运筹学案例分析报告

合集下载

运筹学---案例分析

运筹学---案例分析

管理运筹学案例分析产品产量预测一、问题的提出2007年,山西潞安矿业集团与哈密煤业集团进行重组,成立了潞安新疆煤化工(集团)有限公司。

潞安新疆公司成立后,大力加快新项目建设。

通过技术改造和加强管理,使煤炭产量、销售收入、利润、职工收入等得到了大幅提高,2007年生产煤炭506万吨,2008年煤炭产量726万吨,2009年煤炭产量956万吨。

三年每月产量见下表,请预测2010年每月产量。

表1 2007—2009年每月产量表单位:万吨二、分析与建立模型1、根据2007—2009年的煤炭产量数据,可做出下图:表2 2007—2009年每月产量折线图由上图可看出,2007—2009年的煤炭产量数据具有明显的季节性因素和总体上升趋势。

因此,我们采取用体现时间序列的趋势和季节因素的预测方法。

(一)、用移动平均法来消除季节因素和不规则因素影响1、取n=12;2、将12个月的平均值作为消除季节和不规则因素影响后受趋势因素影响的数值;3、计算“中心移动平均值”;4、计算每月与不规则因素的指标值。

表3 平均值表5、计算月份指数;6、调整月份指数。

表4 调整(后)的月份指数(二)、去掉时间序列中的月份因素将原来的时间序列的每一个数据值除以相应的月份指数。

表5 消除月份因素后的时间序列表三、计算结果及分析确定消除季节因素后的时间序列的趋势。

求解趋势直线方程。

设直线方程为:T t =b0+b1 tT t为求每t 时期煤炭产量;b0为趋势直线纵轴上的截距;b1为趋势直线的斜率。

求得:四、一点思考新疆的煤矿生产企业产能只是企业要考虑的部分因素,因国家产业政策以及新疆距离内地需经河西走廊,因此,企业不仅要考虑产能,更多的要考虑运输问题,从某种意义上来说,东疆地区煤炭生产企业不是“以销定产”,而是“以运定产”,也就是说,物流运输方案是企业管理人员要认真思考的问题。

本案例可以结合物流运输远近及运输工具的选择作进一步的运筹分析,以使得煤炭生产企业真正实现科学合理决策。

运筹学实例 含解析

运筹学实例 含解析

案例1. 工程项目选择问题某承包企业在同一时期内有八项工程可供选择投标。

其中有五项住宅工程,三项工业车间。

由于这些工程要求同时施工,而企业又没有能力同时承担,企业应根据自身的能力,分析这两类工程的盈利水平,作出正确的投标方案。

有关数据见下表:表1 可供选择投标工程的有关数据统计工程类型 预期利润/元 抹灰量/m 2混凝土量/ m 3砌筑量/ m 3住宅每项 50011 25 000 280 4 200 工业车间每项 80 000480 880 1 800 企业尚有能力108 0003 68013 800试建立此问题的数学模型。

解:设承包商承包X 1项住宅工程,X 2项工业车间工程可获利最高,依题意可建立如下整数模型:目标是获利最高,故得目标函数为21X 80000X 50011z Max +=根据企业工程量能力限制与项目本身特性,有约束:利用WinSQB 建立模型求解:1080002X 4801X 25000≤+3680X 880X 28021≤+13800X 1800X 420021≤+为整数,;,2121X X 3X 5X ≤≤综上,承包商对2项住宅工程,3项车间工程进行投标,可获利最大,目标函数Max z=340022 元。

