基于PLC的变频器恒压供水系统论文设计

合集下载

基于PLC和变频器控制的恒压供水系统设计

基于PLC和变频器控制的恒压供水系统设计
inverter. It is also explains hardware configuration and control. The system can solve the problem of the water supply in a high building or industry etc. This system has the advantages of saving energy, high reliability, easy control, simple operation, economic and easy matches.
应用技术
基于 PLC 和变频器控制的恒压供水系统设计
赵华军 钟波
广州铁路职业技术学院
摘要 文章介绍一种基于三菱 PLC 和变频器控制恒压供水系统 详细地介绍了硬件的构成和控制流程 系
统较好地解决高层建筑 工业等恒压供水需求 系统具有节能 工作可靠 自动控制程度高 经济易配置等优点
关键词 变频器 PID PLC 恒压供水
(上接第 17 页)
参考文献
[1] Wonderware Corporation Wonderware FactorySuiteTM INTOUCH User Manual, 2000-6-06.
[2] Rockwell Automation Allen-Bradley Logix5550 Controller User Manual, Cat. No. 1756-L1, L1M1on. http://www.
增加水泵的工作数量
执行减泵程序 是 供水压力过高 需要
减少水泵的工作数量
执行水泵轮换程序 是 避免某台水泵长时间
工作 进行水泵轮换
图 4 PLC 程序流程图

基于PLC和变频器的恒压供水自动控制系统设计毕业论文

基于PLC和变频器的恒压供水自动控制系统设计毕业论文

基于PLC和变频器的恒压供水自动控制系统设计毕业论文目录摘要 ...................................................................................................... 错误!未定义书签。

Abstract ..................................................................................................... 错误!未定义书签。

第一章引言 . (5)1.1 变频恒压供水产生的背景及研究意义 (5)1.2 变频恒压供水系统的国内外研究现状 (9)1.3 变频恒压供水系统的发展前景 (10)1.4 课题来源及本文的主要研究内容 (11)1.4.1 课题来源 (11)1.4.2 主要研究内容 (11)第二章变频恒压供水自动控制系统简介 (13)2.1 供水系统的基本特性 (13)2.2 恒压供水系统的基本构成与原理简介 (14)2.3 变频调速的节能原理 (15)2.3.1变频节能 (15)2.3.2 功率因素补偿节能 (20)2.3.3 软启动节能 (20)2.3.4 多泵并联恒压供水节能 (20)2.4 水泵运行方式的选择 (22)2.4.1 变频循环方式切换 (22)2.5 多泵并联变频恒压供水系统相关问题研究 (24)2.5.1 变频泵与固定泵容量配比问题 (24)2.5.2 多泵并联供水系统中电机的供电源切换问题研究 (25)2.6 变频恒压供水系统的特点 (27)2.7 本章小结 (28)第三章变频恒压供水自动控制系统的总体方案设计 (29)3.1 变频恒压供水自动控制系统工作原理简述 (29)3.2变频恒压供水常用实现方法介绍 (30)3.2.1 PID控制法 (30)3.2.2 模糊控制法 (30)3.2.3 自适应控制法 (30)3.3 变频恒压供水系统控制方式简介 (31)3.3.1 全自动变频恒压控制方式 (31)3.3.2 全自动工频运行方式 (32)3.4 恒压供水系统总体概况介绍 (33)3.5 本章小结 (35)第四章变频调速恒压供水系统硬件设计 (36)4.1 功能设定 (36)4.2 总体结构关系和工作流程的简单介绍 (37)4.2.1 总体结构关系介绍 (37)4.2.2 工作流程简介 (38)4.3 系统硬件设计 (39)4.3.2 控制电路设计 (40)4.3.3 信号检测 (41)4.3.4 系统工作过程详细分析 (42)4.4 主要设备选取 (43)4.4.1 PLC的选取 (43)4.4.2 变频器的选取 (44)4.4.3 变送器的选取 (44)4.5 本章小节 (45)第五章变频调速恒压供水系统软件设计 (46)5.1 变频恒压供水系统中的PID调节 (46)5.1.1 PID控制算法及特点 (47)5.1.2 PID参数整定的相关原则 (50)5.1.3 变频器参数设置及原理分析 (51)5.2 PLC配置 (59)5.2.1 S7-200型PLC的特点 (59)5.2.2 PLC的开关量输入输出点 (59)5.2.3 PLC在该系统中的功用 (60)5.2.4 PLC程序设计 (61)5.3 本章小节 (62)总结 (63)参考文献 (66)附录 (68)致谢 (73)第一章引言随着社会经济的迅速发展,水对人民生活与工业生产的影响日益加强,人民对供水的质量和供水系统可靠性的要求不断提高。

