高三数学(理科)导数专项训练题
高三数学导数试卷

一、选择题(每题5分,共25分)1. 函数$f(x) = x^3 - 3x$在$x=0$处的导数是()A. 0B. 3C. -3D. 62. 函数$y = 2^x$的导数是()A. $2^x$B. $2^x \ln 2$C. $2^x \ln 10$D. $2^x \ln e$3. 若函数$f(x) = x^2 + 2x + 1$的导数为$f'(x)$,则$f'(1) = $()A. 1B. 2C. 3D. 44. 函数$y = \frac{1}{x}$在$x=1$处的导数是()A. 1B. -1C. 0D. 无定义5. 函数$y = \sqrt{x}$的导数是()A. $\frac{1}{2\sqrt{x}}$B. $\frac{1}{2\sqrt{x}}\cdot\sqrt{x}$ C. $\frac{1}{2\sqrt{x}}\cdot \sqrt{x^2}$ D.$\frac{1}{2\sqrt{x}}\cdot x$二、填空题(每题5分,共25分)6. 函数$f(x) = x^2 - 2x + 1$的导数$f'(x)$为________。
7. 若函数$y = 2^x$的导数为$y'$,则$y'(2) = $________。
8. 函数$f(x) = \frac{1}{x}$在$x=1$处的导数$f'(1)$为________。
9. 函数$y = \sqrt{x}$的导数$y'$为________。
10. 若函数$y = x^3$的导数为$y'$,则$y'(-1) = $________。
三、解答题(每题15分,共60分)11. 已知函数$f(x) = x^3 - 3x$,求$f'(x)$,并求出$f'(2)$和$f'(-1)$的值。
12. 求函数$y = 2^x$在$x=3$处的切线方程。
13. 已知函数$f(x) = \frac{1}{x}$,求$f'(x)$,并求出$f'(1)$和$f'(-2)$的值。
高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)

2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。
高三数学三角函数与函数导数专题训练(含解析)

三角函数与函数导数单元测试一、选择题1、函数()()m nf x ax x =1-在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是(A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n ==2、已知函数()xf x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A ,B ,C ,给出以下判断:①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A .①③B .①④C .②③D .②④ 3、设)(),(),(x h x g x f 是R 上的任意实值函数.如下定义两个函数()()x g f 和()()x g f •;对任意R x ∈,()()())(x g f x g f = ;()()())(x g x f x g f =•.则下列等式恒成立的是( )A .()()()()()())(x h g h f x h g f ••=•B .()()()()()())(x h g h f x h g f •=•C .()()()()()())(x h g h f x h g f =D . ()()()()()())(x h g h f x h g f •••=••4、已知函数2()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为 A .[22,22]-+ B .(22,22)-+ C .[1,3] D .(1,3)5、设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( )A .1 B .12 C .52 D .226、设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞]D .[0,+∞]7、函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)8、函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)89、函数2sin 2xy x =-的图象大致是10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )911、设函数()()212log ,0log ,0x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ).A.()()1001,,-B.()()11,,-∞-+∞C.()()101,,-+∞D.()()101,,-∞-12、设函数()22g x x =-()x ∈R ,()()()()()4,,,,g x x x g x f x g x x x g x ++<⎧⎪=⎨-≥⎪⎩则()f x 的值域是( ). A.()9,01,4⎡⎤-+∞⎢⎥⎣⎦B.[)0,+∞, C.9,4⎡⎫+∞⎪⎢⎣⎭ D.()9,02,4⎡⎤-+∞⎢⎥⎣⎦13、若02πα<<,02πβ-<<,1cos()43πα+=,3cos()423πβ-=,则cos()2βα+=A .33B .33-C .39D .69-y0.1xO0.14已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭ (B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭(C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭15)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则(A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 二、填空题16\如图,△ABC 中,AB=AC=2,BC=23,点D 在BC 边上,∠ADC=45°,则AD 的长度等于______。
高三数学导数测试题(理)

导数测试题班别:_____________姓名:______________一、选择题1.函数n m mx y -=2的导数为y ' =4x 3,则( )A 、m = 1, n = 2B 、m =-1,n = 2C 、m =-1,n =-2D 、m = 1, n =-22. 函数3y x x =+的递增区间是( )A 、),0(+∞B 、 )1,(-∞C 、),(+∞-∞D 、),1(+∞3.函数()323922y x x x x =---<<有( )A 、极大值5,极小值-27B 、极大值5,极小值-11C 、极大值5,无极小值D 、极小值-27,无极大值4.(2020全国卷Ⅰ理) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为( )(A)1 (B)2 (C) -1 (D)-25、若函数f(x)=x n x 3+在点M(1,4)处切线的斜率为3+3ln3,则n 的值是( )A 、3B 、2C 、4D 、16、函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A 、2B 、3C 、4D 、5 7、在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 A .3 B .2 C .1 D .08、(2020天津卷理)设函数1()ln (0),3f x x x x =->则()y f x =( ) A 在区间1(,1),(1,)e e 内均有零点。