案例2. 生产计划问题某厂生产四种产品。

每种产品要经过A,B两道工序加工。

设该厂有两种规格的设备能完成A工序,以A1 ,A2表示;有三种规格的设备能完成B工序,以B1 ,B2,B3 表示。

产品D可在A,B任何一种规格的设备上加工。

产品E可在任何规格的A设备上加工,但完成B工序时只能在B1设备上加工。

产品F可在A2及B2 ,B3上加工。

产品G可在任何一种规格的A设备上加工,但完成B工序时只能在B1 ,B2设备上加工。

已知生产单件产品的设备工时,原材料费,及产品单价,各种设备有效台时如下表,要求安排最优的生产计划,使该厂利润最大?设设产品设备有效台时1 2 3 4A1 A2 B1 B2 B357647109812111068108601110000400070004000原料费(元/件)单价(元/件)0.251.250.352.000.502.800.42.4解:设Xia(b)j为i产品在a(b)j设备上的加工数量,i=1,2,3,4;j=1,2,3,得变量列表设备产品设备有效台时Ta(b)j1 2 3 4A1 A2 B1 B2 B3X1a1X1a2X1b1X1b2X1b3X2a1X2a2X2b1X3b2X3b3X3a1X3a2X3b1X3b2X3b3X4a1X4a2X4b1X4b2X4b3601110000400070004000原料费Ci (元/件) 单价Pi (元/件) 0.25 1.25 0.352.00 0.50 2.80 0.4 2.4其中,令X 3a 1,X 3b 1,X 3b 2,X 3b 3,X 4b 3=0 可建立数学模型如下: 目标函数: ∑∑==-=4121)](*[Maxi j iaj Ci Pi X z=1.00*(X 1a 1+X 1a 2)+1.65*(X 2a 1+X 2a 2)+2.30* X 3a 2+2.00*( X 4a 1+X 4a 2)约束条件:利用WinSQB 求解(X1~X4,X5~X8,X9~X12,X13~X17,X18~X20分别表示各行变量):4,3,2,1X21j 31==∑∑==i X j ibjiaj2,1T X 41iaj=<=∑=j Taj i iaj 3,2,141=<=∑=j TbjT Xi ibj ibj2,1;4,3,2,10X iaj ==>=j i 且为整数32,1;4,3,2,10X ibj ,且为整数==>=j i 0X X X X X 4b33b33b23b13a1=====综上,最优生产计划如下:设备产品1 2 3 4A1 A2 B1 B2 B3774235004004008732875目标函数zMax=3495,即最大利润为3495案例3. 高校教职工聘任问题 (建摸)由校方确定的各级决策目标为:P 1 要求教师有一定的学术水平。

