六年级反比例
小学六年级数学《反比例》教案(8篇)

小学六年级数学《反比例》教案(8篇)小学六年级数学《反比例》教案1教学内容:教材第99~102页例1~例3。
教学要求:1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:认识反比例关系的意义。
教学难点:掌握成反比例量的变化规律及其特征。
教学过程:一、铺垫孕伏:1.正比例关系的意义是什么?怎样用字母表示这种关系?判断两种相关联量成不成正比例的关键是什么?2.下面哪两种量成正比例关系?为什么?(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。
(学生回答后老师板书)在什么条件下,其中两种量成正比例?4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。
(板书课题)二、自主探究:1.教学例2。
出示例2某运输公司要运一批300吨的货物。
让学生计算并完成填表任务。
每天运的数量(吨)1020304050所需的天数在本上填表,并观察思考能发现什么?指名口答,老师板书填表。
让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论的结果,得出:(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。
(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。
提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)2.教学例1出示例1。
六年级数学下册《反比例》PPT课件人教版

题目1
一个直角三角形,两 多少厘米?
题目2
题目3
一个长方形的周长是20厘米,长是a厘米, 宽是b厘米。求a和b的关系式,并求出当 a=5厘米时,b是多少厘米?
一个圆柱体和一个圆锥体的底面积相等、 体积也相等。已知圆锥的高是18厘米,求 圆柱的高是多少厘米。
疑问3
反比例在生活中有哪些应用?
答
反比例关系在现实生活中有着广泛的应用。例如,汽车行 驶时,如果速度一定,那么行驶的距离和所需的时间成反 比;一定体积的气体,如果压力一定,那么气体的温度和 体积成反比。
下节课预告
• 下节课我们将学习《圆柱与圆锥》,圆柱和圆锥是常见的几何 图形,它们在生活和数学中有着广泛的应用。通过学习圆柱和 圆锥的特性、面积和体积的计算方法,我们将更好地理解这两 种几何图形在现实世界中的作用。请大家做好预习工作。
杠杆原理
在杠杆两端挂上不同质量的物体,一端质量大,一端质量小,当杠杆平衡时,两端的距离相等,质量与距离成反 比关系。
数学问题中的反比例解析
面积固定时,长与宽的关系
当一个矩形的面积固定时,长与宽的乘积为定值,即长增大时,宽必须减小,反之亦然,这体现了反 比例关系。
速度固定时,距离与时间的关系
当一个物体的速度固定时,距离与时间的乘积为定值,即距离增大时,时间必须增大,反之亦然,这 体现了反比例关系。
02 反比例的图像表示
反比例图像的绘制
确定x和y的取值范围
在绘制反比例图像前,需要确定x和y的取值 范围,以便在坐标系中正确表示。
标出原点
在坐标系的中心位置标出原点。
绘制坐标轴
根据需要选择适当的坐标轴比例,并绘制坐 标轴线。
绘制双曲线
根据反比例函数的性质,在第一象限和第三 象限内绘制双曲线。
六年级数学课件正比例和反比例

正比例的意义
定义:两个量之间的比值相等 性质:当一个量增加时,另一个量也按相同的比例增加 举例:速度、路程和时间之间的关系 应用:在生活和生产中的实际应用
正比例的应用
定义:两个量之间 的比值保持不变, 即为正比例关系
应用场景:速度、 时间、距离等
Hale Waihona Puke 实例:汽车匀速行 驶,速度与时间成 正比
数学模型:y=kx ,其中k为比例系 数
题目:一辆汽车从甲地开往乙地,3小时行了150千米。照这样的速度,再行5小时到达乙地, 甲地到乙地相距多少千米?
反比例的练习题及解析
题目:一个工厂生产了200台机器,每台机器需要10个零件。如果该工厂决定生产更多的机器,但零件数量不变,那么每台新机器的 成本将会如何变化?
解析:这道题目考察了反比例的概念。当一个变量增加时,如果另一个变量保持不变,那么第一个变量与第二个变量之间 的比率将会保持不变。因此,如果该工厂生产的机器数量增加,但零件数量保持不变,那么每台新机器的成本将会降低。
生活中的反比例实例
汽车油箱:油箱容 量固定,行驶距离 与耗油量成反比
速度与时间:速度 越快,所需时间越 短,成反比关系
价格与需求量:价 格上涨,需求量减 少,成反比关系
杠杆原理:动力×动 力臂=阻力×阻力臂 ,当动力臂增加, 阻力臂减少时,动 力作用效果越不明 显
正比例和反比例在数学中的应用实例
化
反比例:两个 量之间的乘积 是一定的,当 一个量变化时, 另一个量也按 相反的比例变
化
区别:正比例 是比值一定, 反比例是乘积
一定
联系:正反比 例都是成比例 关系,当其中 一个量变化时, 另一个量也按 一定的比例变
化
应用上的区别与联系
小学六年级数学教案 正比例和反比例9篇

