人教版小学六年级数学下册 反比例课件
合集下载
人教版六年级数学下册第四单元《正比例和反比例》(复习课件)

3
汽车所行路程与相应耗油量是两种相关联的量,耗油量
随着所行路程的变化而变化。所行路程增加,耗油量随
着增加;所行路程减少,耗油量随着减少。
4.已知y与x成正比例关系,在下表的空格中填写合
适的数。(选题源于教材P49第4题)
5
15
8
3
12.5
25
50
5.同一时间、同一地点测得3棵树的树高及其影长如
下表。(选题源于教材P50第5题)
长劲鹿:0.8×18=14.4(千米)
答:斑马18分钟跑了21.6千米,
长颈鹿跑了14.4千米。
下面的图象表示斑马和长颈鹿的奔跑情况。
(3)从图象上看,斑马跑得快还是长颈鹿跑得快?
从图像上看,10分钟时,斑马跑了
12千米,长劲鹿跑了8千米。
答:斑马跑得快。
判断下面各题中的两种量是否成反比例关系,并说明理由。
面积与所需地砖数量如下表。
所需地砖数量与每块地砖的面积是否成反比例?
为什么?(选题源于教材P51第8题)
成反比例关系。
因为所需地砖数量与每块地砖的面积的乘
积等于教室的面积,而教室的面积一定,
所以所需地砖数量与每块地砖的面积成反
比例关系。
2.食品加工厂准备把一批新酿的醋装瓶运往商店。
所装瓶数与每瓶容量是否成反比例关系?为什么?
有x、y、z三个相关联的量,并有xy=z。
(1)当z一定时,x与y成
比例关系。
反
xy=z
(一定) 即xy的积一定,则xy成反比例。
正
(2)当x一定时,z与y成
比例关系。
z
=x
xy=z
则zy成正比例。
y (一定),
正 比例关系。
汽车所行路程与相应耗油量是两种相关联的量,耗油量
随着所行路程的变化而变化。所行路程增加,耗油量随
着增加;所行路程减少,耗油量随着减少。
4.已知y与x成正比例关系,在下表的空格中填写合
适的数。(选题源于教材P49第4题)
5
15
8
3
12.5
25
50
5.同一时间、同一地点测得3棵树的树高及其影长如
下表。(选题源于教材P50第5题)
长劲鹿:0.8×18=14.4(千米)
答:斑马18分钟跑了21.6千米,
长颈鹿跑了14.4千米。
下面的图象表示斑马和长颈鹿的奔跑情况。
(3)从图象上看,斑马跑得快还是长颈鹿跑得快?
从图像上看,10分钟时,斑马跑了
12千米,长劲鹿跑了8千米。
答:斑马跑得快。
判断下面各题中的两种量是否成反比例关系,并说明理由。
面积与所需地砖数量如下表。
所需地砖数量与每块地砖的面积是否成反比例?
为什么?(选题源于教材P51第8题)
成反比例关系。
因为所需地砖数量与每块地砖的面积的乘
积等于教室的面积,而教室的面积一定,
所以所需地砖数量与每块地砖的面积成反
比例关系。
2.食品加工厂准备把一批新酿的醋装瓶运往商店。
所装瓶数与每瓶容量是否成反比例关系?为什么?
有x、y、z三个相关联的量,并有xy=z。
(1)当z一定时,x与y成
比例关系。
反
xy=z
(一定) 即xy的积一定,则xy成反比例。
正
(2)当x一定时,z与y成
比例关系。
z
=x
xy=z
则zy成正比例。
y (一定),
正 比例关系。
六年级数学下册《反比例》PPT课件人教版

题目1
一个直角三角形,两 多少厘米?
题目2
题目3
一个长方形的周长是20厘米,长是a厘米, 宽是b厘米。求a和b的关系式,并求出当 a=5厘米时,b是多少厘米?
一个圆柱体和一个圆锥体的底面积相等、 体积也相等。已知圆锥的高是18厘米,求 圆柱的高是多少厘米。
疑问3
反比例在生活中有哪些应用?