《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化的快速发展,供水系统的稳定性和效率成为了关键性的问题。

恒压供水系统作为解决这一问题的有效手段,已经得到了广泛的应用。

其中,基于PLC(可编程逻辑控制器)的恒压变频供水系统以其高效、稳定、智能的特点,在供水领域得到了极大的关注。

本文将详细介绍基于PLC恒压变频供水系统的设计与实现。

二、系统设计1. 系统架构设计本系统主要由三部分组成:PLC控制器、变频器和供水泵站。

其中,PLC控制器负责接收压力传感器传来的信号,通过运算处理后,控制变频器调节供水泵的转速,从而达到恒压供水的目的。

2. PLC控制器设计PLC控制器是本系统的核心部分,它需要接收压力传感器的实时数据,对数据进行处理和计算,然后发出控制指令。

此外,还需要具有与其他设备通信的能力。

在设计过程中,应充分考虑PLC的稳定性、可扩展性、抗干扰能力等因素。

3. 变频器与供水泵站设计变频器是连接PLC控制器和供水泵站的桥梁,它接收PLC 的控制指令,调节供水泵的转速。

供水泵站则负责实际的供水任务。

在设计过程中,应考虑泵站的布局、管道的设计、泵的选型等因素,以确保整个系统的稳定性和效率。

三、系统实现1. 硬件实现硬件部分主要包括PLC控制器、变频器、压力传感器、供水泵站等设备的选型和安装。

在选型过程中,应充分考虑设备的性能、价格、维护等因素。

安装过程中,应遵循相关的安全规范,确保系统的稳定性和安全性。

2. 软件实现软件部分主要包括PLC程序的编写和调试。

在编写过程中,应充分考虑系统的控制逻辑、数据处理、通信协议等因素。

在调试过程中,应对系统进行反复测试和优化,确保系统的稳定性和准确性。

四、系统测试与运行1. 系统测试在系统安装完成后,应进行系统测试。

测试过程中,应检查各部分的连接是否正常,系统运行是否稳定,数据是否准确等。

如果发现问题,应及时进行排查和修复。

2. 系统运行经过测试后,系统可以正式投入运行。

基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计一、本文概述随着工业技术的不断发展和城市化进程的加速,供水系统的稳定性和效率成为现代社会不可或缺的一部分。