小学六年级数学教案正比例和反比例9篇正比例和反比例 1教学内容:本单元一共安排了三道例题和一个练习。
先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。
教材分析:本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。
正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。
通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。
教学目标:1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。
2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。
教学重点:认识正、反比例的意义教学难点:根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。
课时安排:正比例和反比例(4课时)第 1 课时教学内容成正比例的量教材第62-63页的例1和试一试,练一练和练习十三的第1-3题课型新授本单元教时数: 4 本教时为第 1 教时备课日期月日教学目标1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、 2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
六年级数学下册正比例和反比例知识点

六年级数学下册正比例和反比例知识点一、内容概要正比例和反比例是六年级数学下册的重要知识点,简单来说正比例表示两个量成正比关系,当一个量增加时,另一个量也会增加,反之亦然。
好比速度和时间是常见的正比例例子,当速度加快时,需要的时间就会减少。
反比例则是当两个量中的其中一个增加时,另一个会减少。
像是你在爬山过程中体力消耗与海拔高度的关系,海拔越高体力消耗越大,反之越省力就是反比例的例子。
掌握这些知识可以帮助我们更好地理解生活中的各种现象,接下来我们将详细解析这两个概念的应用和解题方法。
1. 回顾数学基础知识,为学习正比例和反比例做铺垫亲爱的小朋友们,转眼间我们已经进入了六年级的数学之旅,那么今天我们来一起回顾一下前面学过的数学知识,为接下来要学习的正比例和反比例知识点做好铺垫吧!数学的世界总是充满了神奇的奥秘,让我们一步步走进这个奇妙的世界。
我们知道数学是生活中的一把钥匙,它能帮助我们解决很多有趣的问题。
在学习正比例和反比例之前,我们要先打好基础。
回顾一下我们之前学过的关于数量和数量之间的关系的知识,比如当我们买文具时,文具的数量和总价之间就有一种特殊的关系。
买一支笔和买十支笔的价格是不一样的,这就是数量和价格之间的关系。
这就是我们接下来要学习的正比例和反比例的基础,你们准备好了吗?接下来我们要更深入地去探索这种关系的奥秘!2. 简述正比例和反比例的概念及其在实际生活中的应用反比例呢?它与正比例相反,当一个量变大时,另一个量就会变小。
比如说你在调节电视机的音量和亮度时,通常音量越大,电视屏幕的亮度就越低,因为电视的音量和亮度就是一对反比例关系。
再如开车的时候,车速越慢反而里程消耗越多;一个钟表转得越慢它行走的总圈数就越大等生活中都可以发现反比例的例子。
明白正比例和反比例的概念后,我们就可以更好地理解和解决生活中的很多问题啦!二、正比例知识点我们知道生活中有很多事物之间是有关系的,比如你吃的零食越多,肚子就越容易饱。
完整版)六年级数学正反比例