答
反比例关系在现实生活中有着广泛的应用。例如,汽车行 驶时,如果速度一定,那么行驶的距离和所需的时间成反 比;一定体积的气体,如果压力一定,那么气体的温度和 体积成反比。
下节课预告
• 下节课我们将学习《圆柱与圆锥》,圆柱和圆锥是常见的几何 图形,它们在生活和数学中有着广泛的应用。通过学习圆柱和 圆锥的特性、面积和体积的计算方法,我们将更好地理解这两 种几何图形在现实世界中的作用。请大家做好预习工作。
杠杆原理
在杠杆两端挂上不同质量的物体,一端质量大,一端质量小,当杠杆平衡时,两端的距离相等,质量与距离成反 比关系。
数学问题中的反比例解析
面积固定时,长与宽的关系
当一个矩形的面积固定时,长与宽的乘积为定值,即长增大时,宽必须减小,反之亦然,这体现了反 比例关系。
速度固定时,距离与时间的关系
当一个物体的速度固定时,距离与时间的乘积为定值,即距离增大时,时间必须增大,反之亦然,这 体现了反比例关系。
02 反比例的图像表示
反比例图像的绘制
确定x和y的取值范围
在绘制反比例图像前,需要确定x和y的取值 范围,以便在坐标系中正确表示。
标出原点
在坐标系的中心位置标出原点。
绘制坐标轴
根据需要选择适当的坐标轴比例,并绘制坐 标轴线。
绘制双曲线
根据反比例函数的性质,在第一象限和第三 象限内绘制双曲线。
人教版六年级数学下册第六单元第十四课时_比和比例—正比例和反比例

它的一个面的面积成正比例。
解:设氢有X千克。 1 x 1 8 5.4
9 x 1 5.4 1 5. 4 x 9 x 0.6
同样,设氧有y千克。 y 8 1 8 5.4 9y 8 5.4
8 5.4 y 9 y 4.8
答:氢有0.6kg,氧有4.8kg。
路程、速度 和 时间这三种量 当( (
路 速 程 度
)一定时, )和(
时 间
)成 正比例
当( 时 ( 当( (
路 路 速
间 程 程 度
)一定时, )和( 速 度 )一定时, )和(
时 间
)成 正比例
)成 反比例
2、根据下列等式判断x和y是否成比例,成什么比例? (1)xy=8 ( 反比例 )
x (2) 10 y
不 同 点
变化的方向相反,一种 量扩大(或缩小),另 一种量反而缩小(或扩 大)。相对应的两个数 的乘积一定。 关系式: x y k(一定)
判断正、反比例的方法:
(1)两种量是否相关联。
(2)它们的关系是商一定,还是积一定。
(3)商一定是正比例关系,积一定是反比例关系。
不相关联 →不成比例
解:设需要X块。
10 x 350 8
350 8 x 10 x 280
答:需要280块。
懒惰厌学难成器; 勤奋博学出状元。
根据比的基本性质, 把比的前项和后项都 是一个比,它的前项 化简比 乘上或者除以相同的 和后项都是整数. 数(零除外).
求比值
3∶4
= 3 4
1 ∶2 = 1 2 4 化简比 9 ∶ 18 = 1 : 2
0.7 ∶0. 5 = 7 : 5
李师傅昨天6小时做了72个零件,今天8小时做了96个 零件.写出李师傅昨天和今天所做零件个数的比和所用 时间的比.这两个比能组成比例吗?为什么? 零件个数比是 72 ∶96 所用时间比是 6 ∶8
解:设氢有X千克。 1 x 1 8 5.4
9 x 1 5.4 1 5. 4 x 9 x 0.6
同样,设氧有y千克。 y 8 1 8 5.4 9y 8 5.4
8 5.4 y 9 y 4.8
答:氢有0.6kg,氧有4.8kg。
路程、速度 和 时间这三种量 当( (
路 速 程 度
)一定时, )和(
时 间
)成 正比例
当( 时 ( 当( (
路 路 速
间 程 程 度
)一定时, )和( 速 度 )一定时, )和(
时 间
)成 正比例
)成 反比例
2、根据下列等式判断x和y是否成比例,成什么比例? (1)xy=8 ( 反比例 )
x (2) 10 y
不 同 点
变化的方向相反,一种 量扩大(或缩小),另 一种量反而缩小(或扩 大)。相对应的两个数 的乘积一定。 关系式: x y k(一定)
判断正、反比例的方法:
(1)两种量是否相关联。
(2)它们的关系是商一定,还是积一定。
(3)商一定是正比例关系,积一定是反比例关系。
不相关联 →不成比例
解:设需要X块。
10 x 350 8
350 8 x 10 x 280
答:需要280块。
懒惰厌学难成器; 勤奋博学出状元。
根据比的基本性质, 把比的前项和后项都 是一个比,它的前项 化简比 乘上或者除以相同的 和后项都是整数. 数(零除外).