传统的供水系统往往存在压力不稳定、能耗高等问题,难以满足现代社会的需求。

因此,基于PLC (可编程逻辑控制器)的变频恒压供水系统应运而生,成为解决这些问题的有效手段。

本文旨在探讨基于PLC的变频恒压供水系统的设计原理、系统构成、控制策略以及实际应用,以期为提高供水系统的稳定性和效率提供理论和技术支持。

本文将介绍基于PLC的变频恒压供水系统的基本设计原理,包括PLC 的工作原理、变频器的控制原理以及恒压供水的实现原理。

文章将详细阐述该系统的构成部分,包括硬件组成和软件设计,以便读者能够全面了解系统的整体架构。

在此基础上,本文将深入探讨系统的控制策略,包括PLC的编程实现、变频器的调速控制以及恒压供水的控制算法等,以展示系统如何实现精准的压力控制和节能运行。

本文还将通过实际案例分析,展示基于PLC的变频恒压供水系统在实际应用中的表现,包括系统的稳定性、节能效果以及运行效率等方面的评估。

文章将总结该系统的设计经验和教训,并提出改进和优化的建议,以期为推动供水系统的技术进步和可持续发展做出贡献。

本文旨在全面介绍基于PLC的变频恒压供水系统的设计原理、系统构成、控制策略以及实际应用,以期为供水系统的稳定性和效率提升提供理论和技术支持。

二、PLC与变频技术基础PLC,即可编程逻辑控制器(Programmable Logic Controller),是一种专为工业环境设计的数字运算操作电子系统。

它采用可编程的存储器,用于在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。

PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。

随着微电子技术的发展,PLC的性能得到了不断提升,其应用领域也越来越广泛。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计1. 引言1.1 背景介绍恒压供水系统是一种能够保持管网压力恒定的供水系统,其特点是在用户用水量变化时能够自动调节工作状态,保持供水压力恒定。

随着城市建设的发展和人们对供水质量和供水压力要求的提高,恒压供水系统在城市供水系统中得到了广泛的应用。

在传统的供水系统中,因为管网压力波动大,用户在高峰时段可能会出现供水压力不足的情况,影响用户的用水体验。

而恒压供水系统通过在系统中增加变频器或调速器等设备,能够根据用户用水量的变化实时调节泵的运行状态,从而保持管网的压力稳定,提高供水系统的稳定性和可靠性。

恒压供水系统的设计和应用对于提高城市供水系统的运行效率和水质保障具有重要意义。

基于PLC的恒压供水系统能够更加智能化地控制供水系统的运行,提高系统的运行效率和稳定性。

研究基于PLC 的恒压供水系统的设计对于推动供水系统的智能化和可持续发展具有重要的意义。

1.2 研究意义恒压供水系统作为现代生活中不可或缺的设备,其稳定可靠的运行对于保障用户正常生活和生产经营具有重要意义。

传统的恒压供水系统存在着一些问题,如压力波动大、能耗高、维护成本高等。

对于基于PLC的恒压供水系统的研究具有重要的意义。

通过对基于PLC的恒压供水系统进行研究和设计,不仅可以提升系统的性能和可靠性,还可以为恒压供水系统的发展带来新的技术突破和创新,推动相关领域的发展。

本文旨在探讨基于PLC技术的恒压供水系统的设计原理和方法,为相关研究和应用提供参考和借鉴。

1.3 研究目的研究目的是为了探索基于PLC的恒压供水系统设计的有效性和可行性。

通过对恒压供水系统的原理和特点进行分析,以及PLC在恒压供水系统中的应用情况进行研究,我们可以更好地理解恒压供水系统的设计要求和实施步骤。

通过对基于PLC的恒压供水系统的硬件设计和软件设计进行详细的讨论,可以为工程师和研究人员提供实用的设计方案和技术支持。

通过本研究,我们希望能够总结出基于PLC的恒压供水系统设计的优势和特点,为未来的恒压供水系统设计和研究提供参考和借鉴。

基于PLC的恒压变频供水系统毕业设计论文

基于PLC的恒压变频供水系统毕业设计论文

绪论近年来我国中小城市发展迅速,集中用水量急剧增加。

据统计,从1990年到1998年,我国人均日生活用水量(包括城市公共设施等非生产用水)有175.7升增加到241.1升,增长了37.2%,与此同时我国城市家庭人均日生活用水量也在逐年提高。

传统的自来水厂的供水模式在用水量高峰期时供水量普遍不足,造成城市公用管网水压浮动较大。

由于每天不同时段用水对供水压力的要求变化较大,仅仅靠供水厂值班人员依据经验进行人工手动调节很难及时有效的达到目的。

这种情况造成用水高峰期时供水压力不足,用水低峰期时供水压力过高,不仅十分浪费能源而且存在事故隐患。

供水厂以前虽然也进行过一些技术改造,但是生产系统大部分仍然采用人工手动控制,生产过程中的重要参数仍然依靠人工定时记录,例如清水池水位、电机运行时间、耗电量等都是由值班人员定时记录。