B 在区间1(,1),(1,)e e内均无零点。
C 在区间1(,1)e内有零点,在区间(1,)e 内无零点。
D 在区间1(,1)e内无零点,在区间(1,)e 内有零点。
9、若函数)1,0( )(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增,则a 的取值范围是( ) A .)1,41[ B . )1,43[ C .),49(+∞ D .)49,1( 10、函数y ' =4x 2(x -2)在[-2,2]上的最大值为( )A.278- B.16 C.0 D.5 11、过曲线y=x 3-3x 2上的点(0,0)的切线方程是( )。
高三数学导数试题答案及解析

高三数学导数试题答案及解析1.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x)上单调递减D.若x0是f(x)的极值点,则f′(x)=0【答案】C【解析】若c=0,则有f(0)=0,所以A正确.由f(x)=x3+ax2+bx+c得f(x)-c=x3+ax2+bx,因为函数f(x)=x3+ax2+bx的对称中心为(0,0),所以f(x)=x3+ax2+bx+c的对称中心为(0,c),所以B正确.由三次函数的图象可知,若x是f(x)的极小值点,则极大值点在x0的左侧,所以函数在区间(-∞,x)单调递减是错误的,D正确.2.已知集合,以下命题正确的序号是.①如果函数,其中,那么的最大值为。
②数列满足首项,,当且最大时,数列有2048个。
③数列满足,,,如果数列中的每一项都是集合M的元素,则符合这些条件的不同数列一共有33个。
④已知直线,其中,而且,则一共可以得到不同的直线196条。
【答案】②③④【解析】①令,,则,所以,故不正确.②由条件知数列是首项为,公差为2的等差数列,则,则当时,,所以各有两种可能取值,因此满足条件的数列有个,故正确.③根据条件可知满足条件的数列可分为四类:(1),且,有9种;(2),且,有5种;(3),且,有10种;(4),且,有9种,共有9+5+10+9=33种.④满足的选法有,其中比值相同重复有14种,因此满足条件的直线共有210-14=196.【考点】1、导数的计数;2、等差数列;3、计数原理.3.已知集合,以下命题正确的序号是.①如果函数,其中,那么的最大值为.②数列满足首项,,当且最大时,数列有2048个.③数列满足,,,如果数列中的每一项都是集合M的元素,则符合这些条件的不同数列一共有33个.④已知直线,其中,而且,则一共可以得到不同的直线196条.【答案】②③④【解析】对①,将求导得:,所以.故错.对②,是一个等差数列,都是互为相反数的两个值,所以数列共有个.对③,由得.法一、由于,,故将加4个2,再减3个2即可.由于故不能连续加4次,也不能连续减3次,所以共有个.法二、因为,所以或,注意到数列中的每一项都是集合M的元素,依次下去可得.由于,所以.由此我们可得以下树图:,所以符合这些条件的不同数列一共有14+19=33个.法三、由于或,,故可以分以下四种情况分别求解:.,共有9个;,共有5个;,共有10个;,共有9个.所以总共有33个.对④,从中取3个不同的数作为,因为,所以共有种取法.再排除其中重复的直线.与相同的有,多3条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条(注意这种情况在前面已经考虑了);与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条.一共可以得到不同的直线条.【考点】1、导数;2、数列;3、直线的方程;4、计数原理.4.曲线在点(1,0)处的切线与坐标轴所围三角形的面积等于 .【答案】【解析】∵,∴,所以切线方程为:,∴三角形面积为.【考点】1.利用导数求切线方程;2.三角形的面积公式.5.设是定义在R上的奇函数,且,当时,有恒成立,则不等式的解集是()A.(-2,0) ∪(2,+∞)B.(-2,0) ∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)【答案】D【解析】根据和构造的函数在(0,+∞)上单调递减,又是定义在R上的奇函数,故是定义在R上单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.所以答案为(-∞,-2)∪(0,2).【考点】1.导数在函数单调性中的应用;2.复合函数的导数.6.曲线处的切线与坐标轴围成的三角形面积为()A.B.C.D.【答案】A【解析】切线斜率,故切线方程为,即,其和坐标轴围成的三角形面积,选A.【考点】导数的几何意义、直线方程.7.已知函数在区间上是增函数,则实数的取值范围为 .【答案】【解析】由题意知在有定义,即在恒成立,即,又在增,故在恒成立,因为,故,综上可知,.【考点】利用导数研究函数单调性、函数最值.8.已知函数,.(Ⅰ)若,求函数在区间上的最值;(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)【答案】(Ⅰ) 最大值;(Ⅱ)的取值范围是.【解析】(Ⅰ) 讨论去掉绝对值,利用导数求得最值; (Ⅱ) 对分,讨论:当时,,恒成立,所以;当时,对讨论去掉绝对值,分离出通过求函数的最值求得的范围.试题解析:(1) 若,则.当时,,,所以函数在上单调递增;当时,,.所以函数在区间上单调递减,所以在区间[1,e]上有最小值,又因为,,而,所以在区间上有最大值.(2)函数的定义域为.由,得.(*)(ⅰ)当时,,,不等式(*)恒成立,所以;(ⅱ)当时,①当时,由得,即,现令,则,因为,所以,故在上单调递增,从而的最小值为,因为恒成立等价于,所以;②当时,的最小值为,而,显然不满足题意.综上可得,满足条件的的取值范围是.【考点】绝对值的计算、函数的最值求法、利用导数求函数单调性.9.定义在上的函数同时满足以下条件:①函数在上是减函数,在上是增函数;②是偶函数;③函数在处的切线与直线垂直.(Ⅰ)求函数的解析式;(Ⅱ)设,若存在使得,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由三个条件可得三个等式,从而可求出三个未知数.(Ⅱ)一般地若存在使得,则;若存在使得,则.在本题中,由可得: .则大于的最小值.试题解析:(Ⅰ),由题设可得:所以(Ⅱ)由得: 即:令由题意得:所以在单调递增,在上单调递减又,所以的最小值为【考点】函数的性质,导数的求法及应用.10.设,曲线在点处的切线与直线垂直.(1)求的值;(2) 若,恒成立,求的范围.(3)求证:【答案】(1) 0. (2) .(3) 结合(2)时,成立.令得到,累加可得.【解析】(1)求导数,并由得到的值; (2)恒成立问题,往往转化成求函数的最值问题.本题中设,即转化成.利用导数研究函数的最值可得.(3) 结合(2)时,成立.令得到,累加可得.试题解析:(1) 2分由题设,,. 4分(2) ,,,即设,即.6分①若,,这与题设矛盾. 8分②若方程的判别式当,即时,.在上单调递减,,即不等式成立. 9分当时,方程,其根,,当,单调递增,,与题设矛盾.综上所述, . 10分(3) 由(2)知,当时, 时,成立.不妨令所以,11分12分累加可得14分【考点】导数的几何意义,利用导数研究函数的性质,利用导数证明不等式.11.设函数 (R),且该函数曲线在处的切线与轴平行.(Ⅰ)讨论函数的单调性;(Ⅱ)证明:当时,.【答案】(Ⅰ)在上单调递减,在上单调递增;(Ⅱ)见解析.【解析】(Ⅰ)先求出原函数的导函数,令导函数大于零得单调增区间,令导函数小于零得单调减区间;(Ⅱ)当时,,在上单调递增,求出在上的最大值为和最小值,用最大值减去最小值可得结论.试题解析:(Ⅰ),由条件知,故则 3分于是.故当时,;当时,。