运筹学在实际问题中的应用案例分析

运筹学在实际问题中的应用案例分析

运筹学在实际问题中的应用案例分析运筹学作为一门研究如何最优化地解决决策问题的学科,在实际问题中得到了广泛的应用。

本文将通过分析两个实际案例来探讨运筹学在解决复杂问题和优化资源利用方面的应用。

案例一:物流配送优化物流配送是一个典型的运筹学应用领域。

在现代社会,物流配送环节对于企业的运营效率和成本控制至关重要。

如何合理安排车辆路线、调度和配送是一项复杂且具有挑战性的任务。

运筹学可以通过数学建模和优化算法来解决这个问题。

首先,我们可以将物流配送问题建模为一个旅行商问题(Traveling Salesman Problem,TSP)。

TSP是一个经典的组合优化问题,目标是寻找一条最短路径,使得从一个地点出发经过所有其他地点后回到起点,且路径的总长度最小。

通过运筹学方法,可以利用算法来求解最佳路径并优化物流配送效率。

其次,为了进一步优化物流配送的效率,我们可以引入车辆调度问题。

例如,考虑到不同城市的交通堵塞情况,我们可以使用调度算法将不同城市的订单分配给不同的车辆,以减少整体行程时间和成本。

通过运筹学的应用,一家物流公司可以最大限度地减少行程时间、减少燃料消耗,提高物流配送的效率。

因此,运筹学在物流配送问题中的应用具有重要的意义。

案例二:生产排产优化生产排产是制造业中的一个重要环节,它关系到企业的生产效率、生产能力和订单交付时间。

运筹学在生产排产中的应用可以帮助企业提高生产效率,降低成本并及时交付产品。

在生产排产中,我们通常需要考虑到多个因素,如机器的利用率、工人的工作时间和任务的优先级等。

通过运筹学的方法,可以构建一个数学模型,通过数学规划算法来优化生产排产方案。

例如,假设一个工厂有多个机器和多个订单需要排产,每个订单有不同的完成时间和优先级。

我们可以通过运筹学的方法,将这个问题建模为一个调度问题。

然后,利用调度算法来确定每个订单的完成时间和最优的生产顺序,从而实现生产排产的优化。

通过运筹学的应用,企业可以有效地优化生产排产计划,提高生产效率,减少资源浪费,并保证订单能够及时交付。

运筹学在流程优化中的应用案例分析

运筹学在流程优化中的应用案例分析

运筹学在流程优化中的应用案例分析引言:在当今竞争激烈的商业环境中,流程优化成为了各个组织追求高效运作的关键。

流程优化旨在通过改进和重组组织内部流程,提高效率和质量,降低成本和风险。

与此同时,运筹学作为一门管理科学,通过数学建模和优化算法的应用,为流程优化提供了有力的支持。

本文将通过分析多个运筹学在流程优化中的应用案例,讨论其在实践中的价值和效果。

案例一:生产流程优化在传统的生产流程中,生产车间每个工人都独自完成生产任务,导致工人之间产生很多不必要的等待和浪费。

一家制造公司决定引入运筹学方法,重新优化他们的生产流程。

通过运筹学的方法,公司将生产任务分配给工人组成的小组,使得每个小组内的工人专注于各自的任务,提高工作效率。

此外,通过运筹学的算法,公司确定了最优的任务分配方案,最大程度地减少了等待和浪费的时间。

优化后的生产流程大大提高了生产效率,降低了生产成本。

案例二:物流配送优化一家电子商务公司面临着快速增长的客户需求和复杂的物流系统。

为了满足客户的要求,公司决定引入运筹学的方法对物流配送进行优化。

运筹学模型通过考虑客户需求的分布、仓库的位置和运输成本等因素,确定了最优的配送路径和策略。

通过优化后的物流配送系统,公司能够更精确地安排货物的运输,减少运输时间和成本,提高客户满意度。

同时,通过实时监控和预测,公司能够更好地应对突发情况,并做出相应的调整,提高了物流系统的鲁棒性。

案例三:人力资源调度优化在一个大型医院中,不同科室之间的人力资源分配存在瓶颈和浪费。

为了解决这个问题,医院决定应用运筹学模型来优化人力资源的调度。

通过运筹学的方法,医院能够根据就诊人数的预测和就诊科室的需求来合理安排医生和护士的工作。

通过优化后的人力资源调度,医院能够提高科室的工作效率,减少等待时间,并提供更好的医疗服务。

此外,通过运筹学的优化算法,医院还能够合理安排员工的休假和轮班,提高员工的满意度和工作积极性。

案例四:供应链优化一家零售公司面临着供应链管理的挑战,包括供货商管理、库存管理和订单管理等。

运筹学实践教学报告范文(3篇)

运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。

本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。

以下是对本次实践教学的总结和反思。

二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。

通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。

- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。

公司每天可利用机器时间为8小时,人工时间为10小时。

假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。

- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。

人力为50人,物力为100台设备,财力为500万元。

根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。

请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。

运筹学案例分析报告

运筹学案例分析报告

运筹学案例分析报告武城万事达酒水批发案例分析导言:每个企业都是为了赚取利润,想要赚取更多的利润就要想办法节约自己的成本,那怎么节约自己的成本呢?运筹学是一门用纯数学的方法来解决最优方法的选择安排的学科。

运输是配送的必需条件,但是怎么才能让武城万事达酒水批发厂在运输问题是节约运输成本呢?我们就运用运筹学的方法来进行分析。

我们对他原来的运输路线进行调查,计算原来需要的运输成本,对它的运输方式我们进行研究然后确定新的运输路线为他节约运输成本。

一、案例描述武城万事达酒水批发有四个仓库存储啤酒分别为1、2、3、4,有五个销地A、B、C、D、E,各仓库的库存与各销售点的销售量(单位均为t),以及各仓库到各销售地的单位运价(元/t)。

半年中,1、2、3、4仓库中分别有300、400、500、300吨的存量,半年内A、B、C、D、E五个销售地的销量分别为170、370、500、340、120吨。

且从1仓库分别运往A、B、C、D、E五个销售地的单位运价分别为300、350、280、380、310元,从2仓库分别运往A、B、C、D、E五个销售地的单位运价分别310、270、390、320、340元,从3仓库分别运往A、B、C、D、E五个销售地的单位运价分别290、320、330、360、300元,从4仓库分别运往A、B、C、D、E五个销售地的单位运价分别310、340、320、350、320元。

