交相似 1P AP B -= (P 为正交矩阵)A 可以相似对角化 A 与对角阵Λ相似.(称Λ是A 的相似标准形)6. 相似矩阵的性质: ①E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.○α是A 关于0λ的特征向量,1P α-是B 关于0λ的特征向量.②A B =tr tr③A B = 从而,A B 同时可逆或不可逆 ④ ()()r A r B =⑤若A 与B 相似, 则A 的多项式()f A 与B 的多项式()f A 相似. 7. 矩阵对角化的判定方法① n 阶矩阵A 可对角化 (即相似于对角阵) 的充分必要条件是A 有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. 设i α为对应于i λ的线性无关的特征向量,则有:121n P AP λλλ-⎛⎫⎪ ⎪=⎪ ⎪⎝⎭.② A 可相似对角化⇔()i i n r E A k λ--=,其中i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量. ○:当i λ=0为A 的重的特征值时,A 可相似对角化⇔i λ的重数()n r A =-=Ax ο=基础解系的个数.③ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化. 8. 实对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 不同特征值对应的特征向量必定正交;○:对于普通方阵,不同特征值对应的特征向量线性无关;③ 一定有n 个线性无关的特征向量. 若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--; ④ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形; ⑤ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥ 两个实对称矩阵相似⇔有相同的特征值. 9. 正交矩阵 TAA E =正交矩阵的性质:① 1T A A -=;② T TAA A A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.10.例 实对称阵120222023A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,求正交阵Q ,使得AQ Q 1-为对角阵.解 120222(1)(2)(5)0023A E λλλλλλλ---=---=-+--=-- 所以A 的特征值为11λ=-,22λ=,35λ=,当11λ=-时,解()0A E x +=,得基础解系为1(2,2,1)Tx = 当22λ=时,解(2)0A E x -=,得基础解系为2(2,1,2)Tx =-- 当35λ=时,解(5)0A E x -=,得基础解系为3(1,2,2)Tx =-令111221(,,)333T x y x ==222212(,,)333T x y x ==--333122(,,)333T x y x ==- 令123221333212(,,)333122333Q y y y ⎛⎫ ⎪ ⎪⎪==-- ⎪ ⎪ ⎪- ⎪⎝⎭,则⎪⎪⎪⎭⎫ ⎝⎛==-1000500021AQ Q AQ Q T11.123,,ααα线性无关,112122111313233121122(,)(,)(,)(,)(,)(,)βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ=222βηβ=333βηβ=技巧:取正交的基础解系,跳过施密特正交化。

相关文档
最新文档