直击2024年高考——高三数学导数题型专练(全国版)

导数题型专练【利用公式和四则运算求导】 【例1】下列求导运算正确的是( ) A.⎝⎛⎭⎫1ln x ′=-1x ln 2x B .(x 2e x )′=2x +e x C.⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-sin ⎝⎛⎭⎫2x -π3 D.⎝⎛⎭⎫x -1x ′=1+1x 2 【答案】 AD【解析】 ⎝⎛⎭⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x , 故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-2sin ⎝⎛⎭⎫2x -π3,故C 错误;⎝⎛⎭⎫x -1x ′=1+1x 2,故D 正确.【复合函数求导】 【例2】设函数,若,则.【答案】 1; 【解析】 函数, , ,,解得, 故答案为:.【根据导数构造抽象函数】 【例3】已知可导函数的导函数为,若对任意的,都有,且为奇函数,则不等式的解集为( ).A.B.C.D.【答案】 A; 【解析】 设,由,得:,故函数在递减,由为奇函数,得, ∴,即,∵不等式,∴,即, 结合函数的单调性得:, 故不等式的解集是.故选.【求在某点处的切线方程】【例4】曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.【答案】 5x -y +2=0【解析】 y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.【求过某点处的切线方程】【例5】y =2x 2+8过点P(1,2)的切线方程是( ). A. y =−4x +6B. y =12x −10C. y =−4x +6或y =12x −10D. y =4x +6或y =12x −10【答案】 C;【解析】 设切点坐标为(x 0 ,2x 02+8),y ′=4x ,∴切线斜率k =4x 0,则2x 02+8−2x 0−1=4x 0,解得x 0=−1或3,∴所求切线方程为y =−4x +6或y =12x −10.【根据切线求参数问题】【例6】直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( ) A .4 B .3C .2D .1【答案】 A【解析】 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵ f (x )=a ln x +b ,∴ f ′(x )=ax , 由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln 1+b =2,解得b =2,故2a +b =2+2=4.【例7】过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________. 【答案】 (1,+∞)【解析】 由y ′=a e x ,若切点为(x 0,0e x a ), 则切线方程的斜率k =0'|x x y ==0e x a >0,∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea =0e x (2-x 0)有两个不同的解,令φ(x )=e x (2-x ), ∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0; x →+∞时,φ(x )→-∞, ∴0<ea <e ,解得a >1,即实数a 的取值范围是(1,+∞).【两曲线的公切线】【例8】已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0 B .-1 C .3 D .-1或3【答案】 D【解析】 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g x =x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.【利用导数确定函数图象】 【例9】已知函数,则的图象大致为( ).A. B.C. D.【答案】A;【解析】令,则,由,得,即函数在上单调递增,由得,即函数在上单调递减,所以当时,函数有最小值,,于是对任意的,有,故排除、,因为函数在上单调递减,则函数在上单调递增,故排除.故选.【利用导数求具体函数的单调性】【例10】函数f(x)=x2-2ln x的单调递减区间是()A.(0,1) B.(1,+∞)C.(-∞,1) D.(-1,1)【答案】A【解析】∵f′(x)=2x-2 x=2(x+1)(x-1)x(x>0),令f′(x)=0,得x=1,∴当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.【例11】若函数f(x)=ln x+1e x,则函数f(x)的单调递减区间为________.【答案】(1,+∞)【解析】f(x)的定义域为(0,+∞),f′(x)=1x-ln x-1e x,令φ(x)=1x-ln x-1(x>0),φ′(x)=-1x2-1x<0,φ(x)在(0,+∞)上单调递减,且φ(1)=0,∴当x∈(0,1)时,φ(x)>0,当x∈(1,+∞)时,φ(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.【利用导数求含参函数的单调性】【例12】已知函数.讨论的单调性.【答案】当时,增区间为,无减区间;当时,增区间为,减区间为.【解析】函数的定义域为:,,①当时,恒成立,在上单调递增,无减区间;②当时,令,解得,∴增区间为,减区间为综上:当时,增区间为,无减区间;当时,增区间为,减区间为.【例13】已知函数是自然对数的底数).讨论的单调性.【答案】 当时,在上单调递减; 当时,在上单调递减,在上单调递增. 【解析】,当时,,在上单调递减; 当时,由得,所以在上单调递减;由得,所以在上单调递增.综上,当时,在上单调递减;当时,在上单调递减,在上单调递增.【导数解决单调性的应用-比较大小】【例14】已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 【答案】 A【解析】 因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝⎛⎭⎫0,π2上单调递增,所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5.【导数解决单调性的应用-解不等式】【例15】已知函数f (x )=e x -e -x -2x +1,则不等式f (2x -3)>1的解集为________.【答案】 ⎝⎛⎭⎫32,+∞【解析】 f (x )=e x -e -x -2x +1,定义域为R , f ′(x )=e x +e -x -2≥2e x ·e -x -2=0,当且仅当x =0时取“=”, ∴f (x )在R 上单调递增, 又f (0)=1,∴原不等式可化为f (2x -3)>f (0), 即2x -3>0,解得x >32, ∴原不等式的解集为⎝⎛⎭⎫32,+∞.【导数解决单调性的应用-求参数范围】【例16】已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上单调递增,则实数a 的取值范围为________. 