求比值
3∶4
= 3 4
1 ∶2 = 1 2 4 化简比 9 ∶ 18 = 1 : 2
0.7 ∶0. 5 = 7 : 5
李师傅昨天6小时做了72个零件,今天8小时做了96个 零件.写出李师傅昨天和今天所做零件个数的比和所用 时间的比.这两个比能组成比例吗?为什么? 零件个数比是 72 ∶96 所用时间比是 6 ∶8
2024(新插图)人教版六年级数学下册第3课时反比例-课件

随堂练习 1.给一间长9m、宽6m的教室铺地砖,每块地砖 的面积与所需地砖数量如下表。
所需地砖数量与每块地砖的面积是否成反 比例关系?为什么?
所需地砖数量与每块地砖的面积成反 比例,因为教室的面积一定,而每块地砖 的面积×所需地砖数量=教室的面积。
2.下表中x和y两个量成反比例关系,请把表格填
反比例
R·六年级下册
新课导入
(1)一辆车以同样的速度前行,行驶的路程 和时间如下表: 时间(时) 1 2 3 4 5 … 路程(km) 90 180 270 360 450 …
(2)把相同体积的水倒入底面积不同的容器,容 器的底面积与水的高度的变化情况如下表。
容器的底面积/cm2 水的高度/cm
(3)相对应的容器的底面积与水的高度的乘积 分别是多少?
容器的底面积/cm² 10 15 20 30 60 ...
水的高度/cm 30 20 15 10 5 ...
体积/cm3
300 300 300 300 300 …
底面积×高度=体积
倒入容器的水的体积一定。
归纳总结
两种相关联的量,一种量变化,另一种量 也随着变化,如果这两种量中相对应的两个数 的乘积一定,这两种量就叫作成反比例的量, 它们的关系叫作反比例关系。
(1)表中有哪两种量?它们是不是相关联的量?
这两种量是相关联的量。
每天运的质量/t 300 150 100 75 60 50
运货的天数/天
123456
(2)写出几组这两种量中相对应的两个数的乘积, 并比较乘积的大小,说一说这个乘积表示什么。
பைடு நூலகம்
300×1=300 150×2=300 100×3=300
根据上表,回答下面的问题。
人教版六年级数学下册反比例课件PPT

3
在乘法表上把积是12的方格圈起来,可连成一条曲线.
12 12 24 36 48 60 72 84 96 108 120 132 144
11 11 22 33 44 55 66 77 88 99 110 121 132
10 10 20 30 40 50 60 70 80 90 100 110 120
(3)它们的关系是什么?