具体情况于下表所示。

求产品如何调运才能使总运费最小?仓库销地A B C D E 存量1 3002 4003 5004 300 销量170 370 500 340 120 1500 武城万事达酒水批发原来的运输方案:E销售地的产品从1仓库供给,D销售地的产品全由2仓库供给,C销售地全由3仓库供给,A、B销售地产品全由4仓库供给。

即:产生的运输费用为Z1=310*120+320*340+330*500+340*370+310*170=489500Z1二、模型构建1、决策变量的设置设所有方案中所需销售量为决策变量X ij(i=1、2、3、4,j=A、B、C、D、E),即:方案1:是由仓库1到销售地A的运输量X1A方案2:是由仓库1到销售地B的运输量X1B方案3:是由仓库1到销售地C的运输量X1C方案4:是由仓库1到销售地D的运输量X1D方案5:是由仓库1到销售地E的运输量X1E方案6:是由仓库2到销售地A的运输量X2A方案7:是由仓库2到销售地B的运输量X2B方案8:是由仓库2到销售地C的运输量X2C方案9:是由仓库2到销售地D的运输量X2D方案10:是由仓库2到销售地E的运输量X2E方案11:是由仓库3到销售地A的运输量X3A方案12:是由仓库3到销售地B的运输量X3B方案13:是由仓库3到销售地C的运输量X3C方案14:是由仓库3到销售地D的运输量X3D方案15:是由仓库3到销售地E的运输量X3E方案16:是由仓库4到销售地A的运输量X4A方案17:是由仓库4到销售地B的运输量X4B方案18:是由仓库4到销售地C的运输量X4C方案19:是由仓库4到销售地D的运输量X4D方案20:是由仓库4到销售地E的运输量X4E2、目标函数的确定问题是求在运输过程中使总运费最小目标函数为:Min:Z=300X1A+350X1B+280X1C+380X1D+310X1E+310X2A+270X2B+390X2C+320X2D+340 X2E+290X3A+320X3B+330X3C+360X3D+300X3E+310X4A+340X4B+320X4C+350X4D+320X3A3、约束条件:X1A+X1B+X1C+X1D+X1E=300X2A+X2B+X2C+X2D+X2E=400X3A+X2B+X3C+X3D+X3E=500X4A+X4B+X4C+X4D+X4E=300X1A+X2A+X3A+X4A=170X1B+X2B+X3B+X4B=370X1C+X2C+X3C+X4C=500X1D+X2D+X3D+X4D=340X+X2E+X3E+X4E=1201EX ij(i=1、2、3、4,j=A、B、C、D)≥ 04、运用表上作业法对模型求解:仓库销地ABC D E存量行罚数1 2 3 4 51300300 20 20 10 10 10 237030400 40 10 10 10 10 317020010120500 10 10 10 10 10 4300300 10 10 10 10 10 销量170 370 500 340 120150列罚数1 10 【50】40 30 102 10 【40】30 103 10 【30】104 10 【10】5 【10】检验是否为最优解:X1A=X1A-X3A+X3C-X1C=300-290+360-280=90X2A=X2A-X3A+X4D-X2D=310-290+360-320=60X4A=X4A-X4D+X3D-X3A=310-350+360-290=30X3B=X3B-X3D+X2D-X2B=320-360+320-270=10X4B=X4B-X4D+X2D-X2B=340-350+320-270=40X2C=X2C-X3C+X3D-X2D=390-330+360-320=100X4C=X4C-X4D+X3D-X2C=320-350+360-330=0X1D=X1D-X3D+X3C-X1C=380-360+330-280=703035X1E=X1E-X3E+X3C-X1C=310-300+330-280=60X2E=X2E-X3E+X3D-X2D=340-300+360-320=80X4E=X4E-X4D+X3D-X3E=320-350+360-300=30我们运用表上作业发对模型求得的一个解我们用闭合回路发进行检验,因为检验数全部是非负的,所以我们找出的解是最优解,最优解为:由1仓库运往C销地300吨,2仓库运往B地370吨,2仓库运往D地30吨,3仓库运往A销地170吨,3仓库运往C销地200吨,3仓库运往D销地10吨,3仓库运往E销地120吨,4仓库运往D销地300吨.三、效益分析通过上述计算可知:原武城万事达酒水批发运输方案为:E销售地的产品全部由仓库1供给,D销售地的产品全部由仓库2供给,C销售地的产品全部由仓库3供给,A、B销售地的产品全部由仓库4供给。