【答案】 ⎣⎡⎭⎫43,+∞ 【解析】 由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立, 即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立, ∵⎝⎛⎭⎫-x +1x max =83, ∴2a ≥83,即a ≥43.【根据函数图象判断极值】【例17】设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A.函数f(x)有极大值f(-3)和f(3)B.函数f(x)有极小值f(-3)和f(3) C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)【答案】D【解析】由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).【利用导数求函数的极值】【例18】已知函数,其中.求函数的极值.【答案】当时,在单调递减,无极值,当时,在单调递增,上单调递减.∴有极大值.【解析】,,令得,,当时,在单调递减,无极值,当时,在单调递增,上单调递减.∴有极大值.【例19】已知函数.判断函数的极值点的个数,并说明理由.【答案】当时,函数有一个极值点;当或时,函数有两个极值点,当时,函数无极值点.【解析】因为,所以.()当时,有,令,得.当变化时,和的变化情况如下:所以当时,函数只有一个极值点.()当时,令,得,.①当时,.当变化时,和的变化情况如下:所以当时,函数有两个极值点.②当时,恒成立,所以在上单调递增,所以当时,函数无极值点.③当时,,当变化时,和的变化情况如下:所以当时,函数有两个极值点,综上,当时,函数有一个极值点;当或时,函数有两个极值点,当时,函数无极值点.【已知极值(点)求参数】【例20】函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a +b 等于()A .-7B .0C .-7或0D .-15或6【答案】 A【解析】 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10,解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3,检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时,f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减,当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.【利用导数求函数的最值】【例21】函数的最小值为 . 【答案】 ; 【解析】 当时,,,此时单调递减,此时.当时,,, 当时,,单调递减, 时,,单调递增, ∴此时,∵,∴的最小值为. 【例22】已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).【答案】(1) e 2-3e +1;(2) h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.【解析】 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ;③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.【数形结合法研究函数零点】【例23】已知函数f (x )=e x -a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【解析】 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)令f (x )=0,得e x =a (x +2),即1a =x +2e x ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0;当x ∈(-1,+∞)时,φ′(x )<0,所以φ(x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时,φ(x )→-∞;x →+∞时,φ(x )→0,所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞.【利用函数性质研究函数零点】【例24】已知函数f (x )=x -a ln x (a >0).(1)求函数f (x )的单调区间;(2)求函数g (x )=12x 2-ax -f (x )的零点个数.【解析】 (1)函数f (x )的定义域为(0,+∞),由f (x )=x -a ln x 可得f ′(x )=1-a x =x -a x ,由f ′(x )>0可得x >a ;由f ′(x )<0可得0<x <a ,所以f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由g (x )=12x 2-ax -x +a ln x=12x 2-(a +1)x +a ln x ,可得g ′(x )=x -(a +1)+a x令g ′(x )=0可得x =1或x =a ,因为g (1)=12-a -1=-a -12<0,g (2a +3)=12(2a +3)2-(a +1)(2a +3)+a ln(2a +3)=a +a ln(2a +3)+32>0,当a >1时,g (x )在(1,a )上单调递减,所以g (1)>g (a ),所以g (a )<0,所以g (x )有一个零点,当a =1时,g (x )在(0,+∞)上单调递增,所以g (x )有一个零点,当0<a <1时,g (x )在(0,a )上单调递增,在(a ,1)上单调递减,在(1,+∞)上单调递增,此时g (a )=12a 2-(a +1)a +a ln a=-12a 2-a +a ln a <0,g (x )只有一个零点,综上所述,g (x )在(0,+∞)上只有一个零点.【导数构造问题】【例25】已知定义在R 上的函数f (x ),其导函数为f ′(x ),当x >0时,f ′(x )-f (x )x >0,若a=2f (1),b =f (2),c =4f ⎝⎛⎭⎫12,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .b <a <cD .a <b <c 【答案】 B【解析】 构造函数g (x )=f (x )x (x >0),得g ′(x )=xf ′(x )-f (x )x 2=1x ⎣⎡⎦⎤f ′(x )-f (x )x , 由题知当x >0时,f ′(x )-f (x )x >0,所以g ′(x )>0,故g (x )在(0,+∞)上单调递增,所以f (2)2>f (1)1>f ⎝⎛⎭⎫1212,即f (2)>2f (1)>4f ⎝⎛⎭⎫12,即b >a >c .【例26】(多选)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)<e 2f (0)B .f (2)>e 2f (0)C .e 2f (-1)>f (1)D .e 2f (-1)<f (1)【答案】 AC【解析】 构造F (x )=f (x )e x ,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足f ′(x )<f (x ),则F ′(x )<0,F (x )在R 上单调递减,根据单调性可知A ,C 选项正确.【例27】(多选)定义在⎝⎛⎭⎫0,π2上的函数f (x ),已知f ′(x )是它的导函数,且恒有cos x ·f ′(x )+sin x ·f (x )<0成立,则有( )A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B.3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D.2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4 【答案】 CD【解析】 构造函数g (x )=f (x )cos x ⎝⎛⎭⎫0<x <π2. 