每杯的果汁量和分的杯数的积是一定的
每杯的果汁量× 分的杯数= 果汁总量(一定)
绿色圃中小学教育网
10
速度×时间=路程
(一定)
每杯的果汁量× 分的杯数= 果汁总量(一定)
两种相关联的量,一种量变化,另一 种量也随着变化,如果这两种量中相对 应的两个数的积一定,这两种量就叫做 成反比例的量,它们的关系叫做反比例 关系。
绿色圃中小学教育网
5
速度是10,时间是12;
速度扩大,
速度缩小,
所需时间缩 速度是40,时间是3; 所需时间扩
小。
大。
速度是80,时间是1.5;
速度和所需时间是两种相关联的量,所需时 间是随着速度的变化而变化的。
绿色圃中小学教育网
6
9 19 18 27 36 45 54 63 72 81 90 99 108
8 8 16 24 32 40 48 56 64 72 80 88 96
7 7 14 21 28 35 42 49 56 63 70 77 84
6 6 12 18 24 30 36 42 48 54 60 66 72
5 5 10 15 20 25 30 35 40 45 50 55 60
4 4 8 12 16 20 24 28 32 36 40 44 48
在乘法表上把积是12的方格圈起来,可连成一条曲线.
12 12 24 36 48 60 72 84 96 108 120 132 144
11 11 22 33 44 55 66 77 88 99 110 121 132
10 10 20 30 40 50 60 70 80 90 100 110 120
(3)它们的关系是什么?
每杯的果汁量和分的杯数的积是一定的
每杯的果汁量× 分的杯数= 果汁总量(一定)
绿色圃中小学教育网
10
速度×时间=路程
(一定)
每杯的果汁量× 分的杯数= 果汁总量(一定)
两种相关联的量,一种量变化,另一 种量也随着变化,如果这两种量中相对 应的两个数的积一定,这两种量就叫做 成反比例的量,它们的关系叫做反比例 关系。
绿色圃中小学教育网
5
速度是10,时间是12;
速度扩大,
速度缩小,
所需时间缩 速度是40,时间是3; 所需时间扩
小。
大。
速度是80,时间是1.5;
速度和所需时间是两种相关联的量,所需时 间是随着速度的变化而变化的。
绿色圃中小学教育网
6
9 19 18 27 36 45 54 63 72 81 90 99 108
8 8 16 24 32 40 48 56 64 72 80 88 96
7 7 14 21 28 35 42 49 56 63 70 77 84
6 6 12 18 24 30 36 42 48 54 60 66 72
5 5 10 15 20 25 30 35 40 45 50 55 60
4 4 8 12 16 20 24 28 32 36 40 44 48
六年级数学下册正比例和反比例(复习课)(19张PPT)人教版

人教版 六年级数学下册 第4单元 比例
4.2 正比例和反比例
复习课
学习目标
1.理解正、反比例的意义 2.会判断两种量是否成正、反比例关系 3.会利用正、反比例的关系解决实际问题
一、正比例
判断下面每组题中的两种量是否成正比例关系,并说出理由。
1.长方形的宽一定,它的面积和长。 ( 成正比例 )
长方形的面积 长方形的长
正比例和反比例的异同点
正比例
反比例
相同点 都是两种相关联的量,一种量随着另一种量变化。
变 化 不规 同律 点 关 系 式
变化的方向相同,一种 量扩大(或缩小),另一 种量也扩大(或缩小)。
y k(一定) x
变化的方向相反,一种 量扩大(或缩小),另 一种量反而缩小(或扩 大)。
xy k(一定)
针对训练
时,一共可以打字多少页?
工作总量
方法一
工作时间
=工作效率(一定) 方法二
解:设一共可以打字x页。
由题意得 x 36 64 6 6x 36 (6 4)
6x 360
解:设4小时可以打字x页。
由题意得 x 36 46
6x 36 4
6x 144
x 60
答:一共可以打字60页。
x 24
36+24=60(页) 答:一共可以打字60页。
正比例和反比例
找关系
设未知数
反比例 xy k(一定)
两种相关 联的量
相同点
概念
不同点
一种量变化另一 种量也随着变化
变化规律
列比例
判断方法
解比例 答
比值一定 成正比例
关系式
积一定 成反比例
家庭作业 一、选择 1.表示X和y成正比例关系的是( )。
4.2 正比例和反比例
复习课
学习目标
1.理解正、反比例的意义 2.会判断两种量是否成正、反比例关系 3.会利用正、反比例的关系解决实际问题
一、正比例
判断下面每组题中的两种量是否成正比例关系,并说出理由。
1.长方形的宽一定,它的面积和长。 ( 成正比例 )
长方形的面积 长方形的长
正比例和反比例的异同点
正比例
反比例
相同点 都是两种相关联的量,一种量随着另一种量变化。
变 化 不规 同律 点 关 系 式
变化的方向相同,一种 量扩大(或缩小),另一 种量也扩大(或缩小)。
y k(一定) x
变化的方向相反,一种 量扩大(或缩小),另 一种量反而缩小(或扩 大)。
xy k(一定)
针对训练
时,一共可以打字多少页?