随着地区经济的发展,城区居民生活用水和工业用水量大幅度上升。

经过改造和扩建,供水厂目前的日供水能力在7.5万立方米左右,仍然不能完全满足用水需求。

由于城区用水量中居民生活用水所占的比例比较大,用水量的需求具有时变性。

在用水高峰期时,清水池的水位达不到要求高度,管网压力达不到规定的标准压力,造成高层建筑断水。

用水低峰期时,管网压力经常超过规定的压力上限,极易造成爆管事故并且能源损耗严重。

供水厂原有的生产设备的控制方式比较落后,控制过程烦琐,大部分需要人工进行手动操作,能耗高,而且不能保证供水压力达到压力标准。

此外,水厂作为城市供水系统的重要组成部分,其日常的生产、计划、运行和管理都直接影响到城市的安全供水。

在这种供水模式下长期以来许多水厂各部门的管理人员采用传统的人工管理模式,通过手工从事繁重的业务管理、各种日报表、月报表、年报表的统计汇总等工作。

由于对大量的统计报表的基础数据缺乏科学的分析手第1 页共60 页段,因此很难为运行管理以及调度提供强有力的决策支持。

所以对供水系统的技术改造已经迫在眉睫,技术改造的目的是提高生产过程的自动化水平。

基于PLC的恒压变频供水系统毕业设计论文

基于PLC的恒压变频供水系统毕业设计论文

绪论近年来我国中小城市发展迅速,集中用水量急剧增加。

据统计,从1990 年到1998 年,我国人均日生活用水量(包括城市公共设施等非生产用水)有175.7 升增加到241.1 升,增长了37.2% ,与此同时我国城市家庭人均日生活用水量也在逐年提高。

传统的自来水厂的供水模式在用水量高峰期时供水量普遍不足,造成城市公用管网水压浮动较大。

由于每天不同时段用水对供水压力的要求变化较大,仅仅靠供水厂值班人员依据经验进行人工手动调节很难及时有效的达到目的。

这种情况造成用水高峰期时供水压力不足,用水低峰期时供水压力过高,不仅十分浪费能源而且存在事故隐患。

供水厂以前虽然也进行过一些技术改造,但是生产系统大部分仍然采用人工手动控制,生产过程中的重要参数仍然依靠人工定时记录,例如清水池水位、电机运行时间、耗电量等都是由值班人员定时记录。