完整版)六年级数学正反比例正,反比例正比例和反比例是初中数学中的重要概念。
下面我们来整理一下相关知识点。
判断两种量是否成正比例,需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的比值是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的比值,正比例关系可以用y=kx表示。
判断两种量是否成反比例,同样需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的乘积是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的乘积,反比例关系可以用xy=k表示。
常见的正反比例题型包括圆的周长和半径、圆的面积和半径、平行四边形面积一定时的底和高等。
下面是一些典型例题:例1:某车间造纸时间和造纸总吨数的数据如下表所示。
我们可以在坐标系中描出对应的点,并根据图像的特点判断它们成正比例关系。
例2:这道题列举了多种量的情况,需要判断它们是否成比例,如果成比例,是正比例还是反比例。
例3:这道题给出了3:A = 5:B的比例关系,需要求出A与B的比例关系。
根据比例的性质,可以得出A与B成反比例关系。
2.如果3:B = A:5,则A与B成什么比例?为什么?根据题意,可以得到以下等式:3:B = A:5将等式两边乘以5,得到:15:B = A因此,A与B成15:B的比例。
这是因为等式中的比例关系是等价的,即3:B与A:5是等价的,所以它们的比例关系也是等价的。
因此,可以通过等式中的比例关系来确定A与B之间的比例关系。
举一反三:1.a和b相关联的两种量,下面哪个式子表示a和b成正比例?⑤b=7a因为当a增加时,b也会增加,且它们之间的比例关系保持不变,因此a和b成正比例。
2.x、y、z是三种相关联的量,已知x×y=z。
当(x+z)一定时,(y+z)和(y-x)成正比例。
拓展提升:1.如果ab=24,那么a和b成反比例;如果a÷b=18,那么a和b成正比例。
2.一个比例式,两个外项之和是37,差是13,两个比的比值是2.5,那么比例式为5:2.3.甲乙两人步行速度之比是7:5,甲乙分别从a、b两地同时出发,如果相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要多长时间?题型一:按要求选四个数字组成各一个比例式子12的因数有1、2、3、4、6、12,选四个数字可以得到比例式1:2:3:4.举一反三:1.从36的因数有1、2、3、4、6、9、12、18、36,选四个数字可以得到比例式1:2:3:6.2.写出一个比值是24的比例式是3:1.题型五:人员调配问题一个车间有两个小组,第一个小组与第二个小组的人数比是5:3.如果第一个小组的14人到了第二个小组时,第一小组与第二小组的人数比是1:2,原来两个小组各有多少人?设第一个小组原来有5x人,第二个小组原来有3x人,则有以下等式:5x-14 : 3x+14 = 1 : 2解方程得到x=14,因此第一个小组原来有70人,第二个小组原来有42人。
反比例知识点六年级

反比例知识点六年级在六年级数学中,学习反比例关系是非常重要的一部分。
反比例关系是指两个变量之间的关系,当一个变量增大时,另一个变量会相应地减小。
本文将介绍反比例知识点,帮助您更好地理解和应用反比例关系。
一、何为反比例关系反比例关系是一种特殊的数量关系,指的是两个变量在改变的过程中,其中一个变量的增大导致另一个变量的减小,而且两者之间存在固定的比例关系。
例如,如果我们考虑一个汽车行驶的时间和速度之间的关系。
当汽车的速度增加时,行驶时间就会减少;反之,当汽车的速度减小时,行驶时间就会增加。
这就是速度和行驶时间之间的反比例关系。
二、反比例关系的表示方式在数学中,我们可以使用等式或者图表来表示反比例关系。
常见的反比例关系表示方式有以下几种:1. 等式表示:如果两个变量 x 和 y 存在反比例关系,我们可以使用以下等式来表示:x * y = k其中,k 是一个常量,表示反比例关系中的比例常数。
通过这个等式,我们可以发现在变量 x 增大时,变量 y 会相应地减小。
2. 图表表示:我们可以使用一个坐标系来绘制反比例关系的图表。
横轴代表一个变量,纵轴代表另一个变量。
当两个变量呈反比例关系时,我们可以观察到一个特殊的图形,即一个抛物线的开口朝下的函数图像。
三、反比例关系的性质和应用反比例关系具有以下几个重要的性质:1. 变量非零:在反比例关系中,变量不能取零,因为零不能作为除数。
2. 常量比例:反比例关系中,存在一个常量比例 k。
这个常量比例决定了两个变量之间的比例关系。
当一个变量增大时,另一个变量会按照比例减小。
反比例关系在实际生活中有许多应用。
以下是一些常见的例子:1. 速度和时间关系:在旅行中,速度和时间之间存在着反比例关系。
当速度增加时,到达目的地所需的时间就会减少;反之,当速度减小时,到达目的地所需的时间会增加。
2. 浓度和容积关系:在溶液的配制中,浓度和容积之间存在反比例关系。
当固定溶质质量的情况下,溶液的浓度与溶液体积成反比。
六年级下册数学教案-第四单元反比例-人教新课标