则g ′(x )=f ′(x )cos x +f (x )sin x (cos x )2<0,即函数g (x )在⎝⎛⎭⎫0,π2上单调递减, 所以g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π3,所以f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3, 同理g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π4, 即2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4.【同构法导数构造】【例28】若存在x ,y ∈(0,+∞)使得x ln(2ax )+y =x ln y ,则实数a 的最大值为( ) A.1eB.12eC.13eD.2e【答案】 B【解析】 由x ln(2ax )+y =x ln y ,得ln(2a )=ln y x -y x ,令t =y x >0,g (t )=ln t -t ,则g ′(t )=1t -1=1-t t ,当0<t <1时,g ′(t )>0,当t >1时,g ′(t )<0,所以g (t )在(0,1)上单调递增,在(1,+∞)上单调递减,所以当t =1时,g (t )取得极大值即最大值g (1)=-1,因为当t →0时,g (t )→-∞,所以g (t )∈(-∞,-1],所以ln 2a ≤-1,所以0<a ≤12e ,所以实数a 的最大值为12e .【分参法解决恒成立问题】【例29】已知函数f (x )=(x -2)e x -12ax 2+ax (a ∈R ).(1)当a =0时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x ≥2时,f (x )≥0恒成立,求a 的取值范围.【解析】(1)当a =0时,f (x )=(x -2)e x ,f (0)=(0-2)e 0=-2,f ′(x )=(x -1)e x ,k =f ′(0)=(0-1)e 0=-1,所以切线方程为y +2=-(x -0),即x +y +2=0.(2)方法一 当x ≥2时,f (x )≥0恒成立,等价于当x ≥2时,(x -2)e x -12ax 2+ax ≥0恒成立.即⎝⎛⎭⎫12x 2-x a ≤(x -2)e x 在[2,+∞)上恒成立.当x =2时,0·a ≤0,所以a ∈R .当x >2时,12x 2-x >0,所以a ≤(x -2)e x 12x 2-x=2e x x 恒成立. 设g (x )=2e x x ,则g ′(x )=2(x -1)e x x 2, 因为x >2,所以g ′(x )>0,所以g (x )在区间(2,+∞)上单调递增.所以g (x )>g (2)=e 2,所以a ≤e 2.综上所述,a 的取值范围是(-∞,e 2].【整体法解决恒成立问题】【例30】已知函数f (x )=e x -1-ax +ln x (a ∈R ). (1)若函数f (x )在x =1处的切线与直线3x -y =0平行,求a 的值;(2)若不等式f (x )≥ln x -a +1对一切x ∈[1,+∞)恒成立,求实数a 的取值范围.【解析】(1)f ′(x )=e x -1-a +1x ,∴f ′(1)=2-a =3,∴a =-1,经检验a =-1满足题意,∴a =-1,(2)f (x )≥ln x -a +1可化为e x -1-ax +a -1≥0,x >0,令φ(x )=e x -1-ax +a -1,则当x ∈[1,+∞)时,φ(x )min ≥0,∵φ′(x )=e x -1-a ,①当a ≤1e 时,φ′(x )>0,∴φ(x )在[1,+∞)上单调递增,∴φ(x )min =φ(1)=1-a +a -1=0≥0恒成立,∴a ≤1e 符合题意.②当a >1e 时,令φ′(x )=0,得x =ln a +1.当x ∈(0,ln a +1)时,φ′(x )<0,当x ∈(ln a +1,+∞)时,φ′(x )>0,∴φ(x )在(0,ln a +1)上单调递减,在(ln a +1,+∞)上单调递增.当ln a +1≤1,即1e <a ≤1时,φ(x )在[1,+∞)上单调递增,φ(x )min =φ(1)=0≥0恒成立,∴1e <a ≤1符合题意.当ln a +1>1,即a >1时,φ(x )在[1,ln a +1)上单调递减,在(ln a +1,+∞)上单调递增, ∴φ(x )min =φ(ln a +1)<φ(1)=0与φ(x )≥0矛盾.故a >1不符合题意.综上,实数a 的取值范围为(-∞,1].【双变量的恒(能)成立问题】【例31】设f (x )=a x +x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围. 解 (1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M 成立. g ′(x )=3x 2-2x =x (3x -2),令g ′(x )=0,得x =0或x =23,∵g ⎝⎛⎭⎫23=-8527, 又g (0)=-3,g (2)=1, ∴当x ∈[0,2]时,g (x )max =g (2)=1,g (x )min =g ⎝⎛⎭⎫23=-8527, ∴M ≤1-⎝⎛⎭⎫-8527=11227, ∴满足条件的最大整数M 为4.(2)对任意的s ,t ∈⎣⎡⎦⎤12,2有f (s )≥g (t ),则f (x )min ≥g (x )max .由(1)知当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (2)=1, ∴当x ∈⎣⎡⎦⎤12,2时,f (x )=a x +x ln x ≥1恒成立, 即a ≥x -x 2ln x 恒成立.令h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤12,2,∴h ′(x )=1-2x ln x -x , 令φ(x )=1-2x ln x -x , ∴φ′(x )=-3-2ln x <0,h ′(x )在⎣⎡⎦⎤12,2上单调递减,又h ′(1)=0,∴当x ∈⎣⎡⎦⎤12,1时,h ′(x )≥0, 当x ∈[1,2]时,h ′(x )≤0,∴h (x )在⎣⎡⎦⎤12,1上单调递增,在[1,2]上单调递减,∴h (x )max =h (1)=1,故a ≥1.∴实数a 的取值范围是[1,+∞).【利用导数证明不等式】【例32】已知函数g (x )=x 3+ax 2.(1)若函数g (x )在[1,3]上为单调函数,求a 的取值范围;(2)已知a >-1,x >0,求证:g (x )>x 2ln x .(1)解 由题意知,函数g (x )=x 3+ax 2,则g ′(x )=3x 2+2ax ,若g (x )在[1,3]上单调递增,则g ′(x )=3x 2+2ax ≥0在[1,3]上恒成立,则a ≥-32;若g (x )在[1,3]上单调递减,则g ′(x )=3x 2+2ax ≤0在[1,3]上恒成立,则a ≤-92.所以a 的取值范围是⎝⎛⎦⎤-∞,-92∪⎣⎡⎭⎫-32,+∞. (2)证明 由题意得,要证g (x )>x 2ln x ,x >0,即证x 3+ax 2>x 2ln x ,即证x +a >ln x ,令u (x )=x +a -ln x ,x >0,可得u ′(x )=1-1x =x -1x ,x >0,当0<x <1时,u ′(x )<0,函数u (x )单调递减;当x >1时,u ′(x )>0,函数u (x )单调递增.