随着地区经济的发展,城区居民生活用水和工业用水量大幅度上升。

经过改造和扩建,供水厂目前的日供水能力在7.5 万立方米左右,仍然不能完全满足用水需求。

由于城区用水量中居民生活用水所占的比例比较大,用水量的需求具有时变性。

在用水高峰期时,清水池的水位达不到要求高度,管网压力达不到规定的标准压力,造成高层建筑断水。

用水低峰期时,管网压力经常超过规定的压力上限,极易造成爆管事故并且能源损耗严重。

供水厂原有的生产设备的控制方式比较落后,控制过程烦琐,大部分需要人工进行手动操作,能耗高,而且不能保证供水压力达到压力标准。

此外,水厂作为城市供水系统的重要组成部分,其日常的生产、计划、运行和管理都直接影响到城市的安全供水。

在这种供水模式下长期以来许多水厂各部门的管理人员采用传统的人工管理模式,通过手工从事繁重的业务管理、各种日报表、月报表、年报表的统计汇总等工作。

由于对大量的统计报表的基础数据缺乏科学的分析手段,因此很难为运行管理以及调度提供强有力的决策支持。

所以对供水系统的技术改造已经迫在眉睫,技术改造的目的是提高生产过程的自动化水平。

(完整版)基于PLC的变频器恒压供水系统论文毕业设计论文

(完整版)基于PLC的变频器恒压供水系统论文毕业设计论文

邵阳职业技术学院机电一体化专业课题名称:恒压供水系统的设计专业机电一体化班级机电1092姓名张琪设计日期:指导教师:肖伟目录1 概述 (1)1.1变频恒压供水产生的背景和意义 (1)1.2变频供水系统的发展趋势 (3)1.3 本文主要内容 (3)2 变频恒压供水系统构成及工作原理 (5)2.1系统的构成 (6)2.1.1执行机构 (6)2.1.2信号检测 (7)2.1.3控制系统 (7)2.1.4通讯接口 (8)2.1.5报警装置 (8)2.2工作原理 (8)2.3 变频恒压供水系统中加减水泵的条件分析 (9)3 基于PLC的变频恒压供水系统设计与实现 (11)3.1控制要求 (11)3.2 变频器的选择与接线 (11)3.3压力传感器的接线图 (13)3.4 原其它元器件的选择 (14)3.5 PLC控制IO口配置 (16)3.6 电气控制系统原理及线图 (17)3.6.1主电路图 (17)3.6.2控制电路接线图 (17)3.7基于PLC的变频恒压供水系统程序流程 (19)3.8控制方式 (21)3.8.1 手动运行 (21)3.8.2 自动运行 (21)3.9主要程序说明 (22)3.9.1 总程序的顺序功能图 (22)3.9.2 自动运行顺序功能图 (22)3.9.3手动模式顺序功能图 (23)3.9.4 程序说明 (24)4 结束语 (30)致谢 (31)1 概述内容摘要随着我国社会的发展和进步,住房制度改革的不断深入,人们生活水平的不断提高,城市建设发展十分迅速,同时也对基础设施建设提出了更高的要求。

城市供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到用户的正常工作和生活,也直接体现了供水管理水平的高低。

传统供水厂,特别是中小供水厂所普遍采用的恒速泵加压供水方式存在效率较低、可靠性不高、自动化程度低等缺点,难以满足当前经济生活的需要。

随着人们对供水质量和供水系统可靠性要求的不断提高,需要利用先进的自动化技术、控制技术以及通讯技术,要求设计出高性能、高节能、能适应供水厂复杂环境的恒压供水系统成为必然趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1 概述 (1)1.1变频恒压供水产生的背景和意义 (1)1.2变频供水系统的发展趋势 (3)1.3 本文主要内容 (3)2 变频恒压供水系统构成及工作原理 (3)2.1系统的构成 (5)2.1.1执行机构 (5)2.1.2信号检测 (6)2.1.3控制系统 (6)2.1.4通讯接口 (7)2.1.5报警装置 (7)2.2工作原理 (7)2.3 变频恒压供水系统中加减水泵的条件分析 (8)2.4主电路接线图 (9)3 基于PLC的变频恒压供水系统设计与实现 (10)3.1控制要求 (10)3.2 变频器的选择与接线 (10)3.3压力传感器的接线图 (12)3.4 原其它元器件的选择 (13)3.5 PLC控制I/O口配置 (15)3.6 电气控制系统原理及线图 (16)3.6.1主电路图 (16)3.6.2控制电路接线图 (16)3.7基于PLC的变频恒压供水系统程序流程 (18)3.8控制方式 (20)3.8.1 手动运行 (20)3.8.2 自动运行 (20)3.9主要程序说明 (21)3.9.1 总程序的顺序功能图 (21)3.9.2 自动运行顺序功能图 (21)3.9.3手动模式顺序功能图 (22)3.9.4 程序说明 (23)4 结束语 (29)致谢 (30)参考文献 (31)1 概述内容摘要随着我国社会的发展和进步,住房制度改革的不断深入,人们生活水平的不断提高,城市建设发展十分迅速,同时也对基础设施建设提出了更高的要求。

城市供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到用户的正常工作和生活,也直接体现了供水管理水平的高低。

传统供水厂,特别是中小供水厂所普遍采用的恒速泵加压供水方式存在效率较低、可靠性不高、自动化程度低等缺点,难以满足当前经济生活的需要。

随着人们对供水质量和供水系统可靠性要求的不断提高,需要利用先进的自动化技术、控制技术以及通讯技术,要求设计出高性能、高节能、能适应供水厂复杂环境的恒压供水系统成为必然趋势。