生活中运筹学案例分析

生活中运筹学案例分析

生活中运筹学案例分析
运筹学是一门研究如何做出最优决策的学科,它在生活中有着广泛的应用。


日常生活中的购物决策到企业的生产计划,都可以看到运筹学的影子。

在本文中,我们将通过一些生活中的案例来分析运筹学的应用。

首先,让我们来看一个购物决策的案例。

假设你需要购买一件衣服,而且你有
多个选择。

每件衣服的价格、品质、风格都不同,你需要在这些选择中做出最优的决策。

这时,你可以运用运筹学的方法,比如成本效益分析、决策树分析等,来帮助你做出最佳选择,从而在有限的预算内获得最大的满意度。

其次,让我们来看一个企业生产计划的案例。

假设一个工厂需要生产多种产品,并且有限的资源,比如人力、原材料、机器等。

在这种情况下,工厂需要合理安排生产计划,以最大化产出并降低成本。

这就需要运用运筹学的方法,比如线性规划、排程算法等,来优化生产计划,使得工厂能够以最有效的方式进行生产。

此外,运筹学还可以应用于交通运输、物流配送、金融投资等方面。

比如,在
交通运输中,如何合理安排车辆的路线,以最小化时间和成本;在物流配送中,如何优化仓储和配送流程,以提高效率和降低成本;在金融投资中,如何构建最佳的投资组合,以最大化收益和降低风险。

综上所述,运筹学在生活中有着广泛的应用,可以帮助我们在各种决策中做出
最优选择。

通过分析一些生活中的案例,我们可以更好地理解和应用运筹学的方法,从而提高我们的决策能力和生活质量。

希望本文能够对读者有所启发,让大家在生活中更加注重运筹学的应用。

生活中运筹学案例分析

生活中运筹学案例分析

生活中运筹学案例分析生活中的许多情境都可以运用运筹学的理念和方法来进行分析和优化。

下面我将通过几个生活中的案例来说明运筹学在实际生活中的应用。

首先,我们来看一个日常生活中的例子,早晨出门上班。

在早晨高峰期,许多人都面临着上班迟到的问题。

这时候我们可以运用运筹学的方法来优化出行路线。

比如,我们可以提前规划好最佳的出行路线,避开交通拥堵的路段,选择合适的出行工具,比如地铁、公交等,以最快的速度到达目的地,从而减少出行时间,提高效率。

其次,我们来看一个生产管理中的案例,生产调度。

在工厂的生产中,如何合理安排生产任务和生产资源是一个重要的问题。

我们可以借助运筹学的方法,通过对生产任务的分析和排程,合理安排生产顺序和生产线的利用率,从而提高生产效率,降低生产成本。

再次,我们来看一个物流配送中的案例,快递配送。

在快递行业中,如何合理安排快递的配送路线和时间是一个关键问题。

我们可以利用运筹学的方法,通过对快递订单的分析和规划,合理安排配送路线和配送顺序,以最短的时间和最低的成本完成配送任务,提高配送效率,提升客户满意度。

最后,我们来看一个市场营销中的案例,促销活动。

在市场营销中,如何制定合适的促销策略是至关重要的。

我们可以运用运筹学的方法,通过对市场需求和产品销售情况的分析,制定合理的促销策略和销售计划,最大限度地提高销售额,实现市场目标。

通过以上几个案例的分析,我们可以看到运筹学在生活中的广泛应用。

无论是日常生活、生产管理、物流配送还是市场营销,都可以通过运筹学的方法来优化资源配置,提高效率,降低成本,实现最佳的决策和规划。

希望大家在生活和工作中能够更多地运用运筹学的理念和方法,从而取得更好的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武城万事达酒水批发案例分析
导言:每个企业都是为了赚取利润,想要赚取更多的利润就要想办法节约自己的成本,那怎么节约自己的成本呢?运筹学是一门用纯数学的方法来解决最优方法的选择安排的学科。