六年级下册数学教案-第四单元反比例-人教新课标一、教学目标1. 让学生理解反比例的概念,掌握反比例的特点和判断方法。
2. 使学生能够运用反比例知识解决实际问题,提高解决问题的能力。
3. 培养学生合作、探究的学习精神,激发学生对数学的兴趣。
二、教学内容1. 反比例的意义和判断方法。
2. 反比例在实际生活中的应用。
3. 反比例与其他数学概念的联系。
三、教学重点与难点1. 教学重点:反比例的意义、判断方法和应用。
2. 教学难点:反比例与其他数学概念的联系,以及在实际问题中的运用。
四、教学准备1. 教师准备:教案、PPT、教学素材。
2. 学生准备:课本、笔记本、文具。
五、教学过程1. 导入:通过生活中的实例,引出反比例的概念,激发学生的兴趣。
2. 新课讲解:详细讲解反比例的意义、判断方法和应用,结合实例进行讲解。
3. 课堂练习:让学生独立完成练习题,巩固所学知识。
4. 小组讨论:分组讨论反比例在实际生活中的应用,培养学生的合作精神。
5. 课堂小结:总结本节课所学内容,强调重点和难点。
6. 课后作业:布置相关作业,巩固所学知识。
六、教学评价1. 课后对学生的作业进行批改,了解学生对反比例知识的掌握程度。
2. 在下一节课开始时,对上一节课的知识进行提问,检查学生的复习情况。
3. 通过课堂表现、作业完成情况和提问回答,综合评价学生的学习效果。
七、教学反思1. 教师应关注学生在学习过程中的反馈,及时调整教学方法和进度。
2. 注重培养学生的合作精神,鼓励学生积极参与课堂讨论。
3. 针对不同学生的学习情况,进行个别辅导,提高教学效果。
八、教学拓展1. 开展数学兴趣小组活动,让学生深入研究反比例相关知识。
2. 组织数学竞赛,激发学生的学习兴趣和竞争意识。
3. 结合实际生活,引导学生发现身边的反比例现象,提高学生的观察能力和实践能力。
九、教学总结本节课通过讲解、练习、讨论等方式,让学生掌握了反比例的概念、判断方法和应用,培养了学生的合作精神,提高了学生的数学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级《反比例》
教材分析:
反比例是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
教学目标:
1.使学生理解反比例的意义,掌握成反比例的变化规律。
2.能正确判断成正反比例的量,为解答正反比例应用题打下基础。
教学难点:
能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程:
一、复习
1、什么是正比例的量?
2、判断下面各题中的两种量是否成正比例?为什么?
(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。
二、导入新课
利用反义词来导入今天研究的课题。
今天研究两种量成反比例关系的变化规律。
三、进行新课
情境(一):认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二):让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考
同桌交流,用自己的语言表达
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定
情境(三):把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什
么发现?用自己的语言描述变化关系
写出关系式:每杯果汁量×杯数=果汗总量(一定)
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。
这两种量之间是反比例关系。
四.巩固反馈
1.打开书看今天讲的内容,并划出重点。
2.你能举出一个成反比例的例子吗?(自由发言)
五.作业布置
教材第26面练一练1.2.3题。
设计者:周道德。