工作总量
方法一
工作时间
=工作效率(一定) 方法二
解:设一共可以打字x页。
由题意得 x 36 64 6 6x 36 (6 4)
6x 360
解:设4小时可以打字x页。
由题意得 x 36 46
6x 36 4
6x 144
x 60
答:一共可以打字60页。
x 24
36+24=60(页) 答:一共可以打字60页。
正比例和反比例
找关系
设未知数
反比例 xy k(一定)
两种相关 联的量
相同点
概念
不同点
一种量变化另一 种量也随着变化
变化规律
列比例
判断方法
解比例 答
比值一定 成正比例
关系式
积一定 成反比例
家庭作业 一、选择 1.表示X和y成正比例关系的是( )。
新人教版小学六年级数学下册《反比例》

比值(商)是一定的。
乘积是一定的。
ቤተ መጻሕፍቲ ባይዱ
3.关系式: y/x=k(一定)
3.关系式: x×y=k(一定)
• 跟我学技巧: 正比反比两同胞, “关联”相同要记牢。 比值一定成正比, 乘积一定成反比。
再见
谢谢
每组的人数×组数=全班人数(一定)
所以(每组的人数)和( 组数 )是成反比例 的量。
(1)工地要运20吨沙,每车的载重量与车数。 因为:每车的载重量与车数是相关联的量,
并且:每车的载重量×车数=沙的总重量(一定), 所以:每车的载重量与车数成反比例。
(2)书的总册数一定,每班分得的册数和班数。 因为:每班分得的册数和班数是相关联的量, 并且:每班分得的册数×班数=书的总册数(一定),
水的高度与杯子的底面积的乘积总是一定的。
积300,实际就是倒入杯子的水的体 积。用式子表示它们的关系就是:
像这样,两种相关联的量, 一种量变化,另一种量也随 着变化,如果这两种量中相 对应的两个数的乘积一定, 这两种量就叫做成反比例的 量,它们的关系叫做反比例 关系。
在上面的实验中,高度和底面积是成反比例 的量,高度与底面积成反比例关系。
底面积是10,水的高度是30;
底面积变大,
底面积变小,
水的高度反 底面积是15,水的高度是20; 水的高度反
而变小
而变大
底面积是20,水的高度是15;
底面积是30,水的高度是10
水的高度是随着杯子的底面积的变大 而不断变小的。
(3)相应的杯子的底面积与水的高度的乘积分别是多少? 30 ×10=20 ×15=15 ×20=5 ×60= …=300
如果用字母 x和y表示两种相关联的量,用k 表示它们的积(一定),反比例关系可以用下 面的式子表示:
六年级数学下册课件-4.2.2反比例-人教版2

书的总页数一定,已读的页数与未读的页数。
(1)X∶Y=K,k一定,成正比例。
判断下面每题中的两种量成什么比例关系?并用关系式或列表等方式说明你作出判断的依据。
量出他的影长和身高,得到相应比例;
要想左右保持平衡,右边也要挂6颗,应该挂在哪里?