运输是配送的必需条件,但是怎么才能让武城万事达酒水批发厂在运输问题是节约运输成本呢?我们就运用运筹学的方法来进行分析。

我们对他原来的运输路线进行调查,计算原来需要的运输成本,对它的运输方式我们进行研究然后确定新的运输路线为他节约运输成本。

一、案例描述
武城万事达酒水批发有四个仓库存储啤酒分别为1、2、3、4,有五个销地A、B、C、D、E,各仓库的库存与各销售点的销售量(单位均为t),以及各仓库到各销售地的单位运价(元/t)。

半年中,1、2、3、4仓库中分别有300、400、500、300吨的存量,半年内A、B、C、D、E五个销售地的销量分别为170、370、500、340、120吨。

且从1仓库分别运往A、B、C、D、E五个销售地的单位运价分别为300、350、280、380、310元,从2仓库分别运往A、B、C、D、E五个销售地的单位运价分别310、270、390、320、340元,从3仓库分别运往A、B、C、D、E五个销售地的单位运价分别290、320、330、360、300元,从4仓库分别运往A、B、C、D、E五个销售地的单位运价分别310、340、320、350、320元。

具体情况于下表所示。

求产品如何调运才能使总运费最小?
武城万事达酒水批发原来的运输方案:
E销售地的产品从1仓库供给,D销售地的产品全由2仓库供给,C销售地全由3仓库供给,A、B销售地产品全由4仓库供给。

即:产生的运输费用为Z
1
=310*120+320*340+330*500+340*370+310*170=489500
Z
1
二、模型构建
1、决策变量的设置
设所有方案中所需销售量为决策变量X ij(i=1、2、3、4,j=A、B、C、D、E),即:
方案1:是由仓库1到销售地A的运输量X1A
方案2:是由仓库1到销售地B的运输量X1B
方案3:是由仓库1到销售地C的运输量X1C
方案4:是由仓库1到销售地D的运输量X1D
方案5:是由仓库1到销售地E的运输量X1E
方案6:是由仓库2到销售地A的运输量X2A
方案7:是由仓库2到销售地B的运输量X2B
方案8:是由仓库2到销售地C的运输量X2C
方案9:是由仓库2到销售地D的运输量X2D
方案10:是由仓库2到销售地E的运输量X2E
方案11:是由仓库3到销售地A的运输量X3A
方案12:是由仓库3到销售地B的运输量X3B
方案13:是由仓库3到销售地C的运输量X3C
方案14:是由仓库3到销售地D的运输量X3D
方案15:是由仓库3到销售地E的运输量X3E
方案16:是由仓库4到销售地A的运输量X4A
方案17:是由仓库4到销售地B的运输量X4B
方案18:是由仓库4到销售地C的运输量X4C
方案19:是由仓库4到销售地D的运输量X4D
方案20:是由仓库4到销售地E的运输量X4E
2、目标函数的确定
问题是求在运输过程中使总运费最小
目标函数为:
Min:Z=300X1A+350X1B+280X1C+380X1D+310X1E+310X2A+270X2B+390X2C+320X2D+340 X2E+290X3A+320X3B+330X3C+360X3D+300X3E+310X4A+340X4B+320X4C+350X4D+320X3A
3、约束条件:
X1A+X1B+X1C+X1D+X1E=300
X2A+X2B+X2C+X2D+X2E=400
X3A+X2B+X3C+X3D+X3E=500
X4A+X4B+X4C+X4D+X4E=300
X1A+X2A+X3A+X4A=170
X1B+X2B+X3B+X4B=370
X1C+X2C+X3C+X4C=500
X1D+X2D+X3D+X4D=340
X
+X2E+X3E+X4E=120
1E
X ij(i=1、2、3、4,j=A、B、C、D)≥ 0
4、运用表上作业法对模型求解:
300
37030
17020010120
300
检验是否为最优解:
X1A=X1A-X3A+X3C-X1C=300-290+360-280=90
X2A=X2A-X3A+X4D-X2D=310-290+360-320=60
X4A=X4A-X4D+X3D-X3A=310-350+360-290=30
X3B=X3B-X3D+X2D-X2B=320-360+320-270=10
X4B=X4B-X4D+X2D-X2B=340-350+320-270=40
=X2C-X3C+X3D-X2D=390-330+360-320=100
X
2C
X4C=X4C-X4D+X3D-X2C=320-350+360-330=0
X1D=X1D-X3D+X3C-X1C=380-360+330-280=70
X1E=X1E-X3E+X3C-X1C=310-300+330-280=60
X2E=X2E-X3E+X3D-X2D=340-300+360-320=80
X4E=X4E-X4D+X3D-X3E=320-350+360-300=30
我们运用表上作业发对模型求得的一个解我们用闭合回路发进行检验,因为检验数全部是非负的,所以我们找出的解是最优解,最优解为:
由1仓库运往C销地300吨,2仓库运往B地370吨,2仓库运往D地30吨,3仓库运往A销地170吨,3仓库运往C销地200吨,3仓库运往D销地10吨,3仓库运往E销地120吨,4仓库运往D销地300吨.
三、效益分析
通过上述计算可知:
原武城万事达酒水批发运输方案为:E销售地的产品全部由仓库1供给,D销售地的产品全部由仓库2供给,C销售地的产品全部由仓库3供给,A、B销售地的产品全部由仓库4供给。