所以u (x )≥u (1)=1+a ,因为a >-1,所以u (x )>0,故当a >-1时,对于任意x >0,g (x )>x 2ln x .【例33】已知函数f (x )=a ln x +x .(1)讨论f (x )的单调性;(2)当a =1时,证明:xf (x )<e x .(1)解 f (x )的定义域为(0,+∞),f ′(x )=a x +1=x +a x .当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0;若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.(2)证明 当a =1时,要证xf (x )<e x ,即证x 2+x ln x <e x ,即证1+ln x x <e x x 2.令函数g (x )=1+ln x x ,则g ′(x )=1-ln x x 2.令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,所以g (x )max =g (e)=1+1e ,令函数h (x )=e x x 2,则h ′(x )=e x (x -2)x 3.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以h (x )min =h (2)=e 24.因为e 24-⎝⎛⎭⎫1+1e >0,所以h (x )min >g (x )max ,即1+ln x x <e x x 2,从而xf (x )<e x 得证.【例34】已知函数f (x )=e x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x >-2时,求证:f (x )>ln(x +2).(1)解 由f (x )=e x ,得f (0)=1,f ′(x )=e x ,则f ′(0)=1,即曲线y =f (x )在点(0,f (0))处的切线方程为y -1=x -0,所以所求切线方程为x -y +1=0.(2)证明 设g (x )=f (x )-(x +1)=e x -x -1(x >-2),则g ′(x )=e x -1,当-2<x <0时,g ′(x )<0;当x >0时,g ′(x )>0,即g (x )在(-2,0)上单调递减,在(0,+∞)上单调递增,于是当x =0时,g (x )min =g (0)=0,因此f (x )≥x +1(当且仅当x =0时取等号),令h (x )=x +1-ln(x +2)(x >-2),则h ′(x )=1-1x +2=x +1x +2, 则当-2<x <-1时,h ′(x )<0,当x >-1时,h ′(x )>0,即有h (x )在(-2,-1)上单调递减,在(-1,+∞)上单调递增,于是当x =-1时,h (x )min =h (-1)=0,因此x +1≥ln(x +2)(当且仅当x =-1时取等号),所以当x >-2时,f (x )>ln(x +2).【隐零点问题】【例35】已知函数f (x )=ln x -ax (a ∈R ).(1)讨论函数f (x )的单调性;(2)证明不等式e x -2-ax >f (x )恒成立. 【解析】 (1) f ′(x )=1x -a =1-ax x (x >0),当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a ,所以当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0,f (x )单调递增; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增, 在⎝⎛⎭⎫1a ,+∞上单调递减.(2)设函数φ(x )=e x -2-ln x (x >0),则φ′(x )=e x -2-1x ,可知φ′(x )在(0,+∞)上单调递增.又由φ′(1)<0,φ′(2)>0知,φ′(x )=0在(0,+∞)上有唯一实数根x 0,且1<x 0<2, 则φ′(x 0)=02ex −-1x 0=0, 即02e x −=1x 0. 当x ∈(0,x 0)时,φ′(x )<0,φ(x )单调递减;当x ∈(x 0,+∞)时,φ′(x )>0,φ(x )单调递增,所以φ(x )≥φ(x 0)=02ex −-ln x 0, 结合02e x −=1x 0, 知x 0-2=-ln x 0,所以φ(x )≥φ(x 0)=1x 0+x 0-2=x 20-2x 0+1x 0=(x 0-1)2x 0>0, 则φ(x )=e x -2-ln x >0,即不等式e x -2-ax >f (x )恒成立.【极值点偏移问题】【例36】已知函数f (x )=a e x -x ,a ∈R .若f (x )有两个不同的零点x 1,x 2.证明:x 1+x 2>2.【解析】由f (x )=a e x -x =0,得x e x -a =0,令g (x )=x e x -a ,则g ′(x )=1-x e x ,由g ′(x )=1-x e x >0,得x <1;由g ′(x )=1-x e x <0,得x >1.所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,由于x 1,x 2是方程g (x )=0的实根,不妨设x 1<1<x 2,方法一 (对称化构造函数法)要证x 1+x 2>2, 只要证x 2>2-x 1>1.由于g (x )在(1,+∞)上单调递减,故只要证g (x 2)<g (2-x 1), 由于g (x 1)=g (x 2)=0,故只要证g (x 1)<g (2-x 1),令H (x )=g (x )-g (2-x )=x e x -2-x e 2-x (x <1), 则H ′(x )=1-x e x -1-x e 2-x =(e 2-x -e x )(1-x )e 2, 因为x <1,所以1-x >0,2-x >x ,所以e 2-x >e x ,即e 2-x -e x >0,所以H ′(x )>0,所以H (x )在(-∞,1)上单调递增. 所以H (x 1)<H (1)=0,即有g (x 1)<g (2-x 1)成立,所以x 1+x 2>2.方法二 (比值代换法)设0<x 1<1<x 2,由g (x 1)=g (x 2),得1212e e x x x x −−=,等式两边取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1. 所以x 1+x 2=(t +1)ln t t -1>2⇔ln t -2(t -1)t +1>0, 设g (t )=ln t -2(t -1)t +1(t >1),所以g ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0, 所以当t >1时,g (t )单调递增, 所以g (t )>g (1)=0,所以ln t -2(t -1)t +1>0,故x 1+x 2>2.。
高中数学高三导数大题精选(附详细解答)