本文阐明了供水系统的变频调速节能原理,具体分析了变频恒压供水的原理及系统的组成结构,提出不同的控制方案,通过研究和比较,得出结论:变频调速是一种优于调压调速、机械调速等其他调速方式的方案,也是当今国际上一项效益最高、性能最好、应用最广、最有发展前途的电机调速技术.它集微机控制技术、电力电子技术和电机传动技术于一体,实现了工业交流电动机的无级调速,具有高效率、宽范围和高精度等特点的结论。

因此本文以采用变频器和PLC 组合构成系统方式,逐步阐明如何实现水压恒定供水得实现。

最后,从分析恒压变频供水的可行性,改造的理论、技术、经济可行性等方面,确定变频器的参数,设计变频主电路、变频电机的运行模式、控制模式及流程。

1.1变频恒压供水产生的背景和意义随着变频技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统以其环保、节能和高品质的供水质量等特点,广泛应用于多层住宅小区及高层建筑的生活、消防供水中。

变频恒压供水的调速系统可以实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。

在实际应用中如何充分利用专用变频器内置的各种功能,对合理设计变频恒压供水设备、降低成本、保证产品质量等有着重要意义。

变频恒压供水方式与过去的水塔或高位水箱以及气压供水方式相比,不论是设备的投资,运行的经济性,还是系统的稳定性、可靠性、自动化程度等方面都具有无法比拟的优势,而且具有显著的节能效果。

目前变频恒压供水系统正向着高可靠性、全数字化微机控制、多品种系列化的方向发展。

追求高度智能化、系列化、标准化,是未来供水设备适应城镇建设中成片开发、智能楼宇、网络供水调度和整体规划要求的必然趋势。

变频恒压供水系统能适用于生活水、工业用水以及消防用水等多种场合的供水要求,该系统具有以下特点:(1)供水系统的控制对象是用户管网的水压,它是一个过程控制量,同其他一些过程控制量(如:温度、流量、浓度等)一样,对控制作用的响应具有滞后性。

同时用于水泵转速控制的变频器也存在一定的滞后效应。

(2)用户管网中因为有管阻、水锤等因素的影响,同时又由于水泵自身的一些固有特性,使水泵转速的变化与管网压力的变化成正比,因此变频调速恒压供水系统是一个线性系统。

(3)变频调速恒压供水系统要具有广泛的通用性,面向各种各样的供水系统,而不同的供水系统管网结构、用水量和扬程等方面存在着较大的差异,因此其控制对象的模型具有很强的多变性。

(4)在变频调速恒压供水系统中,由于有定量泵(即为每转的理论排量不变的泵)的加入控制,而定量泵的控制是时时发生的,同时定量泵的运行状态直接影响供水系统的模型参数,使其不确定性地发生变化,因此可以认为,变频调速恒压供水系统的控制对象是时时变化的。

(5)当出现意外的情况(如突然停水、断电、泵、变频器或软启动器故障等)时,系统能根据泵及变频器或软启动器的状态,电网状况及水源水位,管网压力等工况点自动进行切换,保证管网内压力恒定。

在故障发生时,执行专门的故障程序,保证在紧急情况下的仍能进行供水。

(7)用变频器进行调速,用调节泵和固定泵的组合进行恒压供水,节能效果显著,对每台水泵进行软启动,启动电流可从零到电机额定电流,减少了启动电流对电网的冲击同时减少了启动惯性对设备的大惯量的转速冲击,延长了设备的使用寿命。

1.2 变频供水系统的发展趋势变频供水系统目前正在向集成化、维护操作简单化方向发展。

在国内外,专门针对供水的变频器集成化越来越高,很多专用供水变频器集成了PLC 或PID,甚至将压力传感器也融入变频组件。

同时维护操作也越来越简明显偏高,维护成本也高于国内产品。

目前国内有不少公司在从事进行变频恒压供水的研制推广,国产变频器主要采用进口元件组装或直接进口国外变频器,结合PLC 或PID调节器实现恒压供水,在小容量、控制要求的变频供水领域,国产变频器发展较快,并以其成本低廉的优势占领了相当部分小容量变频恒压供水市场。