即:计算原武城万事达酒水批发的实际运输费用Z1:
原实际运输费用为
Z
=310x120+320x340+330x500+340x370+310x170=489500(元)
1
:计算武城万事达酒水批发经过我们小组同学进行运筹学规划以后的费用Z
2通过解析模型可得到最优运输方案为由1仓库运往C销售地300吨
由2仓库分别运往B、D,销售地370吨、30吨
由3仓库分别运往A、C、D、E,销售地170吨,200吨、10吨、120吨
由4仓库运往D销售地300吨
=300*280+370*270++30*320+290*170+330*200+360*10+300*120+350*300 Z
2
=453400(元)
由于本方案是由我们组7位同学通过5天时间得到的方案,在济南每个人每月的平均工资为月薪为4000元,我们小组花费了35个工作日,所以我们的总花费为为:
Q=7/30x4000*5=4700(元)
所以原武城万事达酒水批发在这半年的效益为:
489500-453400=36100(元)
则今年的效益为72200(元)
假设武城万事达酒水批发给我们15%的提成:
72200*15%=10000(元)
10000-4700=5300(元)
原武城万事达酒水批发每年的实际效益将在原来的收益上增加为:
72200-10000=62200(元)
四、心得体会
简单的来说,运筹学就是通过数学模型来安排物资,它是一门研究如何有效的组织和管理人机系统的科学。

从提出问题,分析建摸到求解到方案对逻辑思维的严密性也是一种考验,但它与我们经济管理类专业的学生以后走上工作岗位是息息相关的。

运筹学应用分析,试验,量化的方法,对经济管理系统中人财物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。

对经济问题的研究,在运筹学中,就是建立这个问题的数学和模拟的模型。

建立模型是运筹学方法的精髓。

通常的建模可以分为两大步:分析与表述问题,建立并求解模型。

通过本学期实习训练,我们正是对这两大步骤的诠释和演绎。

运筹学模型的建立与求解,是对实际问题的概括与提炼,是对实际问题的数学解答。

而通过本次的实习,我们也深刻的体会到了这一点。

将错综复杂的实例问题抽象概括成数学数字,再将其按要求进行求解得出结果,当然还有对结果的检验与分析也是不可少的。

在这一系列的操作过程中,我们不仅可以体会到数学问题求解的严谨和规范,同时也有对运筹学解决问题的喜悦。

通过这一个周实习训练,我们对有关运筹学建模问题有了更深刻的认识和把握;对运筹学的有关知识点也有了进一步的学习和掌握,实习课程的学习很快过去,但它对我们掌握运筹学建模问题的要求却并没有随课程的结束而结束。

因此在以后的学习当中我们更应该时己刻温习,不时巩固,以达到知新的效果。

以上就是我的一些感悟,希望可以对自有所帮助。

相关文档
最新文档