高中数学高三导数大题精选一、选择题1.函数的单调递增区间是()A.(0,+∞)B.(-3,1)C.(1,+∞)D.(0,1)2.如图是定义在(a,b)上的函数f(x)的导函数的图象,则函数f(x)的极值点的个数为A.2B.3C.4D.53.曲线在点(0,2))处的切线方程为().A.y=2B.y=x+2C.y=2x+2D.y=-2x+24.函数在处有极值10,则点(a ,b)为()A.(3,-3)B.(-4,11)C.(3,-3)或(-4,11)D.不存在5.函数f(x)=x(ex-1)+ln x的图象在点(1,f(1))处的切线方程是( ) A.y=2ex-e-1B.y=2ex-e+1C.y=2ex+e-1D.y=2ex+e+16.已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是()A. B.C. D.7.已知x=2 是函数的极小值点,那么函数f(x)的极大值为()A.15B.16C.17D.188.已知函数y=f(x)是R上的可导函数,当x≠0时,有,则函数的零点个数是()A. 0B. 1C. 2D. 39.若函数f(x)=在(0,2)内单调递减,则实数a的取值范围为A.a=3 B.a≤3C.a≥3 D.0<a<310.函数的导数是A. B.C. D.二、填空题11.已知函数,则过点可以作出________条图象的切线三、解答题12.设函数,.(1)当时,函数取得极值,求的值;(2)当时,求函数在区间[1,2]上的最大值;(3)当时,关于的方程有唯一实数解,求实数的值.13.已知函数(1)若x=2为的极值点,求实数a的值;(2)若在上为增函数,求实数a的取值范围;(3)当时,方程有实根,求实数b的最大14.求下列函数的导数(1)(2)(3)15.已知函数.若函数在处有极值-4.(1)求的单调递减区间;(2)求函数在上的最大值和最小值.参考答案一、选择题1、【答案】D解:函数的定义域为,且,解不等式,即,由于,解得.因此,函数的单调递增区间为,故选:D.2、【答案】B3、【答案】C4、【答案】B解:,则,解得或,当时,,此时在定义域上为增函数,无极值,舍去.当,,为极小值点.5、【答案】A解:f(1)=e-1,f′(x)=ex(1+x)+-1,f′(1)=2e,∴在点(1,f(1))处的切线方程为y-(e-1)=2e(x-1),即为y=2ex-e-1.6、【答案】A7、【答案】D8、【答案】B9、【答案】C10、【答案】B二、填空题11、【答案】2解:设切点的坐标为:,,因此切线方程为:,把的坐标代入切线方程中,化简得:或,所以过点可以作出二条的切线.故答案为:2三、解答题12、13、【答案】(1)解:因为x= 2为f(x)的极值点,所以即,解得:a=0又当a = 0时,,从而x=2为f(x)的极值点成立.(2)解:∵f(x)在区间[3,+∞)上为增函数,∴在区间[3,+∞)上恒成立.①当a = 0时,在[3,+∞)上恒成立,所以f (x)在[3,+∞)上为增函数,故a = 0符合题意.②当a≠0时,由函数f (x)的定义域可知,必须有2ax + 1 > 0对x≥3恒成立,故只能a > 0,所以在区间[3,+∞)上恒成立令,其对称轴为∵a > 0,∴,从而g (x)≥0在[3,+∞)上恒成立,只要g (3)≥0即可,由,解得:∵a > 0,∴.综上所述,a的取值范围为[0,](3)解:时,方程可化为,.问题转化为在(0,+∞)上有解令,则当0 < x < 1时,,∴h (x)在(0,1)上为增函数当x > 1时,,∴h (x)在(1,+∞)上为减函数故h (x)≤h (1) = 0,而x > 0,故即实数b的最大值是0.14、15、解:(1)∵,∴,依题意有即,解得∴,由,得,∴函数单调递减区间由知∴,令,解得.当变化时,的变化情况如下表:由上表知,函数在上单调递减,在上单调递增.故可得又.∴综上可得函数在上的最大值和最小值分别为和.。
高三数学导数题试卷答案

一、选择题1. 函数f(x) = x^3 - 3x在x=0处的导数是()A. 0B. 3C. -3D. 不存在答案:A解析:f'(x) = 3x^2 - 3,代入x=0,得f'(0) = 30^2 - 3 = -3,因此选项A正确。
2. 函数f(x) = e^x - x在x=1处的导数是()A. eB. e-1C. 1D. 0答案:A解析:f'(x) = e^x - 1,代入x=1,得f'(1) = e^1 - 1 = e - 1,因此选项A正确。
3. 函数f(x) = ln(x+1)在x=0处的导数是()A. 1B. 0C. -1D. 不存在答案:B解析:f'(x) = 1/(x+1),代入x=0,得f'(0) = 1/(0+1) = 1,因此选项B正确。
4. 函数f(x) = x^2 - 4x + 4的导数是()A. 2x - 4B. 2xC. 2x - 8D. 2x + 4答案:A解析:f'(x) = 2x - 4,因此选项A正确。
5. 函数f(x) = 2x^3 + 3x^2 - 5x + 1的导数是()A. 6x^2 + 6x - 5B. 6x^2 + 6xC. 6x^2 + 6x + 5D. 6x^2 + 6x - 6答案:A解析:f'(x) = 6x^2 + 6x - 5,因此选项A正确。
二、填空题6. 函数f(x) = 3x^2 + 2x - 1的导数f'(x) = _______答案:6x + 2解析:f'(x) = 6x + 2。
7. 函数f(x) = e^x的导数f'(x) = _______答案:e^x解析:f'(x) = e^x。
8. 函数f(x) = ln(x)的导数f'(x) = _______答案:1/x解析:f'(x) = 1/x。
9. 函数f(x) = 1/x^2的导数f'(x) = _______答案:-2/x^3解析:f'(x) = -2/x^3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学(理科)导数专项训练题一、选择题1.设偶函数()f x 在[0)+∞,上为增函数,且(2)(4)0f f ⋅<,那么下列四个命题中一定正确的是( )A .(3)(5)0f f ⋅≥B .(3)(5)f f ->-C .函数在点(4(4))f --,处的切线斜率10k <D .函数在点(4(4))f ,处的切线斜率20k ≥ 2.对于函数①1()45f x x x=+-,②21()l o g ()2xf x x =-,③()c o s (2)c o s f x x x =+-,判断如下两个命题的真假:命题甲:()f x 在区间(1,2)上是增函数;命题乙:()f x 在区间(0,)+∞上恰有两个零点12,x x ,且121x x <. 能使命题甲、乙均为真的函数的序号是( )(A )① (B )② (C )①③ (D )①②3.下列函数中,在其定义域内既是增函数又是奇函数的是( )A .1y x=-B .333x xy x -=+- C .3log y x = D .3xy =4.已知函数()f x 是定义域为R 的奇函数,且()f x 的图象关于直线1x =对称,那么下列式子中对任意x R ∈恒成立的是 ( ) A . (1)()f x f x += B . (2)()f x f x +=C . (3)()f x f x +=D . (4)()f x f x +=5.如图,有一直角墙角,两边的长度足够长,在P 处有一棵树与两墙的距离分别是(012),4am a m <<,不考虑树的粗细,现在用16m 长的篱笆,借助墙角围成一个矩形的花圃ABCD 。