但在大功率大容量变频器上,国产变频器有待于进一步改进和完善。

1.3 本文主要内容本文在通过对PLC恒压变频供水的技术和原理分析的基础上,提出了一套基于PLC变频恒压供水系统的可行性方案,并选择出了相应的器件,从而使系统通过安装在管网上的压力传感器,把水压转换成4~20mA的模拟信号,通过变频器来控制改变水泵转速。

用高低水位控制器来控制注水阀YV1,当其自动把水注满储水水池,只要水位低于高水位,则自动往水箱中注水。

水池的高、低水位信号也直接送给PLC作为低水位报警用。

为了保证供水的连续性,水位上下限传感器高低距离相差不是很大。

使生活供水在恒压状态(生活用水低恒压值)下进行。

2 变频恒压供水系统构成及工作原理此次设计研究的对象是一栋楼房的供水系统。

由于高层楼对水压的要求高,在水压低时,高层用户将无法正常用水甚至出现无水的情况,水压高时将造成能源的浪费。

如图2-1所示,是这栋小楼的供水流程。

自来水厂送来的水先储存的水池中再通过水泵加压送给用户。

通过水泵加压后,必须恒压供给每一个用户。

图2-1 供水流程简图市网来水用高低水位控制器EQ来控制注水阀YV1,其自动把水注满储水水池,只要水位低于高水位,则自动往水箱中注水。

水池的高、低水位信号也直接送给PLC作为低水位报警用。

为了保证供水的连续性,水位上下限传感器高低距离相差不是很大。

水使用。

下图2-2即为生活恒压供水系统工艺流程图。

图2-2 双恒压供水系统工艺流程图2.1系统的构成整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。

三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。

从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、以及报警装置等部分组成。

2.1.1执行机构执行机构是由一组水泵组成,它们用于将水供入用户管网.通常这些水泵包括:(1)调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。

(2)恒速泵:水泵运行只在工频状态,速度恒定,它们用以在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充.此外,通常一些变频系统还会增设附属小泵,它只运行于启、停两种工作状态,用以在用水量很小的情况下(例如:夜间)对管网用水量进行少量的补充.2.1.2信号检测在系统控制过程中,需要检测的信号包括水压信号、液位信号和报警信号:(1)水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。

此信号是模拟信号,读入PLC时,需进行冉刃转换。

另外为加强系统的可靠性,还需对供水的上限压力和下限压力用电接点压力表进行检测。

检测结果可以送给PLC,作为数字量输入。

(2)液位信号:它反映水泵的进水水源是否充足。

信号有效时。

控制系统要对系统实施保护控制,以防止水泵空抽而损坏电机和水泵。

此信号来自在安装于水源处的液位传感器。

(3)报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常,该信号为开关量信号。

2.1.3控制系统供水控制系统一般安装在供水控制柜中,包括供水控制器、变频器和电控设备三个部分:(1)供水控制器:它是整个变频恒压供水控制系统的核心。

供水控制器直接对系统中的压力、液位、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵成行控制.(2)变频器:它是对水泵进行转速控制的单元.变频器跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。

根据水泵机组中水泵被变频器拖动的情况不同,变频器有如下两种工作方式:1)变频循环式:变频器拖动某一台水泵作为调速泵,当这台水泵运行在50Hz时,其供水量仍不能达到用水要求,需要增加水泵机组时,系统先将变频器从该水泵电机中脱出,将该泵切换为工频的同时用变频去拖动另一台水泵电机。

2)变频固定式:变频器拖动某一台水泵作为调速泵,当这台水泵运行在50Hz时,其供水量仍不能达到用水要求,需要增加水泵机组时,系统直接启动另一台恒速水泵,变频器不做切换,变频器固定拖动的水泵在系统运行前可以选择。

变频器的电控设备它是由一组接触器、保护继电器、转换开关等电气元件组成.用于在供水控制器的控制下完成对水泵的切换、手/自动切换及就地/集中等工作。

相关文档
最新文档