乘积一定,都等于300。
(4)使用竹竿来当参照物,绑在旗杆上,或者立在
正比例和反比例
反比例
正比例和反比例的认识
(1)X∶Y=K,k一定,成正比例。 (2)Y×X=K,k一定,成反比例。
正比例和反比例的认识
(3)正比例,两种相关联的量,一个 量变化,另外一个量也随之变化, 如果这两个的比值一定,就是正 比例。
正比例和反比例的认识
(4)反比例,两种相关联的量,一种 变化,另外一种也随之变化,如 果这两个量的乘积一定,那么就 是反比例。
(1)下面是某种汽车所行路程和耗油量的对应数值表。
树高和影长是成正比例。
杠杆原理背后隐藏着反比例。 第三步,量出旗杆的影长,用 右边的刻度×所放棋子数=左边的刻度×所放棋子数 同学身高∶同学影长=X∶旗杆影长
乘积一定,所以成反比例关系。
有两个相关联的量X、Y
(1)X∶Y=K,k一定,成正比例。
(2)京沪高铁的火车平均行驶速度与形式时间数值表。
书的总页数一定,已读的页数与未读的页数。 不成比例。
已读页数+未读的页数=书的总页数。 正比例 反比例 不成比例
有两个相关联的量X、Y
X
10 20
Y
30 15
反比例: 10×30=300 20×15=300 乘积一定,成反比例。
有两个相关联的量X、Y
X
10 20
Y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
8
15
5
12.5
25
50
1
1
25
3
1
2
100
底面积×高=体积(一定)
像这样两种相关联的量,一种变 化,另一种也随着变化,如果这两个 量中相对应的两个数的积一定。这两 种量就叫做成反比例的量,它们的关 系叫做反比例关系。
在上面的实验中,高度和底面积是成反比例的量, 高度与底面积成反比例关系。
如果用字母x和y表示两种相关联的量,用k表示 它们的积(一定),反比例关系可以用下面的式子 表示:
(2)种子的总量一定,每公顷的播种量和播种的公顷 数.
因为 每公顷的播种量×播种的公顷数=种子总量(一定)
所以 每公顷的播种量和播种的公顷数成反比例.
(3)李叔叔从家到工厂,骑自行车的速度和所需的时间. 因为
自行车的速度×所需的时间=路程(一定) 所以
骑自行车的速度和所需的时间成反比例.
练习九
(3)说明这个积所表示的意义.
(4)表中相关联的两种量成反比例吗?为什么? 每天运的吨数×需要的天数=总吨数(一定)
随堂练习
判断下面每题量一定,每天的烧煤量和能够烧的天数. 因为 每天烧煤的量×烧的天数=煤的总量(一定) 所以 每天的烧煤量和能够烧的天数成反比例.
推进新课
把相同体积的水倒入底 面积不同的杯子。
杯子的底面积与水的高度的变化情况如下表。
杯子的底 面积/cm²
10
15
20
30
60
…
水的高度 /cm
30
20
15
10
5
…
杯子的底 面积/cm²
10
15
20
30
60 …
水的高度 /cm
30
20
15
10
5…
(1)表中有哪两种量?高度和底面积是两种相关 联的量吗?为什么? (2)水的高度是怎样随着底面积的变化而变化的? (3)通过计算你能发现什么规律?
x y=k
你能举出生活中反比 例关系的例子吗?
如果总价一定,单 价与数量成反比例 关系。
如果长方形的面积 一定,长与宽成反 比例关系。
做一做
每天运的吨数 300 150 100 75 60 50 运货的天数 1 2 3 4 5 6
(1)表中有哪两种量?它们是不是相关联的量?
(2)写出几组这两种量中相对应的两个数的 积,并比较积的大小.(积相等)
10×30=300 15×20=300 2×15=300…… 两种量中相对应的两个数的乘积都是300。
表中的高度和底面积是两种相关联 的量。因为水的体积一定,所以水的 高度随着底面积的变化而变化: • 底面积增加,高度反而降低, • 底面积减少,高度反而升高, • 高度和底面积的乘积一定。
想一想: 怎样用式子表示底面积、高和体积之间的关系?
新课导入
1.一辆汽车行驶的时间和所行路程如下表。 时间(时) 1 2 3 4 5 6 7 8 路程(千米)90 180 270 360 450 540 630 720
两种量是否成正比例?为什么?
2、成正比例的量有什么特征?
⑴两种相关联的量。 ⑵一种量变化,另一种量也随着变化。 ⑶两种量中相对应的两个数的比值一定。