设此矩形花圃的面积为Sm 2,S 的最大值为()f a ,若将这棵树围在花墙内,则函数()u f a =的图象大致是( )6.设二次函数2()4()f x ax x c x R =-+∈的值域为19[0,),19c a +∞+++则的最大值为( )A .3125B .3833C .65 D .31267.已知函数()f x 的图像如图所示,'()()f x f x 是的导函数,则下列数值排序正确的是( ) A .0'(2)'(3)(3)(2)f f f f <<<-B .0'(3)(3)(2)'(2)f f f f <<-<C .0'(3)'(2)(3)(2)f f f f <<<-D .0(3)(2)'(2)'(3)f f f f <-<<8、若1(,1)x e -∈, x a ln =,ln 12xb ⎛⎫= ⎪⎝⎭, ln x c e =,则 ( )A .a b c >>B .c a b >>C . c b a >>D . a c b >> 9.函数ln cos ()22y x x ππ=-<<的图象是 ( )10、已知直线2x =及4x =与函数2log y x =图像的交点分别为A,B ,与函数lg y x =图像的交点分别为,C D ,则直线AB 与CD ( )A.相交,且交点在坐标原点B.相交,且交点在第I 象限C.相交,且交点在第II 象限D.相交,且交点在第IV 象限 11.设a ∈R ,函数f (x )=e x +a·e -x 的导函数是f ′( x ),且 f ′( x )是奇函数,若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为 ( )A.ln 22-B. -ln2C. ln2D.ln 2212.某学校开展研究性学习活动,一组同学获得了下面的一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A.y =2x -2B.y =(12)xC.y =log 2xD.y =12(x 2-1)13、设函数()142cos 3sin 323-+θ+θ=x x x x f ,其中⎥⎦⎤⎢⎣⎡π∈θ650,,则导数()1-'f 的取值范围是( ) (A )]6,3[(B )]34,3[+ (C )]6,34[- (D )]34,34[+-14.已知直线1y x =+与曲线x ay e +=相切,则a 的值为( )A .1B .2C .-1D .015.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y =f (x ),一种是平均价格曲线 y =g (x )(如f(2)=3表示开始交易后第2小时的即时价格为3元;g (2)=4表示开始交易后两个小时内所有成交股票的平均价格为4元).下面所给出的四个图象中,实线表示y =f (x ),虚线表示 y =g (x ),其中可能正确的是( )16、已知函数)(x f y =的图象如图①所示,则图②是下列哪个函数的图象( )(A)()x f y -= (B)()x f y -= (C)()x f y --= (D)()x f y --= 17.已知βα,是三次函数bx ax x x f 22131)(23++=的两个极值点,且)2,1(),1,0(∈∈βα,则12--a b 的取值范围是 ( ) A )1,41( B )1,21( C )41,21(- D )21,21(-18.定义在R 上的函数)(x f 满足1)4(=f ,)('x f 为)(x f 的导函数,已知)('x f y =的图像如图所示,若两个正数a 、b 满足1)2(<+b a f ,则11++a b 的取值范围是( )A .)31,51(B .),5()31,(+∞⋃-∞C .)5,31(D .)3,(-∞19.已知函数()2log f x x =,正实数m,n 满足m n <,且()f m 间2,m n ⎡⎤⎣⎦上的最大值为2,则m 、n 的值分别为 ( A、2、1,24 C 、1,22D 、1,4420.已知奇函数()f x 的导函数为()5cos f x x '=+,(1,1)x ∈-,且(0)0f =,如果2(1)(1)0f x f x -+-<,则实数x 的取值范围为( )A .(0,1) B. C.(2,- D.(1(2,1)--二、填空题21.设()f x 是定义在R 上的奇函数,且(2)0,0f x =>当时,有2()()0xf x f x x'-<恒成立,则不等式2()0x f x >的解集为22. 设函数22,(,1)(),[1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 若()4f x >,则x 的取值范围是 .23.奇函数()f x 满足对任意(2)(2)0,(1)x R f x f x f ∈++-==都有且,则(2010)(2011)(f f f ++的值为 。
24.已知二次函数y =f (x )的图像为开口向下的抛物线,且对任意x ∈R 都有f (1+x )=f (1-x ).若向量(,1)a m =-,(,2)b m =-,则满足不等式()(1)f a b f ∙>-的m 的取值范围为 _______ 25.设函数11()2x x f x +--=,则使()f x ≥x 取值范围是___________.26.2log 0x =的根的个数为 .27. 已知函数1()ln 1af x x ax x-=-+- ()a R ∈. (Ⅰ)当1a =-时,求曲线()y f x =在点(2, (2))f 处的切线方程; (Ⅱ)当102a ≤<时,讨论()f x 的单调性.28.设函数2()(1)2ln(1)f x x x =+-+. (I )求()f x 的单调区间;(II )当0<a <2时,求函数2()()1g x f x x ax =---在区间[03],上的最小值.29.已知()sin f x x a x =+.(Ⅰ)若()f x 在(,)-∞+∞上为增函数,求实数a 的取值范围; (Ⅱ)当常数0a >时,设()()f x g x x =,求()g x 在5,66ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.30.已知三次函数()()32,,f x ax bx cx a b c R =++∈.(Ⅰ)若函数()f x 过点(1,2)-且在点()()1,1f 处的切线方程为20y +=,求函数()f x 的解析式;(Ⅱ)在(Ⅰ)的条件下,若对于区间[]3,2-上任意两个自变量的值12,x x 都有12()()f x f x t -≤,求实数t 的最小值;(Ⅲ)当11x -≤≤时,1)(≤'x f ,试求a 的最大值,并求a 取得最大值时()f x 的表达式.31. 某园林公司计划在一块O 为圆心,R (R 为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形CMDC 区域用于观赏样板地,OCD ∆区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本..是每平方米2元,花木的利润..是每平方米8元,草皮的利润..是每平方米3元. (1)设(COD θ∠=单位:弧度), ,用θ表示弓形CMDC 的面积()S f θ=弓; (2)园林公司应该怎样规划这块土地,才能使总利润最大? 并求相对应的θ (参考公式:扇形面积公式21122S R Rl θ==,l 表示扇形的弧长)B32.已知函数()k f x x b =+(常数,k b R ∈)的图像过点(4,2)、(16,4)两点. (1)求()f x 的解析式;(2)若函数()g x 的图像与函数()f x 的图像关于直线y x =对称,若不等式()(2)22g x g x a x +-<+恒成立,求实数a 的取值范围; (3)若123,,,,,n P P P P 是函数()f x 图像上的点列,123,,,,,n Q Q Q Q 是x 正半轴上的点列,O 为坐标原点,111221,,,,n n n OQ P QQ P Q Q P -∆∆∆是一系列正三角形,记它们的边长是123,,,,,n a a a a ,探求数列{}n a 的通项公式,并说明理由.33.已知函数)()(R x kx e x f x ∈-=(1)若e k =,试确定函数)(x f 的单调区间;(2)若0>k 且对任意R x ∈,0|)(|>x f 恒成立,试确定实数k 的取值范围; (3)设函数)()()(x f x f x F -+=,求证:)()2()()2()1(21*+∈+>⋅N n e n F F F n n34.已知4221()log (1)()1mxf x x x R x +=+-∈+是偶函数。